
TESA –Towards Embedded-Internet System Applications

Surname: Chin

Other Names: Jeannette S

Qualification Sought: BSc Internet Computing

Title of the Project: TESA—Towards Embedded-Internet System Applications

Supervisor: Dr Victor Callaghan

Date: 1st March 2003

Abstract:

This thesis explores the feasibility of applying emerging low-cost
embedded Internet devices in support of pervasive computing; a new vision
whereby domestic appliances are provided with Internet connections enabling
them to be accessed and controlled by any web based interface.

The approach used was to design and build a simple embedded-internet
botanical appliance labeled TESA (Towards Embedded-Internet System
Applications). The server side of TESA was implemented using the embedded-
Internet TINI [25]. The client side of TESA was implemented for PCs, PDAs and
mobiles phones based on Web and WAP interfaces with communication
mediums that include wired-IP, WiFi and Bluetooth.

The principal computer science challenges were the design of the
appliance computing architecture, the development of the multi-mode interactive
interfaces and the management of multi-interface consistency. The main
outcomes were: the design of an embedded internet appliance, a set of
supporting JAVA programs, a solution for multi-mode interface inter-operation, a
wireless architecture, and a development methodology for internet-appliances.

A working system was produced and the overall project conclusion was
that it is indeed feasible to use low-cost embedded-internet devices, with minimal
development systems, to “quickly” create useful applications for pervasive
computing products.

This project report is in accordance with Examination Regulations 6.12 and 6.13.

Jeannette S Chin Page 1

TESA –Towards Embedded-Internet System Applications

To Ivan, who inspires me, always.

Jeannette S Chin Page 2

TESA –Towards Embedded-Internet System Applications

Acknowledgements:

I have many people to thank for their part in making my achievements
possible. I would like to start by saying how much I owe to my most extraordinary
kind, supportive supervisor and advisor, Dr. Victor Callaghan, who has given me
constant encouragement, advice and support throughout my three years at the
Essex University. It was him who made me started in believing myself, after my
long 13 years away from study, with family responsibilities, difficulties and
numerous set backs as I strived to fulfil my “dream”. I am extremely lucky that I
was under his supervision. I have learnt much and gained a lot of wonderful
experiences while we were working together. Moreover, he has opened my eyes
from a “square window” view of the world to a socially enhanced technological
dreamland!

I would like to offer my most sincere thanks to Dr. Graham Clarke, who,

with his most cheerful smiles and wonderful sense of humour, has never
hesitated for a single moment to give me advice and support whenever I need it.
I would like to thank him for his exceptional kindness and support.

I would like to thank the members of the IIEG group, for providing me this

opportunity and the resources that I needed to accomplish my project. In
particular, I would like to thank Hakan Duman, who was always so patient in
answering my never ending questions and for his helpful comments and ideas
concerning my work! Thanks are also due to Dr. Martin Colley and Dr. Hani
Hagras, particularly for their support in enabling me to participate in their Korean
research work over the summer. I am also very grateful to Malcolm Lear, for his
high quality technical support and for responding so promptly to my technical
needs, especially in the very early stages of my project. Also I am pleased to
acknowledge Anthony Pounds-Cornish who introduced me to the TINI system
and Arran Holmes both of whom provided me with a lot of wide-ranging technical
advice and support.

I would like to thank my fellow students Elias Tawil, Adam King, Faiyaz

Doctor and Gustavo De Souza for making life in the “Sunlab” generally nicer. I
would especially like to thank my friend Alvin Khaw, for his sincere
encouragement and support, Yin_Young Sik and Hin_Hang Sik for their kind
blessings, and a very special thanks to Sue Sharples, for her tender care and
support.

Finally, I reserve the biggest and most wholehearted thanks to my family,
my parents, brothers and sisters for their extraordinary patience and
understanding, not to mention for their constant, immeasurable love and support.

Jeannette S Chin Page 3

TESA –Towards Embedded-Internet System Applications

1. Introduction

1.1 Project Aims

The main aim of this project is to evaluate the feasibility of using

current of-the-shelf technology to build embedded Internet appliances.
The project aims to accomplish this by building a demonstrator based
around a botanical application.

1.2 Background Overview

There are few individuals or organizations in the developed world

that do not make extensive use of the Internet. Take Britain for example, it
is estimated that they are already 10 million homes in the UK have
Internet access [Web16]. A recent report from Telewest Broadband
estimated that new PCs were bought for the first time by one in nine
homes during the first quarter of 2001 and we Britons are now spending
as much as 25% of our time “switched on”[SmartVo1]!

It is not just the Internet has become all pervasive; the growth of

mobile wireless technology is equally breathtaking. Statistics from a
market research company reported that, in the period 2000 to 2001 (inc),
worldwide sales for Internet-enabled mobile phones grew from 51 million
to 327 million [Garber01]. The BBC recently reported that, in the UK, over
50% of the population now own a mobile phone [Web17]. In part the rapid
market growth is fuelled by the descending mobile phone size, weight, and
cost; more than 20% per year over the past 15 years! [Harte02].

Whilst these individual markets are impressive in their own right,

when these two technologies are brought together there potential is even
greater. Wireless (mobile phone) extends the functionality of the Internet
by freeing it from wires allowing services such as emailing, web surfing
and E-commerce making it an anytime, anywhere technology.

Just as these markets have begun to establish themselves, a new

technology and vision have arrived, the embedded-internet. In this vision
everyday items such as home appliances contain embedded networked
computers that allow them to be connected to the Internet and controlled
anytime, from anywhere by their owners.

My project addresses part of this vision by investigating the use of

WAP mobile phones, wireless PDAs and Desktop PCs to interface with
embedded Internet appliances allowing people to connect to, configure
and control their environments. The project is not a complete solution but
rather some initial steps Toward Emended-Internet Systems Applications – TESA.

Jeannette S Chin Page 4

TESA –Towards Embedded-Internet System Applications

1.3 Exemplary Scenario

Tessa, a busy airhostess working for Singapore Airlines, is very
much inspired by the Internet technology. She lives on her own in a rented
flat in London where she is based. Tessa enjoys her job, because it takes
her to many exciting places and sees lots of different things. Tessa loves
plants, and her hobby (some of her friends say, obsession!) is keeping
plants that are rare and difficult to maintain.

Being alone, and traveling frequently would normally present

difficulties for Tessa as there would be nobody at home to look after her
plants and flowers while she is away. In addition, as she is living far away
from her friends and family, she lacks friends or people who share her
interests. As anyone could imagine, Tessa felt heartbroken to see her
beloved plants and flowers grew unhealthily (and some even die) when
her job takes her away (the nature of the job meaning that sometimes, and
unpredictably, she is away for much longer than she expects!).

As Tessa is living in the “Internet Age” and inspired by the

technology, she came across a circle of like-minded people when she was
surfing the World Wide Web one day. She found the “TESA circle ” on the
Internet that seemed to be an e-commerce company selling stylish
Internet-based systems for caring plants. The advertisements stated that
from any web access point, or her mobile phone, could “see” and care for
her beloved plants while she was away traveling. Moreover, the circle
seemed to operate like a group of friends exchanging ideas on how they
keep their rare plants. Tessa was thrilled and in no time, she made friends
with similar minded people and bought herself a “TESA” the Embedded-
Internet plant care system. Having bought the system, TESA also found
that the “TESA circle” allowed her to see other people’s plants, comparing
notes with them and establishing many lasting friendships as well.

Some time later, Tessa was on another trip abroad. As she stepped

out of a taxi in Singapore airport the following fortnight, and watered her
beloved plants back in London from her mobile phone, she wondered to
herself “what must life have been like in the dark ages, before the
embedded-Internet?”

Jeannette S Chin Page 5

TESA –Towards Embedded-Internet System Applications

1.4 Project Overview

As explained in the above, the goal of my project is to develop a
simple demonstrator to illustrate how technologies such as Web, mobile
phones & wireless PDA can be developed to produce and interact with an
embedded Internet product. An exemplary application, a botanical system
called TESA, (Towards Embedded-Internet System Applications), based
on a development of the department’s mDorm (an embedded internet
development environment). The intention was to develop a novel internet-
appliance in keeping with the new vision being offered in this project.

The diagram below shows the main component of my project:

respon

sensors

WAP interface on
Mobile Phone

WEB interface on
PDA

WEB interface on PC

TINI Board
TiniHttpServer

JVM
Servlet

Bluetooth

TCP/IP
network

Figure 1. Overall View of the “TESA” architecture

The above system was developed in a stepwise way. The following
is a brief overview of work that was carried out in this project.

Firstly, for the development platform I used one of the department’s

mDorms (ID: borg8of9) minimally modified to make it mimic a botanical
system. Only a moisture sensor was being added to the standard parts, as
it was not intended to be a commercial product, rather an evaluator. I then
wrote the Web server components to enable the devices, which mostly
based on field-bus standard called 1-wire, to be controlled from an
external client.

Jeannette S Chin Page 6

TESA –Towards Embedded-Internet System Applications

Secondly, I investigated how a client Web interface could be
created for a PC, PDA and mobile phone. These devices are very different
in nature both in terms of size, graphic capability and language they use
(eg HTML and WML). In addition, the underlying networks were different
being Internet Protocol (IP) for the PC, Bluetooth for the PDA and General
Packet Radio Service (GPRS) for the mobile phone. The different Web
protocols and network standards presented demanded that the server
should respond in a different way depending on the client platform.

The remainder of the thesis will elaborate on the background,

specification, deign, implementation and evaluation of the above system,

1.5 Organisation of thesis

The thesis is organised as follow:

• Chapter 1 presents the project vision, objective and views
with an exemplary scenario.

• Chapter 2 describes other projects and related work.
• Chapter 3 provides an in-depth description of the

technologies used.
• Chapter 4 provides the TESA user requirement and

specification.
• Chapter 5 describes the TESA system design.
• Chapter 6 explains the software implementation.
• Chapter 7 presents the software testing & system

Evaluation.
• Chapter 8 summarises the main project achievements

Jeannette S Chin Page 7

TESA –Towards Embedded-Internet System Applications

2. Background

The general area addressed by this project has been described by
a number of national and international research programs such as the
EU’s Disappearing Computer programme [Web33], the DTI’s New Wave
Technology [Web34] and the EPSRC Equator [Web35] program. Many
large industrial companies such as Orange [Web10] and Philips [Web36]
are investing large sums of money into research in this area, and have
built test beds that are similar to the Essex iDorm [Web37].

 Concerning technology, the project is based around a commercial

embedded-Internet device. There are numerous such devices available
[Web47], [Web48], the best example and the cheapest being the Tiny
Internet Interface (TINI) [Web19], a platform developed by Dallas
Semiconductor [Holmes02], [Cornish02], [Vial01].

2.1 The Pervasive Internet

The Internet can be viewed as a gigantic global network; a composite
of a massive number of computers inter-connected together in a loosely
structured way using a common communication language protocol called
TCP/IP.

Having started life as a military network, the Internet found its way
to wider public use in the late 80s or early 90s, being used for email and
information serving. Information from the organisations such as the
academia, government, commercial companies or even private
homepages is sitting on various computers, waiting for someone’s
retrieval. However, few things in this life remain unchanged and the
Internet of today is a very much different story!

Within the home it is now commonplace for appliances to include
embedded-computers. It is thus a small step for such computer based
appliances to include a network connection; a direction being promoted by
numerous companies (eg Echelon [Web51], Siemens [Web52], CISCO
[Web53] etc) and organizations (EHSA - European Home Systems
Association [Web54], BACnet [Web55] etc). With the arrival of the
embedded-Internet, Internet accessibility had been liberalised from solely
PCs to any form of appliance. In addition Internet accessibility is no longer
restricted to wired networks, but now includes wireless technology
enabling the Internet to be accessed remotely, “on the move”, from anywhere in
the world.

Jeannette S Chin Page 8

TESA –Towards Embedded-Internet System Applications

As the Internet has begun to embrace domestic appliances, a new
vision is emerging whereby such technology can be used to allow people
to connect to, configure and control the environments they inhabit! It is
envisaged that such environment would be constructed from a new
generation of Internet appliances [Web5] examples of which are [Web40],
[Web9], iPot [Web58] and WAP enabled phones [Web10], [Web11].
Innovation is one of the aspects that is fuelling this market and new
Internet appliances are being developed continually. A good example
being a company called LG that has transformed a normal domestic fridge
into an Internet fridge [Web5] that, amongst other possibilities, would allow
a user to log on to the Internet and chat with a friend while preparing a
meal. A further stimulant to the Internet market is the arrival of broadband
communications ,which brings with it better performance. To give an
indication of the size of these markets at the beginning of 2001, more than
one out of 10 people in the world (over 680 million customers) had a
mobile phone [Web12] and in 1999 there were 200 million world wide
Internet users, compared to 3 million in 1993 [Web56]

2.2 Ubiquitous Computing

Some ten years ago, Mark Weiser introduced the term ubiquitous
computing describing it in the following statement: “For thirty years most
interface design, and most computer design, has headed down the path of the "dramatic" machine.
Its highest ideal is to make a computer so exciting, so wonderful, so interesting that we never
want to be without it. A less traveled road I call the "invisible"; its highest ideal is to make a
computer so embedded, so fitting, so natural, that we use it without even thinking about it."
[Weiser88].

Essentially this described a vision for living environments populated

with “computerized” objects where the emphasis was on greater user-
friendliness, more efficient service support, user-empowerment, and
support for human interactions [Weiser 91]. In many respects it seems that
this vision well on the way to becoming a reality as networked devices
such as mobile phones, PDAs net-Cameras, iFridges, iPots, iMicrowaves
etc proliferate. More radically, research projects such as the EU FiCom
see this vision spreading into hitherto “silicon free” items (e.g. garments,
chairs, cups etc). Some evidence for the view that the pervasive
computing era is closer than people may suspect can be found in a
statement by Robert Metcalfe, Ethernet inventor and 3Com Corp founder
speaking at the 2001 ACM1 conference in the USA who is reported as
having stated: “8 billion microprocessors will be produced this year (2001), but just 2% of
them will go into PCs. Most will end up as part of that all pervasive fabric of computing that's

Jeannette S Chin Page 9

TESA –Towards Embedded-Internet System Applications

being woven around and through our lives via a wide range of devices, some of which we don't
even recognize as computers.” [Metcalfe 01]

Thus the belief of those working in Ubiquitous computing is that
computers will gradually find their way out of the existing computing
infrastructure and blend in to our society. Sensors and effectors will be
embedded into our environments, together with mobile computing and
communication technology. Users will no longer be forced to interact with
the technology but rather the technology will work seamlessly with users’
and their social interactions without it being realised! Ubiquitous
Computing works can be found at [Web49], [Web57].

2.3 Related Work

Numerous organizations are engaged in research in this area. In
many respects, this project can be regarded as a further development of
the Internet-appliance paradigm the best example being LG, a Korean
manufacturer of domestic appliances, mentioned above. It is also linked
to communication as that is a critical part of mobile interfaces. Most mobile
phone companies are operating projects in this area. For instance,
Vodafone [Cameron02] is planning to deploy services such as “Find-a-
friend”, “Find-a-date” and “Find-a-service” shortly. Similar projects such as
finding the nearest Pizza delivery shop can already be seen at [Web38].
Another mobile phone company Orange is investigating using wireless
phone to control the devices at home [Web6]. Likewise Nokia [Web32]
and Ericsson [Web39] are working on similar technology.

The following is a sample of related projects:

• Internet alarm clock - checks the conditions of the road traffic

over the Internet in the early hours of the morning using this
information to modify the time of the “wake up” alarm signal
[Web40].

• Communicating Thermostat - a telephone remote home control

system that provides current temperature readings from anywhere
in the world via touchtone phone [Web26].

• Touchtone Controller – an X-10, Telephone Responder which

provide the capability to control devices such as lights, appliances
and thermostats in an environment from anywhere in the world via
telephony system [Web27].

Jeannette S Chin Page 10

TESA –Towards Embedded-Internet System Applications

• All-in-One Controller, a Compaq iPAQ that, via IR, controls a
myriad of appliance appliances. The prototype handheld has so far
been used to control two lamps, a fan and a stereo with a five-CD
changer. This is a collaborative research project between Maya
Designs Inc.and Carnegie Mellon University [Web41].

• The intelligent aquarium - called “Octopus” developed by the

Sussex-based company called Casco [SmartVo2]. The aquarium is
capable of automatically control and monitors its own environment,
and can be accessed for checking the system status from
anywhere in the world with an Internet access. Although it doesn’t
have an Internet connection, in all other respects it mirrors much of
the vision of the botanical care system at the heart of this project.
Therefore it is described in more detail below.

2.3.1 Brief overview of the “Octopus”:

The intelligent aquarium system controller performs “fish-care” for
the owner by carrying out some predefined tasks such as changing
the water automatically, controlling the wave cycle, lighting and
monitoring the status of the water. It is also designed to solve any
minor problems, such as correcting any imbalance in the water
states (for example PH level) without involving the owner. However,
should the problem persist after the correction, the system will
inform the owner know by paging him immediately.

Figure 2. The Octopus

Whilst the aim of the appliance is similar to this work (ie harnessing
cutting edge technology to care for living entities, being eye
catching and novel), it differs significantly from TESA in that it
doesn’t provide any Internet connection.

Jeannette S Chin Page 11

TESA –Towards Embedded-Internet System Applications

2.4 Summary

There is widespread evidence from international research programs
and companies that the embedded-Internet is envisaged as being a
potentially massive market. Already, there are several commercial
applications being piloted, even though the underlying technology is still
not fully developed. Currently there is much research being conducted into
the technology that will enable this vision to be realised. This project aims
to form part of the initial steps that might one day lead to this vision being
commercially realised.

Jeannette S Chin Page 12

TESA –Towards Embedded-Internet System Applications

3. Technology Used In Project

The project involved a number of technologies, from the underlying
hardware, through communication, to the high level software technologies.
These technologies are described below.

3.1 TINI Technology

Tiny InterNet Interface (TINI) is a small single board computer

developed by Dallas Semiconductor [Web19]. It facilitates both local and
remote control (the latter via an in-built IP network interface).

The TINI platform is a combination of a small chipset and a JavaTM-

programmable runtime environment. This chipset provides the TINI
processing control, device-level communication and networking
capabilities. The features underlying the TINI hardware are a set of Java
application programming interfaces [23] that allow the high level software
application coordinate with the low level hardware devices. TINI is also
refers to both the TINI chipset and the TINI board.

The TINI CPU is not from the dominant PC companies such as the

Intel or AMD; but rather from a small semiconductor manufacturer in the
USA called Dallas Semiconductor. The TINI chipset is 1.25” x 4.0” Single
Inline Memory Module (SIMM), small enough to fit almost anywhere. The
processor chip is referred by way of a plain number, DS80C390, rather
than a name [Web18].

Figure 3 The TINI

Jeannette S Chin Page 13

TESA –Towards Embedded-Internet System Applications

3.1.1 TINI Concept

The TINI’s concept is to integrate, processing, networking and
input/output (I/O into a small, low-cost system thereby enabling it to be
used to connect everyday embedded computers system to the Internet.
The cost of a full TINI development system is less than $50 with chips for
production products being available for just a few dollars (the exact price
being dependent on quantity).

 TINI system provides a parallel I/O bus (expandable), serial-port
(RS232), field-bus (CAN, 1-wire), TCP/IP network protocol stack and an
object-oriented programming environment (Java). Its network connectivity
enables the interaction with clients such as remote systems or users
through a web browser. The TINI concept is illustrated in the following
diagram.

Figure 4. The TINI concept [Web19]

Jeannette S Chin Page 14

TESA –Towards Embedded-Internet System Applications

3.1.2 TINI Interface

The TINI system is essentially contained and sold as a single SIMM

device. Apart from a single edge connector that connects the device with a
SIMM interface, it has no other built-in sockets and therefore cannot be
interfaced with any external devices without additional hardware. For this
reason, a special dedicated socket board is required for the TINI to
interface with external hardware devices. There are a number of such TINI
socket board options around such as STEP socket [Web20], Proto
adapter [Web21], and Nexus [Web22], but the one used in the project was
the E10 socket board, from the Dallas Semiconductor.

The E10 socket board has the following interfaces [Loomis01]:

• 72-pin SIMM connector- interfacing with the TINI board
• 9-pin female DB9 connector- interfacing with Data Communication

Equipment (DCE) serial connections
• 9-pin male DB9 connector- interfacing with Data Terminal

Equipment (DTE) serial connections
• RJ145 –interfacing with a standard 10Base-T Ethernet connections
• RJ11-interfacing with 1-Wire network connections
• Power Jack-interfacing with +5V DC power supply

Figure 5. TINI E10 socket board [Loomis01].

Jeannette S Chin Page 15

TESA –Towards Embedded-Internet System Applications

3.1.3 TiniHttpServer

The TiniHttpServer [Web23], written by a group of software
engineers from Smart Software Consulting, is a special dedicated multi-
threaded Web server developed for the TINI that supports Java Servlet
technology. TiniHttpServer can be downloaded at Smart Software
Consulting site, licensed under the GNU General Public License. It is
capable of transforming the TINI into a Web server with server-side
programming capabilities. The TiniHttpServer makes a reasonably good
website application tool, which can, for instance, be made to serve an
application applet, HTML documents, and other files directly from the TINI.

Because, in the early to middle stages of the project, the

TiniHttpServer was the only available public source it was employed as
the project backend communication engine (since then there has been 1
other private source released).

3.1.4 TINI Constraints

Because the TINI is deliberately design to be a low-cost computing
system there are many constraints such as restricted memory capacity (eg
0.5 to 1 MB, depending on the model). For this reason, the TINI firmware,
distributed by the Dallas Semiconductor site, only supports a sub-set of
the Java Application Programming Interface (API). TINI has many
limitations [Web24], the most relevant of which are listed below:

• Threads

• All threads run at the same priority.
• Threads can block on input/output (I/O), increases CPU cycle

availability to other threads and processes.
• The TINI operating system limits the number of processes to 8, with

16 threads per Java process.

• Memory

• Using normal I/O debugging ie. System.out.println(); consumes a
lot of TINI memory.

• The garbage collector starts automatically when the memory dips
below a certain threshold, but major garbage collection during the

Jeannette S Chin Page 16

TESA –Towards Embedded-Internet System Applications

program run will cause the collector to run for long periods of time
in the background.

• Native modules cannot be larger than 64k.
• The maximum size of any array is 64k.
• Using String concatenation “+” operator consumes a lot of TINI

memory.

• Networking

• TINI does not support Internet Protocol (IP) datagram
fragmentation/reassembly.

• TINI only allows 24 socket connections.
• TINI does not support IP layer routing.

• Java Classes

• TINI does not support serialization.
• TINI only support a subset of reflection.
• A class file is limited to 255 static fields (including all super classes’

static fields) and 255 instance fields (including all super classes’
instance fields).

• A class is limited to 127 methods (including all super classes’
methods but excluding native methods)

• A class file is limited to 255 native methods.
• A method is limited to 63 local variables.

• File System

• Each converted class file cannot be large than 64k.
• Directories can only hold 254 files.
• An IOExceptioin will be thrown when attempting to create files with

names longer than 247 characters.

Jeannette S Chin Page 17

TESA –Towards Embedded-Internet System Applications

3.2 The mDorm

The mDorm is an embedded Internet development environment. It was
developed in the late 90s by the team of Intelligent Inhabited Environment
Group in the Computer Science Department and is based on TINI
technology.

Figure 6. The mDorm

3.2.1 The mDorm Physical Characteristics

The mDorm has a stylish solid aluminium look. Physically it takes
the form of a small 12” (approx) cube made up of five panels and two
doors (see figure 6). The mDorm features two doors, one transparent
(tinted glass) the other solid (aluminium) whose use is dependent on the
application (whether light needs to be excluded or not). The inside
consists of an open environment with some space being taken up to
house various electronic components (eg light, heat controls and a TINI).
The back panel of the mDorm has a ~2” diameter ventilation hole at one
end which allows air to be circulated when the fan is switched on. A main
power supply socket and a network connector interface were also
integrated at the bottom of this panel.

Inside the mDorm there is a TINI fitted in the top right corner,

interfacing with an E10 socket board. Beneath the TINI is a small
aluminium box housing the power supply main socket and few other
electronic components. A black box (housing a heater and fan) is hanging
down from the roof on the top left corner, leaving with a tiny ventilation gap
between itself and the roof (top panel). A total number of four small light
bulbs that connected to the TINI are attached to this black box. Two of
light bulbs are fixed on the top right corner, namely the “toplights”, and the
other two are secured at the bottom part of the box, namely the
“bottomlights”. The main chamber also contains a temperature sensor.

Jeannette S Chin Page 18

TESA –Towards Embedded-Internet System Applications

3.2.2 Sensors/ Effectors

The sensors of the mDorm are:

• Temperature sensor
• Heater sensor
• Top lights sensor
• Bottom lights sensor

The effectors of the mDorm are:

• Heater
• Fan
• Two top lights
• Two bottom lights

Jeannette S Chin Page 19

TESA –Towards Embedded-Internet System Applications

3.3 WAP enabled mobile phone

Wireless Application Protocol (WAP) mobile phones are a fairly a

recent technology that, in addition to voice communication, are capable of
sending and receiving data. WAP technology makes an attractive
alternative for services such as email, web surfing and mobile
entertainment.

The SonyEricsson t68i, WAP mobile phone is used in this project

(see figure 7).

Figure 7. The WAP mobile phone used in the project --Ericsson t68i.

Jeannette S Chin Page 20

TESA –Towards Embedded-Internet System Applications

3.3.1 WAP Concepts

WAP is a global standard for bringing Internet content and services
to mobile phones and other wireless devices. The standard is maintained
by an industry consortium called the WAP forum. The concept of WAP is
loosely based on Internet protocols such as Hypertext Transfer Protocol
(HTTP) and Transmission Control Protocol/Internet Protocol (TCP/IP), in
that, the protocol functions are sliced into layers, and each layer is only
concerned about its own function as well as only communicates with the
layer immediate above or below it. This concept makes the protocol layers
easy to implement, independent and portable (the concept of HTTP and
TCP/IP will be explained in detail later). WAP has 5 layers with the
following functionalities:

• Wireless Application Environment (WAE) layer- contains the languages for

markup (WML), scripting (WMLScript), telephony functions (WTA) as well
as Push standards.

• Wireless Session Protocol (WSP) layer-allows efficient binary encoding of
previously defined content types (to save bandwidth) and supports various
flavours of push applications (where a server initiates a session with a
client).

• Wireless Transaction Protocol (WTP) layer-provides a reliable transaction
transmission protocol similar to TCP/IP, but optimized to allow
reconnection and to minimise handshaking (to reduce network traffic).

• Wireless Transport Layer Security (WTLS) layer-defines security
mechanisms for public key encryption and authentication, use of digital
certificates and support for compression.

• Wireless Datagram Protocol (WDP) layer- specifies a low-level protocol for
rapid packet transmission (implemented based on the User Datagram
Protocol (UDP) layer in the Internet Protocol).

Jeannette S Chin Page 21

TESA –Towards Embedded-Internet System Applications

3.3.2 WAP constraints

As the WAP is designed primarily for mobile computing, it also
inherits its constraints and limitations which are mainly related to the
nature of the mobile devices. These are:

• Limited processing power and memory.
• Limited battery life and power.
• Very small displays.
• Limited data input and user interaction capabilities.
• Limited bandwidth and connection speeds.
• Frequent unstable (lost or poor) connections.

Jeannette S Chin Page 22

TESA –Towards Embedded-Internet System Applications

3.4 PDA

3.4.1 PDA Concepts

Personal Digital Assistants (PDAs) are portable handheld
computers containing applications such as email, word processors etc.
They can access to the Internet via either a dial-in modem or Wireless
LAN. Location based connection is also possible for the PDAs with
integrated Bluetooth technology which allows them to establish local
wireless connections with other Bluetooth devices near-by.

PDAs are growing increasingly popular. Some market experts

predict that in 10 year times [Web25], personal and portable devices such
as the PDAs, cell phones, or tablet [Web28] computers, will be the most
popular form of information access appliance. For example, analysis from
a market research firm has predicted that such devices would experience
a significant increase in sales (from 757,000 to 1.3 million) in the next two
years [Garber01].

In this project we have chosen to use the, Compaq iPaq 3970 PDA.

This is based around the Microsoft operating system (WinCE) which
supports the standard Hypertext Markup Language (HTML) and has a
built-in Bluetooth wireless interface, was used in the project.

Figure 8. The iPaq 3970

Jeannette S Chin Page 23

TESA –Towards Embedded-Internet System Applications

3.4.2 PDA Constraints

PDAs can be regarded as miniatures of PCs but have many
constraints and limitations compared to their PC counterparts, the main
ones being as follow:

• The screen is smaller (240* 320 pixels).
• Processing power is low
• Limited battery life power.
• Physical memory capacity is low (a few megabytes at best).
• Does not support full scripting (depending on the operating

system).
• Does not support style sheet (iPaq 3970).
• Display resolution varied.

Jeannette S Chin Page 24

TESA –Towards Embedded-Internet System Applications

3.5 Desktop PC Software

Listed below are the software tools used in the development of the
project.

3.5.1 Java(tm) Communications API

Java(tm) Communications API is a set of Java low-level classes

used for reading and writing to serial ports. The package was needed
when setting up the TINI for the first time so that the TINI firmware could
be loaded from development platform machine (refer as WinME machine
for the rest of the thesis) to the TINI platform via RS232 interface (serial
port).

There are 3 levels of classes in the Java(tm) Communications API
[Eisenreich03]:

• High-level classes that manage access and ownership of
communication ports

• Low-level classes that provide an interface to physical
communication ports.

• Driver-level classes that provide an interface between the low-level
classes and the underlying operating system. Driver-level classes
are part of the implementation but not the Java communications
API.

Java(tm) Communications API is a free source and can be

downloaded at [Web4]. The package was downloaded and unzipped into
the WinME machine JAVA_HOME directory C:\jdk1.3\. Below were the
sequences performed in WinME machine.

Three files from the package were copied to WinME machine’s

Java environment and JVM directory. Those sequences were:

• Copy the win32comm.dll file from the commapi to C:\jdk1.3\bin
directory.

• Copy the win32comm.dll file from the commapi to C:\jdk1.3\jre\bin
directory.

• Copy the comm..jar file from the commapi to C:\jdk1.3\lib directory.
• Copy the javax.comm..properties file from the commapi to

C:\jdk1.3\lib directory.
• Copy the javax.comm..properties file from the commapi to

C:\jdk1.3\jre\lib directory.
• Set comm..jar onto the system classpath (command : SET

CLASSPATH=C:\jdk1.3\lib\comm..jar;)

Jeannette S Chin Page 25

TESA –Towards Embedded-Internet System Applications

3.5.2 TINI sdk

TINI sdk is the TINI software needed for it to communicate with its
hardware devices. It is a set of software libraries and utilities, distributed
by Dallas Semiconductor.

The version tini1_02d was used in the project. The software
package was downloaded from Dallas Semiconductor site [Web44] to a
temporary directory in WinME machine and later installed in a directory
called “tini”. This directory was the project TINI_HOME directory.

An environment variable TINI_HOME was added to WinME
machine’s autoexe.bat file (command: SET TINI_HOME C:tini\tini1_02d)
and a file, tini.jar, was set in the classpath as well. (command: SET
CLASSPATH=.;C:\jdk1.3\lib\tools.jar;c:\tini\tini1.02d\bin\tini.jar;)

3.5.3 TINI Convertor

In normal PC environment, when a Java program is written and
compiled error free, the PC compiler will produced a .class file for that
program, which can be understood and interpreted by the system Java
Virtual Machine (JVM). However, unfortunately, this .class file cannot be
understood by the TINI JVM. For this reason, an extra interpretation phase
is needed, that a TINI Convertor is required to convert the .class file into a
“.tini” file which is the format a TINI JVM understands.

The TINI Converter comes with the TINI software distributed by the
Dallas Semiconductor. It can be found in the tini.jar package. It’s primarily
job is to combine and convert the .class files into a single .tini file that can
be executed by the TINI JVM. The command for the TINI Converter is:

Java –cp %TINI_HOME%\bin\tini.jar TINIConvertor

Jeannette S Chin Page 26

TESA –Towards Embedded-Internet System Applications

3.5.4 1-Wire API

1-Wire API is a package of Java classes primarily used for the TINI
to communicate with 1-Wire (will be explained later) devices. It is a
freeware package and can be downloaded at Dallas site [Web3]. The
sequence of installing 1-Wire API for the project was:

• The “1-Wire API for Java” (owapi0_01.tgz) was downloaded

and installed in WinME machine’s TINI_HOME directory.
• Then the OneWireAPI.jar file was added in to the system

classpath by using the command: SET
CLASSPATH==.;C:\jdk1.3\lib\tools.jar;c:\tini\tini1.02d\bin\tini.
jar;C:\tini\owapi\lib\OneWireAPI.jar).

3.5.5 ANT and TINIAnt

Ant [Web2] is a portable project management tool for Java projects.
It replaces the system-specific “build” scripts and “makefiles”. TINIAnt
[Web1] is an extension of Ant that simplifies the job of “building” TINI
applications.

The project made used of both of these tools when porting the files
from WinME machine to the TINI platform for execution. Both software
packages were installed in WinME machine “tini” directory. An
environment variable “ANT_HOME” (command: ANT_HOME=C:\tini\ant)
was added to the system environment as well as in the system path
(command: C:\WINDWS;C:\JDK1.3\BIN;c:\tini\ant\bin;).

3.5.6 Java Development Kit

Java is a registered trademark of Sun Microsystems [Web4]. It is a
freeware, distributed in a form of Software Development Kit (SDK) and
can be downloaded at Sun’s site. The distributed Java SDK includes the
Java compiler, Java debugger, a number of development tools and the
Java Runtime Environment (JRE). The JRE consists of the Java Virtual
Machine (JVM), the Java platform core classes and supporting files.

Because the TINI platform Java environment in the project was

based on the Java version 1.3, for the reason of compatibly, the WinME
machine’s Java environment must also had to base on the same Java
version in order for the software to work. Below is the sequence of
installing the Java for the project:

Jeannette S Chin Page 27

TESA –Towards Embedded-Internet System Applications

• JSDK Version1.3.1 was downloaded from the site [Web4]
and installed in WinME machine’s directory called “jdk1.3”.
That directory was referred as the project JAVA_HOME
directory.

• An environment variable JAVA_HOME was created (SET
JAVA_HOME=C:\jdk1.3) as well as set the directory to the
system path (SET PATH= C:\jdk1.3\bin).

3.6 Interface Standards and Tools

3.6.1 HTML

Hypertext Markup Language (HTML) is a form of markup language,
developed by Tim Berners-Lee, for providing user interfaces and
delivering information across the Internet. HTML is read and interpreted by
user agent such as a Web browser.

 The Web and PDA interfaces for this project were both written in
HTML. The Web interface was enhanced with client-side language
JavaScript.

3.6.2 WML

Wireless Markup Language (WML) is another type of markup
language but primarily used for providing user interfaces for WAP enabled
devices. Unlike the HTML, WML divides and organises its user interface
into decks of cards. It also allows variables to be shared across a deck.
However, because the screen on mobile devices is tiny, WML only allows
one card to be displayed on a device at a given time. Therefore a
navigation option (eg a menu) is needed for a user to navigate WML
documents without the need for knowing how a particular card is laid out
[Banett01]. Because WML is primarily used for WAP enabled devices, it
requires a “live” validation by the industry consortium WAP forum. The
project WAP interface was written in WML.

Jeannette S Chin Page 28

TESA –Towards Embedded-Internet System Applications

3.6.3 WAP editor

WML requires its own editor tool for editing, syntax checking,
debugging, display, execution and content serving. There are many WML
software development kits (SDK) tools available. Most of these SDK tools
are provided by the mobile phone companies (such as Nokia, Ericsson,
Motorola and Phone.com) for their WAP software developers. In addition,
these SDK tool kits usually come with WAP emulator, a convenient and
economical way of testing and debugging WML program, as using WAP
phone in real time testing could be very costly. The project used the Nokia
SDK (the tools was downloaded free after registering with Nokia) for
editing and debugging [Web32]. A variety of phone emulators were used
such as phone.com [Web45] and M3Gate [53] for testing which were also
downloaded free from their sites.

3.7 Network Technology

A network is two or more computers connected together for sharing
information as well as resources. Usually cables are used to link these
computers together.

Networks are divided into categories based on their sizes. These
categories are:

• Local Area Networks (LANs)- these are privately owned networks.

The size is normally within a single building or a campus up to a
few kilometres.

• Metropolitan Area Networks (MANs)- these networks are a bigger
version of LAN. They may cover a group of nearby offices or city.
Normally MANs’ technologies are similar with the LANs. MANs are
either private or public owned.

• Wide Area Networks (WANs)- these networks cover a geographical
area, often a country or continent. They use the LAN’s technology
as well as satellite, telephony or ground radio technologies.

Intially most networks were wired but recently, with the advent of

mobile devices, wireless networks such as the WiFi (IEEE802.11) and
Bluetooth technology have found their way into networking.

Jeannette S Chin Page 29

TESA –Towards Embedded-Internet System Applications

3.7.1 Ethernet

Ethernet, as mentioned above, is the cable that connects 2 or more
computers together, through a specific interface called Ethernet adapter,
which enables them to communicate by allowing their data to be
transferred to/fro each other.

Ethernet is divided into grades based on its data transmission rate.

The most common Ethernet are: 10 Mbps, 100 Mbps, and Gigabit
Ethernet. However, depending on the data rate, Ethernet signals can only
be streamed without being distorted/corrupted in a certain distance range.
Therefore, “repeaters” or “hubs” are used in the Ethernet for this purpose,
to allow the data flowing to a wider distance.

The standards of the Ethernet published by IEEE are:

• 802.2 - The new message format for data on any LAN
• 802.3 - Hardware standards for Ethernet cards and cables
• 802.5 - Hardware standards for Token Ring cards and cables

The project’s networking environment was a high-speed Ethernet

research network that had restricted access and controls by the personnel
in the research group of the department.

Jeannette S Chin Page 30

TESA –Towards Embedded-Internet System Applications

3.7.2 1-Wire

1-Wire is a bus technology developed by Dallas Semiconductor. It
is used primarily for the communication between the electronic
components, called 1-Wire devices, and the processor. As the name
suggests, the 1-Wire bus consists of only one signal line, plus a ground.

The concept of 1-Wire technology is “there is only one master and
one master only” whereby the communication always begins with the
master (eg a TINI) talking to slaves (eg switches) . Only a certain type of
slaves is allowed to interrupt this process for some exceptional need. In
TESA the 1-Wire “master” was TINI, and the “slaves” were:

• A temperature sensor
• A moisture sensor
• Top-lights
• Bottom-lights
• A fan
• A heater

Jeannette S Chin Page 31

TESA –Towards Embedded-Internet System Applications

3.7.3 WAP and WAP Gateway

WAP enabled devices use WAP browsers to request/send

information to WAP servers in the same way as Web browsers
communicate with Web servers. In fact, although the language used for
these 2 servers is a different, WAP enabled devices are able to
communicate with either. The following diagram illustrates a WAP device
communicating with a WAP server.

 Send WML request

 Send WML respond

 Internet

WAP mobile phone WAP server

Figure 9. A WAP mobile phone communicating with WAP server

As mentioned above, because the fundamental language used
between the WAP client such as WAP-enable mobile phone, and the Web
server is different, therefore a gateway (WAP gateway) is required for the
communication. A WAP gateway acts as an interpreter between a Web
server and WAP devices. The diagram below illustrates this process.

 Send WML request receive WML request

Receive WML respond send HTML respond
WAP mobile phone WEB Server

Internet

 WAP gateway

Figure 10. A WAP mobile phone communicating with WEB server

Jeannette S Chin Page 32

TESA –Towards Embedded-Internet System Applications

3.7.4 Wireless Technology

 The Wi-Fi standard, also known as Wireless Fidelity or 802.11, is on its way to
becoming the primary way devices connect to the Internet wirelessly [Walker02].

Over the years, wireless technology and its products have become

smaller, faster and inexpensive. Nowadays people not only use their
mobile phones for voice communication with their friends and family but
also use them to surf the Internet, wirelessly! Wireless technology is
growing “smarter” too. Together with sensory technology and computation,
wireless technology can be found in increasingly diverse and unusual
places such as concrete [Web29], fabrics [Web30], buildings [Web43],
[Holmes02], [Web6], or even over every inch of a region to monitor
microclimate [Web42].

Wireless technology has evolved through multiple generations.

Below is a brief summary of the history of mobile technology:

• The First Generation (1G) technology are analogue cellular
systems, a composite of a hybrid of analogue voice channels and
digital control channels. Typically, the modulation for the analogue
voice channel is FM whilst for the digital control channel is simple
frequency shift keying (FSK). The first generation of wireless
technology systems can send digital messages and provide
advanced services such as short messaging. However, these
messaging services are usually limited to very slow data rates.
Adding new features to the service in this generation would
generally require hardware changes to both the mobile telephones
and cellular networks.

• The Second Generation (2G) technology are digital systems that
use digital radio channels for both voice (digital voice) and digital
control channels. 2G digital systems typically use more efficient
modulation technologies, including global system for mobile
communications (GSM).

• The enhanced 2nd Generation (2.5G) PCS/PCN technology are
digital cellular systems that provide significantly new and improved
capabilities over the 2G but not quite satisfy the third generation
wireless requirements. This generation technology use improved
digital radio technology to increase the data transmission rates and
new packet-based technology to increase the system efficiency for
data users.

• The third generation (3G) technology are called universal mobile
telecommunications systems (UMTS). This generation technology
provides high-speed (broadband) data services, supports
simultaneous multimedia (regardless voice or data), is supposedly

Jeannette S Chin Page 33

TESA –Towards Embedded-Internet System Applications

cheaper and is claimed to be backwards compatible with 2nd
generation systems.

3.7.5 WiFi (802.11) and Bluetooth

One widely deployed technology is a wireless extension of the
Ethernet LAN known as the IEEE 802.11 (WiFi) standard . The 802.11b
standard is sponsored by the Wireless Ethernet Compatibility Association
(WECA) for the wireless networking of home devices.

Bluetooth is another type of wireless technology that enables short-
distance range wireless communication between voice and data anywhere
in the world [Miller02]. Bluetooth devices can send and receive information
through a single air-interface within a certain range (typically 10 meters).
Because the Bluetooth technology is designed for short distance it
consumes less power The Bluetooth technologies used in the project
were:

• Compaq iPaq 3970 - PDA
• Ericsson t68i – mobile WAP Phone
• PC2PC - Bluetooth adapter
• Picoblue - the iDorm Bluetooth bridge

Jeannette S Chin Page 34

TESA –Towards Embedded-Internet System Applications

3.8 Communication Protocols

Protocol is a form of middleware. It is a set of rules that computers
(or other network devices) in networks use when they communicate with
each other. It can also be regarded as the communication language used
between the network computers/devices.

Most Communication protocols have an abstract model called a
protocol stack (eg OSI Reference model), which refers to the layers it
defines. Each defined layer has its own set of functions and
communications. The concept of the protocol is that each layer in the
protocol stack is only concerned about the information that is addressed to
it. Moreover, they are only allowed to “talk” to the layer immediately above
or below them. Information is passed down/up the protocol stack during
the communication. When the information is passed down the stack, each
layer in the stack will add a small amount of redundant data to the passing
information for later identification before passes it down to the layer below.
On the other hand, based on the identification data, every layer in the
protocol stack will know if the passing information is addressed to it, if so,
the layer will process the information, otherwise it will send the information
to the next level. Because the layers in the stack need not know about the
details of what is going on in all other layers (apart from their immediate
neighbours), this concept allows the software and hardware to be
designed independently, thus making the software components reusable,
transportable and device independent.

Jeannette S Chin Page 35

TESA –Towards Embedded-Internet System Applications

3.8.1 TCP/IP

TCP/IP is the standard basic communication protocol use in the
Internet as well as in a private network (either an intranet or an extranet).

TCP/IP design and concept is based on the OSI Reference, that
each layer adds information onto the previous layers without modifying the
contents of it. The TCP, stands for Transmission Control Protocol, is
responsible for assembling/reassembling of message or file into smaller
packets that are later on transmitted/received over the Internet; while the
IP, Internet Protocol, handles the address part of each packet so that it
gets to the right destination.

Link

2- Data Link
Layer

1-Physical
Layer

Internet 3- Network
Layer

Transport 4- Transport
Layer

Application

Layer

7- Application
Layer

6-
Presentation
Layer

5-Session
Layer

Figure 11. TCP/IP protocols.

Jeannette S Chin Page 36

TESA –Towards Embedded-Internet System Applications

3.8.2 HTTP

Hypertext Transfer Protocol (HTTP) defines the set of rules for
exchanging multimedia files (text, graphic images, sound, video) on the
World Wide Web. It is the most common protocol used in the Internet. For
example, Web servers deliver files to their clients (web browsers) using
HTTP protocol. The project used HTTP for Internet communications.

3.8.3 FTP

File Transfer Protocol (FTP) is a simple protocol used for
exchanging files between computers on a network or over the Internet.
The project used FTP for transferring program files from the WinMe
machine to TINI system.

3.8.4 Telnet

Telnet is a way to access and control another computer on a
network. It is a user application with an underlying TCP/IP protocol used
for accessing remote computers. The project used telnet session to
control the system.

3.9 Concluding Remarks

This project involves a diverse set of technologies ranging from
sensors/effectors, embedded processors, “wearable computing” Java
programming. Communications to user interfaces. It typifies the kind of
technology that is needed to create pervasive computing environment and
involves knowledge of less commonly encountered issues such
programming embedded-Internet devices, emulation of mobile phones
and dealing with multiple communication technologies. This diversity of
technology adds to the project’s difficulty but also makes it more
interesting and educational (for me).

Jeannette S Chin Page 37

TESA –Towards Embedded-Internet System Applications

4. The TESA Requirement

4.1 Methodology Used

Software engineering is an engineering discipline which is primarily
concerned with all aspects of software production, from the early stage of
system specification to the final stage of system maintenance after the
software goes into production.

There are several software engineering models, but the most

fundamental one, namely waterfall model, with prototyping is deployed in this
project. The model has eight stages as follow:

• Requirement analysis
• System design
• Program design
• Coding
• Unit testing and Integrating testing
• System & Performance testing
• Acceptance testing
• Maintenance

 The diagram for this model is given below:

Figure 12. Waterfall diagram.

System &
Performance

Acceptance
Testing

Operation &
Maintenance

Unit & Integration
Testing

Coding

Program
Design

System
Design

Requirement
Analysis

Jeannette S Chin Page 38

TESA –Towards Embedded-Internet System Applications

4.2 Requirement Analysis

 Requirement analysis is the process of establishing what the system
should do. It lists out the things that the system provides and the constraints
under which it must operate. The requirement analysis has 3 main purposes:

• It allows the developer to explain their understanding of how they believe

the client wish for the system to work.
• It provides information for designing.
• It provides information for testing.

Hence, the outcome of requirement analysis for the project had 2
documents:

• The requirement definition, written in non-technical terms for the client to

understand. It contains everything the client expects the system to do.
• The requirement specification, written primarily for the system developers.

It restates all that is listed in the requirement definition, but in technical
terms.

Jeannette S Chin Page 39

TESA –Towards Embedded-Internet System Applications

4.3 The TESA Requirement Definition

The requirements were generated at the beginning of the project
and were based on extensive consideration of the system’s needs. They
set the design critera for the project and are reproduced in this chapter.

System requirements:

1 To build a Web interface that corresponds with TESA hardware devices.

2 To build a PDA interface that corresponds with TESA hardware devices.

3 To build a WAP interface that corresponds with TESA hardware devices.

4 The TESA should be able to access and control via three different type of
input interfaces regardless of how the connection was established initially.

5 The system should be able to monitor its environment temperature.

6 The system should be able to display its current environment status, either
automatically for the Web and PDA client, or manually for the WAP client.

7 The system should be “friendly”.

8 The system should be able to cope with more 1 concurrent connection.

 Users requirements:

1 The user should be able to communicate with the application via the
Internet (a desktop PC), wireless LAN/Bluetooth (PDA) or GPRS -WAP
gateway (WAP enabled mobile phone)

2 The user should be able to monitor and control the TESA devices via the
above interfaces.

3 The user should be able to select his desired application services via
these interfaces.

4 The user should be able to select his preference settings when he
chooses a service.

5 The user should be able to cancel his request for service at any time.

Jeannette S Chin Page 40

TESA –Towards Embedded-Internet System Applications

4.4 The TESA Requirement Specification

System requirements:

1 To build a Web interface corresponds with TESA hardware devices using
standard WWW markup language HTML enhanced with JavaScript for easy
navigation. The design should be simple yet pleasing. Ideal for one page
implementation.

2 To build a PDA interface corresponds with TESA hardware devices using
standard WWW markup language HTML, with a fixed 240*240 pixels
interface featuring all services. Preferably to have the same theme as the
Web interface, but pages can be extended if needed.

3 To build a WAP interface corresponds with TESA hardware devices using
Wireless Markup language WML. Easy navigation is an essential and prefers
less user input.

4 The TESA should be able to access and control via three different type of
input interfaces regardless of how the connection was established initially.
The system must be able to identify the nature of the connection and
responds to the request appropriately.

5 The system should be able to monitor its environment temperature. Based
on an input value, the system should be able to test it current temperature
with the input value, and make judgement upon which actions to be taken if
the comparison found to be deferred.

6 The system should be able to display its current environment status, either
automatically for the Web and PDA client, and manually for the WAP client.
The system should be able to read all its hardware devices current value and
interpret in an appropriate format and display them accordingly.

7 The system should be “friendly”. Every request should be responded with
a friendly acknowledgement.

8 The system should be able to cope with more than 1 concurrent
connection. The system must maintain its consistency if different connections
are established concurrently.

Jeannette S Chin Page 41

TESA –Towards Embedded-Internet System Applications

Users requirements:

1 The user should be able to communicate with the application via the
Internet (a dektop PC), wireless LAN/Bluetooth (PDA) or GPRS -WAP
gateway (WAP enabled mobile phone). The system should be able ready
at all times for receiving requests and identify the nature of connection and
responds appropriately.

2 The user should be able to monitor and control the TESA devices via the

above interfaces. The interfaces should label all TESA hardware devices
clearly. The system should respond with appropriate actions preferably no
more than 3 seconds delay in normal network traffic once the request is
received. The system should also check and validate the user input and
generate appropriate message to the user accordingly.

3 The user should be able to select his desired application services via

these interfaces. A service menu should be provided for each interface
listing all the available services clearly.

4 The user should be able to select his preference settings when he

chooses a service. The service for controlling individual devices should
also accompany with 3 different settings.

5 The user should be able to cancel his request for service at any time.

System should terminate its action once a cancellation is received.

4.5 Comment

Figure 13. Date flow diagram.

Invoke
request
processing

Read
client’s
request

Get
appropriate
servlet for
processing

Check
client
platform

Read
the
request

Invoke the
handle to
perform
actions

Perform
actions Inform

results

Generate
output
format

Output
data

sensors

 Interfaces

Jeannette S Chin Page 42

TESA –Towards Embedded-Internet System Applications

The requirements form a key element in any system design being
commonly the link between the customer and the designer. In this case I
played a dual role as, in part, I was the customer whilst being, of course,
wholly the designer. This was because the idea for a botanical care
appliance was based on my interest in plants and Internet technology.
Thus, it would be easy to imagine that the requirements could have
become somewhat “flexible” but as this report will later show, these initial
requirements form the bedrock of the project and accurately mirrored the
final project outcomes.

Jeannette S Chin Page 43

TESA –Towards Embedded-Internet System Applications

5. TESA System Design

5.1 System Design Overview

The design strategy was to employ a modularised design strategy.
The physical structure of application such as the use of a separate PDA
and mobile phone interface dictated part of the modularisation
methodology. The remainder of the modular decomposition was driven
based on functional criteria such as separating the http server and the
control systems. Following this philosophy led to a decomposition based
around the five software components and a group of hardware devices
shown in Figure 14. Apart from the existing hardware devices and low-
level hardware driver component (which were a pre-written part of the
development environment), the remaining 5 components were designed
by me and are as follow:

• Servlet class

1. Service class: this is responsible for responding to a connection. It
determines the nature of the requesting platform by reading the client’s
request header. It then invokes an appropriate Servlet and passes on
the client request accordingly.

2. PC class: this is called from the Service class. Its job is to process the

requests for the user by using a system class object. The PC class
also gets the application’s current environment status from the system
class object and with the help of a utility class object; it generates
HTML pages dynamically back to the client.

3. Pda class: this is called from the Service class. Its job is to process the

Pda’s requests using a system class object. This class gets the
application’s current environment status from the system class object
and with the help of a utility class object; it generates a PDA version of
HTML pages dynamically passed back to the client.

4. Wap class: this is called from the Service class and is primarily
responsible for handling WAP client requests. The Wap class also uses
a system class object and a utility class object to generate results in
WML pages dynamically back in the client.

Jeannette S Chin Page 44

TESA –Towards Embedded-Internet System Applications

• Handler class (utility helper class), implements Formatte interface

1. Formatte interface: this is the abstract interface class. It defines 6
interface methods that its subclass should implement.

2. PcHandler class: A subclass of Formatte class. It is primarily responsible
for generating the “script-enhanced” Web based version of standard
HTML codes. It implements 6 methods that define in its superclass.
Note: the HTML code is embedded with TESA IP address.

3. PdaHandler class: A subclass of Formatte class. It is solely responsible for
generating the PDA version of HTML codes. It implements 6 methods
that define in its superclass. Note: the HTML code is embedded with
TESA IP address.

4. WapHandler class: A utility class for generating the WML codes that
consists of decks of cards which WAP enabled devices can navigate.
Note: the WML code is embedded with TESA IP address.

• Tesa class

The Tesa system class is a subclass of pre-written driver class for
the mDorm development environment. It inherits the driver class attributes
and methods including the private members but encapsulates them from
the external environment (data hiding). The Tesa class has a private static
attribute. It is used to store the reference of the user’s desired temperature
value. The system environmental temperature is monitored based on this
value. Tesa class also has its own methods for responding to the Servlet
requests.

• SetTesaStates class

This is a helper class that implements the Runnable interface. The
class instance is created and instantiated by the Servlets class whenever
a request that involves any system hardware is received. The primarily
job for this class is to perform a user request for updating the system
hardware devices’ status.

Jeannette S Chin Page 45

TESA –Towards Embedded-Internet System Applications

• Monitor class

This class monitors the environment temperature class based on
user input. It also implements the Runnable interface. The class instance is
created and instantiated by the Servlets class whenever such a request is
received. The monitor class thread is used to monitor the application
environment temperature in the application background continually, until
some event occurs.

5.2 Software Architecture

 The TESA system architecture is illustrated in the following diagram

Monitor
Class

Service
Servlet

mDorm class

SetStates
Class responds

PC
Servlet

http/wap
requests

WapHandler
PdaHandler
PcHandler

Tesa class

Formatte

Handler class

Wap
Servlet

Pda
Servlet

TiniHttpServer

Figure 14. The TESA System Architecture.

Jeannette S Chin Page 46

TESA –Towards Embedded-Internet System Applications

5.3 Interfaces

In Oxford Advanced Learner’s Dictionary, interface is described as
“a point where two subjects, systems, processes etc meet and affect each other or the way a
computer program accepts/presents information from/to users”. This project had 3 types
of interfaces.

5.3.1 The Web Interface

To comply with the system requirement presented in chapter 4, the
TESA Web interface was designed to mirror a gang of traditional physical
“push buttons” in which only one is active at any moment. Because the
Web interface was to be viewed and accessed over the Internet, the
control buttons were grouped together to form a type of menu. The control
menu utilised a “drop down” effect for displaying its sub-categories. The
effect was triggered whenever a mouse cursor glided over the menu. The
“drop down” menu function was supported by Web “JavaScript” client-side
programming while its format, was colour coded in a style sheet which the
client’s Web browser interpreted.

Below is a code fragment for the function related to displaying the

menu. This function would be interpreted and called by a Web browser, ie
the client:

// show the menu
 function ShowMenu(obj)
 {
 HideMenu(menuBar)
 var menu = eval(obj.menu)
 var bar = eval(obj.id)
 bar.className="barOver"
 menu.style.visibility = "visible"
 menu.style.pixelTop = obj.getBoundingClientRect().top +
obj.offsetHeight + Bdy.scrollTop
 menu.style.pixelLeft = obj.getBoundingClientRect().left +
Bdy.scrollLeft
 }

The format of the display, such as the alignment, colour, font size
etc for the menu was coded in a file ended with .cs, and this file is called
style sheet. Below is the fragment code for the format of displaying the
menu bar, horizontal bar, and the menu items that was placed on the
menu bar:

.menuBar
{

Jeannette S Chin Page 47

TESA –Towards Embedded-Internet System Applications

 POSITION: relative;
 BACKGROUND-COLOR: transparent;
 TEXT-ALIGN: center
 }
.Bar
{
 BORDER-RIGHT: gray 1px outset;
 BORDER-TOP: gray 1px outset;
 FLOAT: left;
 BORDER-LEFT: gray 1px outset;
 WIDTH: 25px;
 CURSOR: hand;
 TEXT-INDENT: 5px;
 BORDER-BOTTOM: gray 1px outset;
 POSITION: relative;
 BACKGROUND-COLOR: silver;
 TEXT-ALIGN: center
}
.menu
{
 BORDER-RIGHT: buttonhighlight thin outset;
 BORDER-TOP: buttonhighlight thin outset;
 VISIBILITY: hidden;
 BORDER-LEFT: buttonhighlight thin outset;
 WIDTH: 25px;
 LINE-HEIGHT: 100%;
 BORDER-BOTTOM: buttonhighlight thin outset;
 POSITION: absolute;
 BACKGROUND-COLOR: darkgray;
}

A dedicated bonsai plant image was edited with care and placed on
top of a 1024*1024 pixel white pre-prepared background layer using
graphics tool Photoshop6. This image was then positioned in the middle
section of the Web interface.

Figure 15. TESA’s interface image

Jeannette S Chin Page 48

TESA –Towards Embedded-Internet System Applications

For the purpose of reusability, the Web interface was set in a pre-
defined table smaller than normal size window, but one that could be
dynamically adjusted by the Web browser. The intention was that it could
be re-used later for the PDA interface, since the iPaq used in the project
also supports the HTML. To comply with the system requirement stated in
chapter 4, TESA current environmental status was displayed at the bottom
section of the interface, in a tuple format. The colour orange, white and
grey with black coloured background were chosen to be the interface
theme colour. Below are the snapshots of TESA Web interface.

Figure 16. TESA’s Web interface (1)

Figure 17. TESA ‘s Web interface (2)

Jeannette S Chin Page 49

TESA –Towards Embedded-Internet System Applications

5.3.2 The PDA Interface

As mentioned in chapter 3.4, a Compaq PDA (iPaq model 3970),
was used in the project. This uses the Microsoft Windows operating
system (WinCE) which supports the Web standard markup language
HTML. Therefore the PDA interface design was initially intended to have
the same design theme as the Web interface. This was an attempt to unify
the application interfaces whereby the user would only once need to learn
to use the system “controller”. However, it was later found out that whilst
the WinCE browser supports a scripting language it didn’t support a style
sheet which the Web interface design drop-down menu displays solely
depended upon. As the time allowed for completion the project was tight
and to avoid too many processing overheads for the handheld device (it
has low processing and memory power), a decision was made use a
slightly different approach. This amounted to exposing the PDA.s interface
control buttons on its top section but retaining the theme structure to
maintain the unified look. Colouring was used to distinguish the control
buttons from each other. A snapshot of PDA interface is shown below.

Figure 18. TESA’s PDA interface (1)

Jeannette S Chin Page 50

TESA –Towards Embedded-Internet System Applications

Figure 19. TESA’s PDA interface (2)

5.3.3 The WAP Interface

TESA’s WAP interface was written in WML, which had a completely

different look compared to the other 2 interfaces. The WAP interface was
solely text-based, no images, and user could need to navigate to/from the
interface for selecting/sending requests. The main reason for the WAP
interface being a text-based design, and different from the others, was that
WML supports only very limited image files. The image file used in other
interfaces was not supported here. The other reasons this interface was
different were:

o The WAP phone had a very tiny display screen where the Web/Pda

design theme was impossible to fit in.
o The WAP phone had a very limited memory space.
o The WAP phone had a low processing power

TESA’s WAP interface was made up of “desks of cards”, which a
user could navigate. The declaration, shown below, was needed to be
placed in the very first line of every WML program. The purpose of this
declaration was to validate WML code. The WML version used in the
project was wml1.1

<?xml version=\"1.0\"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"

http://www.wapforum.org/DTD/wml_1.1.xml>

Jeannette S Chin Page 51

http://www.wapforum.org/DTD/wml_1.1.xml

TESA –Towards Embedded-Internet System Applications

Instead of having “button-like” controls as in the other interfaces,
the WAP interface consisted of a text menu listing the services that TESA
provided. The user was then required to navigate through the menu to
select his desired service.

The code shown below is for the menu deck. This menu deck

consists of 3 cards. When the user selected a service, he was required to
navigate to another deck that provided the service. If the user chose to
cancel his request, or wished to terminate the connection (a user
requirement stated in chapter 4.3), he would be navigated from his
present card (1) to the card below but in the same deck, card (2), and from
there he would be prompted for confirmation. If the user selected to stay
with the original service, he would be navigated back to the card (1) which
listed the menu, otherwise he would be brought to card (3), and the
termination would be completed there. Note: Each card is begin with <card
id=”xx”> and end with </card>.

<card id="card1">
<do type="options" label="Cancel">
<go href="#card2"/>
</do>
<p>
<big>TESA Controller</big>

Select services
<select name="type" ivalue="0">
<option onpick="http://borg8of9.essex.ac.uk/servlet
/wap?type=Current">Current State</option>
<option onpick="http:// borg8of9.essex.ac.uk/servlet
/wap?type=DeviceItems">System Devices</option>
<option onpick=\"http:// borg8of9.essex.ac.uk/servlet
/wap?type=Temperature">Read Temperature</option>
<option onpick="http:// borg8of9.essex.ac.uk/servlet
/wap?type=SetTemperature">Set Temperature</option>
<option onpick="http:// borg8of9.essex.ac.uk/servlet
/wap?type=Stop">Stop Monitoring</option>
</select>
</p>
</card>
<card id="card2">
<do type=\"accept\" label=\"Yes\">
<go href=\"#card3\"/>"
</do>
<do type=\"options\" label=\"No\">
<go href=\"#card1\"/>
</do>

Jeannette S Chin Page 52

TESA –Towards Embedded-Internet System Applications

<p align=\"center\">
<big>Are you sure you want to quit?</big>
</p>
</card>
<card id=\"card3\">
<p align=\"center\">
<big>Thank you for using TESA Controller</big>
</p>
</card>

Below are the snapshot diagrams for WAP interface.

Figure 20. TESA’s WAP interface (1)

Figure 21. TESA’s WAP interface (2)

Jeannette S Chin Page 53

TESA –Towards Embedded-Internet System Applications

5.4 Comments

The above description is a minor part of the overall software
implementation which is more fully described in the appendix and the
attached CD. It was felt describing the software in its entirety in this
chapter would be a somewhat tedious experience for the readers. Instead
only a few issues have been extracted for illustrative purposes in this
chapter, such as the general software architecture and some issues
relating to WAP programming. It was felt an overview of the software
architecture was essential and hence this was included above. As the
WAP programming was outside the curriculum, and took some
considerable self-education, it was also felt that it would be useful to
include an insight into this process here. Overall, all the requirements
described in chapter 4 have been implanted and the code can be found in
the attached CD.

Jeannette S Chin Page 54

TESA –Towards Embedded-Internet System Applications

6. Software Implementation

TESA has 5 main software components, namely:

• Servlet class
• Handler class
• Tesa class
• SetTesaState class
• Monitor class

6.1 Servlet Component

In the communication process between a user and a Web

application, sometime referred to as client-server communication, it is
always the user (client) that initiates the connection and sends a request
to the Web application (server). This request is encapsulated in the
Uniform Resource Locator (URL) that contains the address of the
requested server and sent by the Web browser GET command. The URL
looks something like: http://borg8of9.essex.ac.uk/servlet/service?
type=Current , where the data after the “?” will be the user’s request.

While sending the URL, the browser is also sends a header, which

contains an array of data format information. This information indicates to
the server what kind of the data format that the client browser is willing to
accept. The server will read the command, get the information, try to
execute it and send the result back (or, if there is an error, it will send back
an appropriate error message in an appropriate format). The interaction
between client and server is shown in the following diagram.

 Request Request

 Response Response

Client

Server

Server

Client

Figure 22. Conceptual Client/Server Model.

A servlet is a software process that sits on the server side waiting
for a client request; responding to a request, process it and returning a
result.

Jeannette S Chin Page 55

TESA –Towards Embedded-Internet System Applications

TESA used the TiniHttpServer engine, which ran as the application
Servlet engine on its TINI. However, the Tomcat Servlet engine, which ran
on the WinME machine, was used for testing and debugging. The servlets
were written in Java and were responsible to respond to a request
whenever a connection was established. There were four Servlets written
for TESA, namely Service, PC, PDA and WAP.

6.1.1 Service class

Service Servlet was the project main Servlet that sat on the
TiniHttpServer. It would be called upon receiving a client connection
irrespective of which connection platform the client used. The Service
Servlet would respond to the client request by reading its “header”
information, which would be sent along with the client request, to
determine which connection platform the client was from. The “header” is a
small amount of information which the client uses to indicate to the server
the type of document format that it is willing to accept. For example the
WAP client will indicate to the server that only the document type, ending
with the .wml will be accepted whilst the PDA client will have a header that
describes the document UA-pixels: {i.e. 240x320} etc. It is the client’s
responsibility to inform the server about this information prior to receiving
any response, so that to ensure only the correct type of format is
sent/received.

Once the Service Servlet receives this information, it creates an

object instance of the appropriate Servlet (based on the connection
platform) and passes on the request. From then on, as far as the Service
Servlet is concerned, this connection no longer has responsibility until the
next new connection established. The Service Servlet “read and pass”
enabled TESA to be accessed, controlled and monitored regardless of
how the initial connection was established. Below is the small fragment of
the code:

String accept = req.getHeader("accept");
::::::::::::
//see what the browser is willing to accept
if (accept==null || accept.indexOf("wap.wml")==-1)
{
 if (accept==null || accept.indexOf("Window CE")==-1)
 {

//this is normal html's requests
 //pass the request to the PC servlet

PC pc = new PC();
pc.doGet(req, res);
}

Jeannette S Chin Page 56

TESA –Towards Embedded-Internet System Applications

//Pda requests start here
Pda pda = new Pda();
Pda.doGet(req,res);

 }
else
 {

//Wap request starts here
 Wap wap = new Wap();
 wap.doGet(req, res);

 }
 :::::::::::

6.1.2 PC class

PC Servlet is called when the Service Servlet determined the request

was from normal Web browser. Its job is to read the request, process it
and return the result. The PC Servlet content type was set as "text/html" to
ensure its output was in Web document format. The request sequences
for the PC Servlet were:

• If the PC Servlet determined the request was for changing
the system device status, it would create a system helper
class object (SetStates) to handle the request and then use a
handler object (PcHandler) to print out acknowledgement
dynamically to the user.

• If PC Servlet determined the request was for monitoring the
system environment, it would then (1) validated the input
(2a) if the input was validated, it would test to see if there
was any old thread running on the system monitoring
routine, if so flagged it to stop, and went to (3) or (2b) printed
an error message and went back to (1), (3) create and
initiate a thread and pass on the valid parameter for the new
thread to start to monitoring the system environment.

• If the PC Servlet determined the request was to stop the
system monitoring it environmental temperature, as before, it
would (1) test to see if there was any old thread running on
the system monitoring routine, if so flagged it to stop, and (2)
it would create a system helper class object to switch off the
currently working system devices.

• If an error occurred, the PC Servlet would handle the
exception by generating appropriate messages.

Jeannette S Chin Page 57

TESA –Towards Embedded-Internet System Applications

Below is the code fragment:

 //create a PC format utility class object
 PcHandler handler = new PcHandler();
//create a system class object
 Tesa wborg = new Tesa();
//declare a monitor thread object
Monitor mp = new Monitor(wborg);
:::::::::::::::::::::
//get the request value
String temp = req.getParameter("temp");
String temp = req.getParameter("temp");
:::::::::::::::::::::::

if (temp.equals("list"))
{

 …
}
else
{

 try
 {

//get the value from the parameter, might throw an
exception here if the input is not a valid number

lvalue = Integer.parseInt(temp);
String st = "The system is set to monitoring its

temperature at "+lvalue+" `C. ";
 //check if the input is within the pre-define range
 if (isValid(lvalue))
 {
 //kill any running thread
 stopRun();

//initiates a new thread and pass on the
//paremeter

 getMonitor(lvalue);
//print acknowledgement and back to
//initial state

 printMenu(pw,st);
 }
 else
 {

//if the input value is out of the pre-define
range, //print error message

 writeErrorMessage(pw, er2);
 }
 }

Jeannette S Chin Page 58

TESA –Towards Embedded-Internet System Applications

 catch (NumberFormatException nfe)
 {
 System.out.println("input error!");

//print error and ask to input again go back to print
//menu page

 writeErrorMessage(pw, er1);
 }
 }

The PC Servlet had 15 private supporting methods, mainly for its

printing jobs. For example one of the method retrieved the application’s
current environment status through system class object and used another
method to convert these value into a meaningful form. These functions
also used a handler class object (PcHandler) to print out the results in HTML
pages. Below is the fragment of the code:

private void getCurrentState(PrintWriter pw)
 {

 int itop = wborg.getTopLightsState();
 int ibottom = wborg.getBottomLightsState();
 ::::::::::::::::
 String top = switchState(itop);
 String bottom = switchState(ibottom);
 :::::::::::::::::
 handler.writeCurrentStateTable(pw);
 handler.writeCurrentState(pw, top, bottom, heat, fan, temp, moist);
 }

 private String switchState(int n)
 {
 String result = "UnKnown";
 switch (n)
 {
 case 0:
 result = "Off";
 break;
 case 30:
 result = "Dim";
 …..
 }
 return result;
 }

 Please refer to the Appendix H for the rest of the private methods.

Jeannette S Chin Page 59

TESA –Towards Embedded-Internet System Applications

6.1.3 Pda class

The Pda Servlet was called when the Service Servlet determined the
request was from a pocket PC. Its job was very similar to the PC Servlet in
that it read the request, processed it and returned the result. The only
difference between the Pda Servlet and the PC Servlet was that the Pda
Servlet used a different handler class to print out the result, otherwise, the
rest of the routine functions were the same. Below is the Pda Servlet
declaration:

//declare a Pda format utility class object
PdaHandler handler = new PdaHandler();
//declare a system class object
Tesa wborg = new Tesa();
//declare a monitor thread object
Monitor mp = new Monitor(wborg);

 Please refer to the Appendix H for Pda Servlet private methods.

6.1.4 Wap class

The Wap Servlet was called when the Service Servlet determined the

request was from a WAP enabled device. Its task sequences were the
same as with the other servlets in that it read in the request, processed it
and returned the result. The Wap servlet used the WAP handler class-
WapHandler (which generates WML pages) to dynamically print out
responses and results for WAP clients. Below is the Wap Servlet
declaration:

public class Wap extends HttpServlet
{
 //declare a Wap format utility class object
 WapHandler handler = new WapHandler();
 //declare a system class object
 Tesa wborg = new Tesa();

//declare a monitor thread object
 Monitor mp = new Monitor(wborg);
 :::::::::::::::

Because the language used in WAP enabled devices is very

different from the Web applications, the Wap Servlet content type was set
to "text/vnd.wap.wml” instead of the normal Web type "text/html". The Wap

Jeannette S Chin Page 60

TESA –Towards Embedded-Internet System Applications

Servlet made extensive uses of its handle class for printing WML pages,
thus it had fewer helper methods than the other 2 servlets. Please refer to
Appendix H for Wap Servlet private method.

6.2 Utility Component-the Handler class

The Handler class is a utility class which is only responsible for
printing the appropriate format pages. TESA had 3 Handler classes; two,
the PC and the Pda, were implemented in the same interface Formatte, which
defined the methods that should be used when printing the HTML format.

6.2.1 Formatte class

The Formatte class was the interface class. It defined 6 methods
which needed to be implemented for all its subclasses in printing the
HTML pages. The Formatte class had 2 subclasses- the PcHandler and
PdaHandler. The 6 methods it defined were:

• public abstract void writeHeader(PrintWriter pw, String s);
• public abstract void writeFooter(PrintWriter pw);
• public abstract void writeMenuTable(PrintWriter pw);
• public abstract void writeReplyRow(PrintWriter pw, String s);
• public abstract void writeCurrentStateTable(PrintWriter pw);
• public abstract void writeCurrentState(PrintWriter pw, String

a, String b, String c, String d, double e, String f);

6.2.2 PcHandler class

The PcHandler class was a utility class that was responsible for
printing Web version of HTML pages. PcHandler class implemented Formatte
interface. It implemented 6 Formatte class defined methods as well as its
own methods. Note: the HTML code in the PcHandler class was embedded
with TESA IP address. Refer Appendix H for the PcHandler class methods.

6.2.3 PdaHandler

The PdaHandler class was another utility class responsible for

printing the Pda version of HTML pages. Like PcHandler class, PdaHandler
implemented Formatte interface. Apart from the 6 defined methods,
PdaHandler class also had its own printing methods. Note: the PDA version

Jeannette S Chin Page 61

TESA –Towards Embedded-Internet System Applications

of HTML code was embedded with TESA IP address. Refer Appendix H
for PdaHandler class.

6.2.4 WapHandler

Unlike the other two handler classes mentioned above, WapHandler

class did not implement Formatte interface, but it had its own methods, and
was responsible for printing out WML pages. WapHandler class had 13
printing methods. Note: the WML code was embedded with TESA IP
address. Refer to Appendix H for WapHandler class.

6.3 System Component-Tesa class

The Tesa class was the system class. It interacted directly with
system hardware devices. Tesa was also a sub-class of driver class -
mDorm, thus it inherited all the driver class’s data members as well as its
methods but encapsulated them. The Tesa class had only one private data
member, to store the user preference environmental value.

Apart from the methods associated with Tesa’s own private data
member, ie. for setting/retrieving the value, Tesa class had only one
method (with 2 argument parameters). The method was used to read the
request (passed by the servlets as the arguments) and made appropriate
actions. For example if the request was for changing the setting of one of
the system’s hardware devices, the method would check and find out the
user desired setting, and once it got hold of that information, it would then
(1) compare the device concerned current status with the user desired
status (2) if both of the status differed, it would update the new status by
sending a signal to the hardware device concerned, or (3) it would do
nothing if both of the status were to remain the same. The code below is
the fragment of code showing a “toplights” scenario:

::::::::::
 if (device.equals("TopLights"))
 { //3 states
 try
 {
 int top = getTopLightsState();
 //testing variable for the toplights
 if (state.equals("Dim"))
 {
 if (top==30)
 {

//do nothing if the top lights are already in dim state

Jeannette S Chin Page 62

TESA –Towards Embedded-Internet System Applications

System.out.println("Error! PDorm's top lights are
already set in Dim state");

 }
 else
 {
 //reset
 setTopLightsState(0);
 try

{ Thread.sleep(2000);
} catch (InterruptedException e) {}

 setTopLightsState(30);
 }
 }

6.4 System SetStates class

The SetStates class was a support class implemented Runnable
interface. This class was to reduce the load for the main executing thread
during the program execution. The job for this class was primarily to deal
with requests for changing the system’s device status. It was closely
associated with the Tesa class.

The SetStates class has 4 private data members: Tesa object (for the

reference of the object it ran), 2 primitive string type variables (for the
requested values for the object) and a Thread object (for tracking the
current running thread). The following fragment shows the run method of
SetStates class:

class SetStates implements Runnable
{
 private Tesa tesa;
 private String device;
 private String state;
 private Thread runStates;
::::::::::
 public void run ()
 {
 //track the current executing thread
 runStates = Thread.currentThread();

 System.out.println("SetStates thread run ");
 tesa.setStates(device, state);

Jeannette S Chin Page 63

TESA –Towards Embedded-Internet System Applications

 try
 {
 Thread.sleep(2000);
 }
 catch (InterruptedException ie)
 {
 Thread.currentThread().interrupt();
 Return;
 }
 }
}

6.5 System Monitor class

The Monitor class was responsible only for monitoring the system
environmental temperature. It implemented the Runnable interface and had
4 private data members.

The Monitor class controls the system temperature by comparing

the system current temperature status to the requested status. If the
requested status stated the system needed to be warmed up (ie. the value
was bigger), the class would set the heater and fan on to full (putting fan
on to speed up the hot air circulation). Conversely, if the system needed
cooling down, the class would set the fan on (in full speed) to increase the
air circulation (there being no cooler on the mDorm, to this only worked in
the ambient temperature was less than the set-point). If the system status
was as requested, the class would stay unchanged, periodically checking
until the next change (either from the system or a new request). The
monitoring routine was set to monitor the temperature continuously until a
termination event occurred.

 Because other classes could create threads of this class through
Runnable interface, and each newly created thread would be running
continuously in the system background (monitoring the system
temperature), there was potential jeopardise the system consistency. To
overcome this potential problem, 2 crucial steps needed to be taken (1)
the data members of this class had to be declared as “static”. Using “static”
data members would mean that the same piece of data would be seen
across by all the running threads, regardless of which classes the threads
were created from, (2) the method used for monitoring the system
temperature must declared as “synchronized”, meaning this method could
only be run by one thread at a time, as threads must obtain a lock before
running. These steps were critical to maintaining the system consistency

Jeannette S Chin Page 64

TESA –Towards Embedded-Internet System Applications

as the system requirement stated in chapter 4.3, that the system should
be able to monitor its environmental temperature based on the user input,
but the user could be from any of the 3 communication platforms.
Furthermore, the requirement was that more than one user could make
the same requests with different value at the same time! For example, a
PDA connected user could request the system to monitor its
environmental temperature based on a specific value, but while the
system processed this request, a WAP connected user might send the
same piece of request but with a different value. Since the Monitor thread
could be created for each request, irrespective of the means of
connection, the system now had 2 Monitor threads running at the same
time, in the background, monitoring its environmental temperature, but
each based on a different value! This problem was overcome by declaring
the method as “synchronized”. For example, if the first thread of the above
scenario was running in this method, it must have obtained a lock
beforehand, and it would hold the lock while it processing the task.
Meanwhile the second thread came along and saw there was no lock
available and it would wait for the first thread to finish its job before
releasing the lock. Below is a code fragment for the method showing the
“synchronized” declaration.

public synchronized void monitorP_DTemperature()
 {
 if (pdorm.getTemperature() < pdorm.getNew_temp())
 {
 pdorm.setHeaterState(100);
 try
 {
 Thread.sleep(1000);
 }
 catch (InterruptedException e)
 {
 // stop the running thread
 return;
 }
 pdorm.setFanState(100);
 :::::::::::

Jeannette S Chin Page 65

TESA –Towards Embedded-Internet System Applications

6.6 Comments

The above description provides and software implementation which

is more fully described in the appendix and the attached CD. It was felt
describing the software in its entirety in this chapter would be a somewhat
tedious experience for the readers. Instead only a few examples, in the
form of code fragments, have been extracted for illustrative purposes in
this chapter. Overall, all the requirements described in chapter 4 have
been implemented and the code can be found in the attached CD.

Jeannette S Chin Page 66

TESA –Towards Embedded-Internet System Applications

7. Software Testing & System Evaluation

This chapter comprises two sections. The first section presents the
software testing strategies and the test results (looking for coding or
logical errors); the second presents a simple user evaluation exercise
(assessing the users reaction to the ”look and feel” of the system).

7.1 Testing Methodology

The testing strategies used in the project are as follow:

7.1.1 Code Walk Through

• Objective: to find faults such as syntax errors, the consistency of
variables names, program logic errors etc.

• Strategy: The program codes were at least read through twice as
soon as they were coded. Errors found were noted for reference.

• Methods used: Hard copies of the code were made once it had
been written. These copies were used to carefully examine the
program logic and the sequence of program execution events. At
the same time names of the variables were checked for
consistency. All errors were noted when found.

7.1.2 White Box Testing

“White box” testing began soon after the process of “code walk
through” finished. This testing was an ongoing operation as the code was
written. Because the TINI system used in the project had well-known
drawbacks [Web24] in terms of limited processing and memory capacity, it
is standard practice for the TINI community for program debugging to be
normally conducted on a development PC rather than in the TINI itself.
This is to ensure the program is compiled error-free before deploying it to
a TINI for subsequent testing. The practice is aimed at avoiding
overloading the TINI by exhaustive debugging. Experience in this project
indicated that the TINI would only manage to stay functional for an
average of 10 “build and deploy” cycles. The most common problem
encountered after 10 build cycles was “lack of memory space”
necessitating the system to be rebooted and its memory heap cleared.
The problem with rebooting was, except for the TINI firmware, all the

Jeannette S Chin Page 67

TESA –Towards Embedded-Internet System Applications

files/folders in the system would be lost, requiring all the application
software to be reinstalled via ftp.

The project adopted the above as standard practice. The program

debugging was performed in WinME machine before being built and
deployed to the TINI for functional testing. Apart from the interfaces unit
testing, the Tomcat Servlet engine was used extensively in this stage, as
its functions were very similar to the TiniHttpServer.

7.1.2.1 Unit Testing

• Objective: to find the individual interface component output errors,
interface errors, pre-mature termination etc.

• Strategy: to ensure every statement, decision point and distinct
path in a component were executed at least once.

• Methods: interfaces were debugged and tested until they were
deemed satisfactory. Tools such as Nokia sdk, PhotoShop6 and
DreamWeaver were used in editing and correcting the errors for the
interfaces.

• Test cases: each interface was thoroughly tested at least once.

a. Servlet class

• Objective: to find servlets response errors
• Strategies: to ensure the interaction sequences between
the Servlets were correct, and also to verify the Servlets
output was of the right order.
• Methods: The program code had been configured to adapt
the Tomcat Servlet engine environment. Interface code was
embedded in serlvets and placed in the appropriate directory
within the Tomcat engine. Configurations were made to
Tomcat so that it would serve the testing servlets automatically
when it went into action. Web browser (Internet explorer) and
3 WAP emulators (Openwaves Nokia and M3Gate) were used
as the clients in the testing.
• Test cases: for each interface connection, every service
was requested at least once.

Jeannette S Chin Page 68

TESA –Towards Embedded-Internet System Applications

b. Handler class

• Objective: to find interfaces working improperly with the
servlets.

• Strategies and methods:
1. For Web Interface: Tomcat engine was brought up and a

Web browser was used to test each service and their settings
at least once.

2. For PDA Interface: as above.
3. For WAP Interface: The Tomcat Engine was started and 3

WAP simulators (Openwaves, Nokia and M3Gate) were used
to test the each service and their settings at least once.

c. Tesa class

• Objective: to find any system classes that interact abnormally
with the hardware devices, and to find user requests and
their settings that were improperly handled.

• Strategies and methods: Each hardware device (top lights,
bottom lights, fan, and the heater) was activated and tested
at least once.

• Testing Functions Prepared: as the testing was not
performed on the TINI environment, a stud (Appendix G) had
been written prior to this test.

d. Monitor class

• Objective: to find system consistency faults.
• Strategies and methods: 3 interfaces were used to send
requests simultaneously to activate each hardware device (top
lights, bottom lights, fan, and the heater) and input/select
temperature value at least once.

Jeannette S Chin Page 69

TESA –Towards Embedded-Internet System Applications

7.1.3 Black Box Testing

The Integration testing for the project was conducted by largely
adopting a “black-box” testing strategy. This test was performed on the
Tini environment. The preparation work involved: (1) Building the program
code for the TINI (ie. convert it into .tini file) using “ant” command from the
WinMe machine and (2) Deploying the image files used in the project in
the appropriate directory of the Tini via ftp. In addition, the system’s
functional and consistency testing was performed during the Integration
Testing.

• Objective: To find and eliminate any errors resulting from
components not working together as a higher-level system in the
Tini environment.

• Strategy: program code was edited to work with the Tini
environment and networking before deploying it to a TINI. The
machines configuration were checked and corrected where
necessary. The version and errors were documented clearly for any
necessary later testing using the WinMe machine. The Tini was
rebooted if problems occurred.

• Test cases: In the TINI environment, the TiniHttpServer was
brought up via telnet session. A Web browser, iPaq and WAP
mobile phone were used to send/receive requests/responses
simultaneously to (1) activate each hardware device (top lights,
bottom lights, fan, and the heater) and (2) input/select temperature
value at least once. Note: The Web browser used was from the
WinME machine via the Internet whilst the PDA used Bluetooth
connection and the WAP mobile phone used a GPRS connection.

Below diagrams illustrates the Integrating testing.

Servlet

Wap Pda PC

SetStates Monitor

Pda Wap Tesa

Handle

PC

Tini

Figure 23. TESA software component hierarchy.

Jeannette S Chin Page 70

TESA –Towards Embedded-Internet System Applications

Monitor

SetStates

Wap

Pda

Web

Tomcat

Tesa

Tini

Wap

DreamWeaver Pda

PC

Figure 24. Integration Testing

7.1.4 Performance Testing

The Performance Testing was conducted in the IIEG lab on the 9th
March 2003. The equipment used were:

• Borg8of9
• Egadgets4
• WinMe machine (laptop)
• IPaq 3970
• SonyEricsson t68i
• Pico- iblue1 (Bluetooth bridge)
• Baby-G time watch

The performance testing was calculated based on the time taken by

different client interfaces accessing the system and requesting a set of
pre-defined services (Appendix D) via different means of connection.
There were 3 tests in total for the performance testing. Note: Each
interface was performing its request of the pre-defined services in the
same sequence order.

During the tests, borg8of9 was served as the system server. The

TiniHttpServer on the borg8of9 was brought up by a telnet session using
egadgets4 machine. When the TiniHttpServer was up and running, the
first performance testing began by a Web browser from the WinMe
machine calling the system Web interface over the Internet. The Timer
was set to time the process as soon as the connection had established

Jeannette S Chin Page 71

TESA –Towards Embedded-Internet System Applications

(indicated on the telnet session panel). The testing was then ended by
stopping the timer when the last requested service was completed; again,
the completion of requested service was indicated on the telnet session
panel.

The second performance test was performed by the iPaq 3970

calling the PDA interface using WinCE browser via Pico-iblue1 radio wave
Bluetooth connection. The same testing sequence as before was
performed when the connection established.

 The third performance test was carried out by the SonyEricsson

t68i calling the WAP interface via GPRS connections through Vodafone
WAP gateway. The same testing sequence as before was performed
when the connection established.

 Figure 25 and 26 shows the Performance Testing environment.

Figure 25. Performance Testing Environment.

Jeannette S Chin Page 72

TESA –Towards Embedded-Internet System Applications

Figure 26. Performance Testing in actions.

7.1.5 Summary of results

Below table summarises the test results:

method Logical
errors

Sequential
errors

Syntax
errors

Naming
errors

Misplaced
errors (display)

No. of
corrections

Code walk through 10 52 2 0 0 64
Unit testing (Web) 0 0 0 0 3 + 5 for the

image files
8

Pda 0 0 0 0 8 + 3 for the
image files

11

Wap 0 0 10 0 3 13
Servlets (all) 4 7 0 0 0 11

Integration testing 0 8 1 2 3 14

Total errors: 14 67 13 2 25 121

Figure 27. Summary of test results

There was an overall 121 errors and corrections for the project. The
programs logical and sequential errors were mostly found during the early
stages of the development process by careful “code walk through”
examinations. However, the interfaces display errors were found in later
stage (unit testing) as that was the only time those errors would be known.

Jeannette S Chin Page 73

TESA –Towards Embedded-Internet System Applications

The WAP syntax errors were notably hard to spot in the early “code
walk through” stage. That was because WAP programming would need
“live” validation from the WML forum site for finding errors. Servlets
errors, in particular their sequential errors, were only easy to find and
correct while testing them. This explains why they were mostly found in
the later unit testing stage. Integration testing was conducted in the Tini
environment and was the phase that generated the second highest error
detection. The system had to be rebooted 9 times with memory heap
cleared 7 times.

Although the integration testing recorded the second highest errors,

those errors were mainly the sequential errors that occurred during the
program execution. The system devices, their settings and the system
temperature environment were tested successfully in this process. They
could be controlled and monitored over the Internet using a normal Web
browser as well as remotely via wireless communication using the short-
range Bluetooth wireless connection in the iPaq. Moreover, the GPRS
connection via WAP gateways using SonyEricsson t68i was tested
successfully tested in this phase.

The system’s automatic environmental temperature control system,

based on user input, was also tested and found to be satisfactory. In more
details, the test output (see Appendix E) showed that the system was
capable of maintaining its consistency after being deliberately forced to
respond to 3 different platform connections requesting with 3 different
requests for monitoring its environmental temperature. In addition, the
system demonstrated it could automatically keep the temperature at a
user set point despite external disturbances to the environment
temperature. The test involved sending a request (via a browser) for the
system to increase its temperature (ie sent value =28, the system current
value=24). The unit responded by putting its heater and fan on (the
purpose for the fan there was to circulate the hot air more quickly to the
environment). Just as the system temperature was rising (ie 26.5), another
request from a WAP phone (SonyEricsson t68i) was sent with a lower
request than its current value (sent=26). Upon receiving this request, the
system compared the 2 values and made an adjustment by switching off
its heater. The system then remained in monitoring mode. After a while,
the temperature dropped to the requested value (new value=26), and the
system re-adjusted itself again by switching off its fan. Then, a stop-
monitoring request was sent by iPaq and upon receiving this request, the
system stopped its “nursing” function and switched off any devices that
were currently on.

The above testing was repeated 3 times with different combinations

of platform request sequences. The system proved able to maintain its
consistency by performing the requested tasks in sequence, ie. it would

Jeannette S Chin Page 74

TESA –Towards Embedded-Internet System Applications

monitor its environmental temperature based on the newest information
regardless of the means of connections. However, the system would
behave differently depending on the interface used to send the “stop
monitoring” request. In this case the system would shut down its “nursing”
function (ie. stop monitoring as well as shut down the hardware devices
currently on), upon receiving such request from the iPaq or a Web
browser. However, if such request were received from the WAP interface,
the system would shut down only its monitoring function but not switch off
any hardware devices currently on. This behaviour was purposely set to
demonstrate that different connection platforms could have different sets
of mechanisms for interacting with the system. Of course, the system
hardware devices could be switched off individually or globally by
dedicated controls when using GPRS via WAP interface.

During the test, 3 continuous requests for switching on the system

top lights were sent by 3 different interfaces (the requested settings were
dim, bright, bright). Upon receiving the first request, the system put on its
top lights to its dimmer setting. Upon receiving the second request, the
system reset its top lights to the brighter state. When the third request
came along, the system did nothing apart from printing out an I/O
message stating the top lights had already been switch on. As far as the
system was concerned, though the requests were from 3 different clients
with 3 different requests, the system saw them as 1 client with 3 different
requests. Thus the system robustly dealt with any of the 3 interface
connections and performed requests regardless of how the connections
were established.

The system’s current environmental status was automatically

displayed on the Web and PDA interfaces, but not the WAP interface
(refer to system requirement chapter 4.3). However, depending on the
TINI OS scheduler, which used a round robin algorithm to schedule time
slots, the system had an “unpredictable” behaviour in terms of refreshing
the newest current status (Great care had been taken for the running
threads in the attempt of achieving more constant behaviour). Also
because the system implemented a simple automated temperature control
scheme, (refer to system requirement chapter 4.3), the interfaces could
not be set to “refresh” themselves periodically to the system’s newest
environmental status information. This is because in an HTML document,
a “refresh” tag would require that the browser not just to retrieve the
newest information, but also to re-send the old request (before the refresh,
if any) to the server. This un-wanted request would cause a major problem
for TESA system. For example, imagine the situation where a PDA client
was requesting the system to monitor its temperature based on value A
(say), and at that moment a Web client sent the same request with value
B (say). If these interfaces were set to refresh themselves periodically, it
would be no problem for them to update the system’s current status

Jeannette S Chin Page 75

TESA –Towards Embedded-Internet System Applications

information, but the system would also receive their old requests (with
different values). For this periodically “retrieving” and “requesting”, would
quickly overload the TINI as it has significant constraints and limitations
(refer to TINI constraints and limitations [Web24]). A solution to this
particular problem might be to redesign the interface to use an applet.

7.1.6 Summary of Performance Testing results

The diagram below summarises the 3 performance testing results
for the TESA system. It shows the time taken for each interface to
complete the performance test.

Performance Testing

0

2

4

6

8

10

1

Intefaces

minutes
WEB
PDA
WAP

Figure 28. Performance Testing

It was expected that the performance testing would reveal that the
Web interface had the best performance results. The total time taken for
the Internet (using a Web interface) communication for the testing was 3.5
minutes. That was due to the following reasons (1) the design of the Web
interface was undertaken with the aim of avoiding the need for navigating
through a menu hierarchy. The system control mechanisms were placed
on one screen supported by the scripting language that most browsers
were able to interpret, and (2) the speed of network connection was much
faster than the Bluetooth or GPRS wireless communication system. The
wired network operated at a speed of 100Mb/s whilst the WiFi and

Jeannette S Chin Page 76

TESA –Towards Embedded-Internet System Applications

Bluetooth were operating at speed of the order 8Mb/s and 100Kb/s
respectively.

In addition, the handheld iPaq 3970 used during the test had a
computationally inferior performance than the PC (slower process, smaller
memory etc). The PDAs smaller memory capacity and constraints in
supporting software forced the PDA interface design to be multiplexed into
further screens, further slowing down access. Thus the PDA interface
performance result was also expected to be slower than the Web interface
performance result. The iPaq took 5 minutes to complete the test.

The WAP interface had the least satisfactory performance result

among the 3 testing. It had taken nearly 9 minutes to accomplish the test.
The factors that affected the WAP interface performance were: (1) the
wireless connection (GPRS) between the mobile phone to the Vodafone
WAP gateway was very slow (the bandwidth can be as little as 9600 b/s.
In addition, priority for voice data is also contributing to GPRS low
communication latency although airtime providers are not keen to
acknowledge this fact). Thus WAP is the slowest among the 3
connections, (2) the WAP interface design used a highly hierarchical
navigation design due to the language format used for the WAP enabled
device (WML) and the very limited screen space, (3) the SonyEricsson
t68i, like most of the mobile devices, was inherited with tiny processing
and memory capacities.

7.2 User Evaluation

The aim of this project was not to produce a finished product but
rather to assess the feasibility of producing such a product with cheap
embedded-Internet devices, such as the TINI, which are now beginning to
appear on the market. However, despite this was not supposed to be a
finishing product and a user evaluation was not required, it was felt that it
might be interesting to expose the system to at least one non technical
user to see what comments they might make. Eventually 2 users were
invited to test the system. In order to get a general view of them, the users
were asked to fill in a simple feedback form about their thoughts after
trying out the system.

Jeannette S Chin Page 77

TESA –Towards Embedded-Internet System Applications

7.2.1 Evaluation Methods

A simple form of questionnaire that consists of 8 questions with
choices of answers was prepared for the users. The questions
corresponded to the system aspects such as:

• Whether the system met the user desire requirements?
• Whether the interface appealed to the user?
• Whether the displayed information was adequate?
• Whether the system was friendly to use?
• Whether the system performance met the user

expectations?
• Which aspect of the system the user liked?
• Which aspect of the system the user thought needed to be

improved?
• Whether the user would like to own this system him/herself?

Refer to Appendix F for the sample questions.

Jeannette S Chin Page 78

TESA –Towards Embedded-Internet System Applications

7.2.2 Results from Users

Question User1 User2
1 1 1
2 1 1
3 1 1
4 1 1
5 1 1
6 all all
7 nil nil
8 1 1

Figure 29. Users evaluation using Web interface.

Question User1 User2
1 1 1
2 2 2
3 1 1
4 1 1
5 1 2
6 all all
7 nil nil
8 1 1

Figure 30. Users evaluation using PDA interface.

KEY

1-Strongly agreed
2-Agreed
3-Neither agreed or
disagreed
4-disagreed
5-Strongly disagreed

Question User1 User2
1 1 1
2 2 3
3 1 1
4 1 1
5 2 2
6 all all
7 nil nil
8 1 1

Figure 31. Users evaluation using WAP interface.

Jeannette S Chin Page 79

TESA –Towards Embedded-Internet System Applications

7.2.3 Comments on User Evaluation

From the user evaluation results showed that the users were
strongly agreed in the following 4 aspects:

• The system met their desire requirements
• The display information was adequate.
• The system was friendly to use.
• The user will like to own this system him/herself.

However, for the interface side, the result had showed that

users were both favoured the Web interface but thought the PDA
was good though 1 user could not agree or disagreed upon the
WAP interface was appealed him/her.

On the system performance aspect, again, the result had

showed that on average, depending on the choice of connection
platform which would affect the system performance speed, the
users were agreed that the system performance met their
expectation.

Both users liked the system in general, and they thought no

immediate improvement was needed.

Jeannette S Chin Page 80

TESA –Towards Embedded-Internet System Applications

8. Conclusion

The main aim of my project, which was “to develop a simple
demonstrator to illustrate how technologies such as Web, mobile phones
& wireless PDA can be developed to produce and interact with an
embedded-Internet product”, had been accomplished. Below is a
summary of the main achievements.

8.1 Summary of Achievement

8.1.1 TESA

The project succeeded in its aim to design and build a small scale
demonstrator of an embedded Internet appliance which allowed the plant’s
environment to be monitored and controlled from conventional web based
PCs, PDAs or mobile phones. The remote Internet enable plant-care
appliance is thought to be novel and an achievement in itself.

Although the basic design was based on a modified TINI mDorm

system, it necessitated much additional software and for the wireless
based aspects, cooperation with the department computing service was
needed, to transform into a suitable test-bed for this project. This
experimental infrastructure is reusable and useful for other projects and is
thus a useful output in its own right.

8.1.2 Java Programs

A comprehensive package of supporting software was written in
Java, from the backend system classes to the frontend server
implementations. Java provides high-level abstractions and platform
independent, thus making the system robust and portable.

Jeannette S Chin Page 81

TESA –Towards Embedded-Internet System Applications

8.1.3 WAP Architecture

The WAP communication architecture was centred around a WAP
Servlet I wrote in Java for the TINI system. It accessed the other system
classes I wrote and had its own unique format for displaying WML pages.
The system was capable of simultaneously processing its system related
tasks in the background whilst of interacting with WAP enabled devices. I
was especially pleased with this aspect of the system as it lay outside the
scope of the curriculum and had required me a lot of self-study to
understand and implement the system.

8.1.4 Inter-operable Interface

The problem for potential inconsistencies arising from multiple
accesses from different platforms has been examined (ie if a client has
connections from different communication platform at the same time) and
a solution provided that involves treating multiple connections as one
connections thereby maintaining system consistency.

8.1.5 Simple Automation

Although the focus of the work was on mechanism to provide
remote control, it was recognised that a simple self-regulating system
would be needed in any practical deployment of the appliance. For
instance, it would not be feasible to expect a remote user to constantly
monitor a temperature and make adjustment to the heater to maintain it at
a particular value; clearly, to be viable, the system needs some sort of
self-regulating mechanism in which the remote user merely specifies set-
points. Thus, to demonstrate the feasibility, I implemented a very simple
feedback mechanism whereby the temperature was maintained at a set-
point that could be changed by a remote user.

Jeannette S Chin Page 82

TESA –Towards Embedded-Internet System Applications

Perhaps the biggest achievement of this project was to design, and
get working, the overall system that is made up from many differing
entities. At the beginning of the project, it was not clear that whether such
simple embedded-Internet devices, and the minimal development support
provided, would be sufficient to allow a working Internet-appliance to be
constructed and evaluated within the given timescale. This work has
conclusively demonstrated that this new embedded-Internet technology
not only opens up novel types of applications, but that the low cost and
minimal development environment provide a quick and low-overhead way
for developers to enter this new and exciting pervasive computing market.

Although this report has focus on the positive aspects of the

project, it should be noted that there were some hidden difficulties. For
instance, to use a GSM based mobile phone to access the project system
actually requires an off-campus “open” access (eg from Vodafone GSM
server to the TESA TINI via the campus gateway). The tight security policy
on the campus network caused getting the agreement on this to be a
somewhat slow process that impeded work on this project. By way of an
interim step, WAP simulators were used, a topic that also incurred a
learning overhead.

8.2 Further work

8.2.1 3rd Generation Mobiles

The current mobile phone market is about to go through a transition
from 2.5 to 3rd generation mobile phones. The essential difference is that
3 generation mobile phones have much greater bandwidth. In order to
experiment with 3rd generation systems using 2.5 generation technology,
TESA allows 3rd generation mobile phones to be emulated by using PDAs
with Bluetooth technology connecting to the IP network via a Bluetooth
bridge. Although this is not a primary focus of this current work, the
infrastructure created would facilitate the follow on projects to conduct
such experiments.

rd

Jeannette S Chin Page 83

TESA –Towards Embedded-Internet System Applications

8.2.2 Location Based Services

A current interest of manufacturers of mobile and wearable devices
is how to provide services to end-users that are dependent on their
location. TESA also offers the potential to be a location based service as it
supports short distance wireless access via its Bluetooth enabled PDA
interfaces. This work could be extended to develop this interface further.

8.2.3 Agents

TESA current set-point control is only a simple feedback loop and
could be replaced by a more sophisticated learning mechanism that it
could learn from its environment to accumulate its “experiences”. In the
case of the plant-care application in this project, the system might learn
what temperature or water levels a particular plant requires at different
times of the year by monitoring and recording the manual changes made
by a user over a period. As the devices are connected to the Internet, they
might even be able to “pool” their learnt experiences to produces a much
better performing system. This could be particularly useful when the
system is used to care for difficult or unusual types of plant.

8.2.4 Security

Clearly, to be commercially deployable, any network product needs
to be secure. As there is no security checking for logging-in to ensure only
the legitimate user was permitted to log in to the system, if this product
was to take a commercial direction, this issue would be the highest priority
for further work.

Jeannette S Chin Page 84

TESA –Towards Embedded-Internet System Applications

8.2.5 Performance

As the test results in chapter 7 show, TESA’s performance can be a

little volatile, seemingly dependent on the factors such as the choice of the
communication interface, mediums and network traffic. Much of this can
be traced to the fact that TINIs are computationally limited processors. As
Appendix G showed there are a number of better alternative embedded
Internet processors such as SNAP [Web48] or JStik [Web47]. For
example, JStick executes java code directly (rather than interpretively), out
performing TINI by over 1000 times. However, none of these devices were
available to this project and it might be interesting to make a comparison
of the performance of these devices by way of future work.

8.3 Concluding Remarks

This project presented a big challenge to me, as my course and

background are far removed from the world of embedded computer
systems. As a result I was presented with many unfamiliar concepts such
as control of systems and interfacing to physical devices. Also the project
involved issues outside my curriculum such Bluetooth networks, WAP
programming and even the underlying application area of pervasive
computing was something I had to read conference papers on to discover
more. However, the more I read the more it became clear that major
organisations such as the EU, Philips, IBM, Hewlett-Packard, Microsoft,
MIT and Essex University are investing massive resources into research
in this area in the belief it will one day be a major market. I also discovered
that there are very interesting R&D issues involved. Thus, what started off
as a challenge and somewhat outside by main focus has become a topic
that I am immensely interested and one that I believe has a very profitable
research and commercial future. I can therefore say that this project has
been a most rewarding experience for me and one of the more enjoyable
aspects of my time at Essex University.

Jeannette S Chin Page 85

TESA –Towards Embedded-Internet System Applications

References

[Web1] TINIAnt http://www.ad1440.net/~kelly/sw/tiniant/index.html

[Web2] ANT http://Jakarta.apache.org/ant/index.html

[Web3] 1-Wire API for Java http://www.ibutton.com/software/1wire/1wire_api.html

[Web4] Java download site: http://java.sun.com/products/

[Web5] LG www.lg.co.kr

[Web6]Orange http://www.orange.com

[Web8] Laing http://www.laing-homes.co.uk

[Web9] Intel http://www.intel.com

[Web10] Orange http://www.orange.com

[Web11] SonyEricsson http://www.sonyericsson.com

[Web12] GSM MoU http://www.gsmworld.com, February 22, 2001.

[Web13] Home lab http://www.philips.com/

[Web14] Disappearing Computer http://www.disappearing-computer.net/

[Web15] Next Wave
http://www.dti.gov.uk/cii/services/newmedia/next_wave_technologies.shtml

[Web16] http://news.bbc.co.uk/1/hi/uk/1418818.stm, Friday, 20 July 2001,15:30
GMT 16:30 UK.

[Web17] BBC Online http://news.bbc.co.uk/1/hi/uk/819349.stm, Tuesday, 4 July
2000,17:00 GMT 18:00 UK

[Web18]TINI CPU http://www.dalsemi.com/datasheets/pdfs/80c390.pdf

[Web19] TINI site: http://www.ibutton.com/TINI/

[Wen20] Systronix STEP socket : http://www.systronix.com/tini/step.htm

[Web21] Viniculum’s Proto adapter : http://www.vinculum.com/1001.php

Jeannette S Chin Page 86

http://www.ad1440.net/~kelly/sw/tiniant/index.html
http://jakarta.apache.org/ant/index.html
http://www.ibutton.com/software/1wire/1wire_api.html
http://java.sun.com/products/
http://www.lg.co.kr/
http://www.orange.com/
http://www.laing-homes.co.uk/
http://www.intel.com/
http://www.orange.com/
http://www.sonyericsson.com/
http://www.gsmworld.com/
http://www.philips.com/
http://www.disappearing-computer.net/
http://www.dti.gov.uk/cii/services/newmedia/next_wave_technologies.shtml
http://news.bbc.co.uk/1/hi/uk/1418818.stm
http://news.bbc.co.uk/1/hi/uk/819349.stm
http://www.dalsemi.com/datasheets/pdfs/80c390.pdf
http://www.ibutton.com/TINI/
http://www.systronix.com/tini/step.htm
http://www.vinculum.com/1001.php

TESA –Towards Embedded-Internet System Applications

[Web22] Viniculum’s NEXUS socket : http://www.vinculum.com/1004.php

[Web23] TiniHttpServer Home Page: http://www.smartsc.com/tini/TiniHttpServer/

[Web24] TINI limitation documents:
http://www.ibutton.com/TINI/hardware/limit.html

[Web25] IEEE Spectrum, “Since you asked..” , Applewhite, Ashton, (01/03).
http://www.spectrum.ieee.org/WEBONLY/resource/jan03/surv.html

[Web26] Communicating Thermostat, http://www.intwoplaces.com/

[Web27] Touchtone Controller (X-10, Telephone Responder),
http://www.intwoplaces.com/

[Web28] ITWorld.com, "Tablet PCs Will Provide New User Interfaces", 08/13/02,
http://www.itworld.com/nl/it_insights/08132002/

 [Web29] Charny, B., “Wireless Research Senses the Future”, ZDNet, 12/06/02.
http://zdnet.com.com/2100-1105-976377.html

[Web30] Rheingold,H., “Clothes Make the Network”, Technology Review Online,
12/04/02. http://www.technologyreview.com/articles/wo_Rheingold120402.asp

[Web31] SonyEricsson http://www.sonyericsson.com

[Web32] Nokia http://www.nokia.com/

[Web33] Disappearing Computer http://www.disappearing-computer.net/

[Web34] Next Wave
http://www.dti.gov.uk/cii/services/newmedia/next_wave_technologies.shtml

[Web35] EPSRC Equator http://latitude.lancs.ac.uk/devices/

[Web36] Home lab http://www.philips.com/

[Web37] IIEG http://iieg.essex.ac.uk

[Web38] Pizza www.nortelnetwoncs.com

[Web39] Ericsson http://www.it.kth.se/~hegu/proposal/

[Web40] Internet Alarm Clock
http://216.239.51.100/search?q=cache:mogQbCd5WuUC:www.argreenhouse.co
m/papers/stanm/service-portability.pdf+internet+alarm+clock&hl=en&ie=UTF-8

Jeannette S Chin Page 87

http://www.vinculum.com/1004.php
http://www.smartsc.com/tini/TiniHttpServer/
http://www.ibutton.com/TINI/hardware/limit.html
http://www.spectrum.ieee.org/WEBONLY/resource/jan03/surv.html
http://www.intwoplaces.com/
http://www.intwoplaces.com/
http://www.itworld.com/nl/it_insights/08132002/
http://zdnet.com.com/2100-1105-976377.html
http://www.technologyreview.com/articles/wo_Rheingold120402.asp
http://www.sonyericsson.com/
http://www.nokia.com/
http://www.disappearing-computer.net/
http://www.dti.gov.uk/cii/services/newmedia/next_wave_technologies.shtml
http://latitude.lancs.ac.uk/devices/
http://www.philips.com/
http://iieg.essex.ac.uk/
http://www.nortelnetwoncs.com/
http://www.it.kth.se/~hegu/proposal/
http://216.239.51.100/search?q=cache:mogQbCd5WuUC:www.argreenhouse.com/papers/stanm/service-portability.pdf+internet+alarm+clock&hl=en&ie=UTF-8
http://216.239.51.100/search?q=cache:mogQbCd5WuUC:www.argreenhouse.com/papers/stanm/service-portability.pdf+internet+alarm+clock&hl=en&ie=UTF-8

TESA –Towards Embedded-Internet System Applications

[Web41] All in one controller http://www.siliconvalley.com/mld/siliconvalley/

[Web42] Sensor Web http://sensorwebs.jpl.nasa.gov/

[Web43] Smart Building http://www.calit2.net/building/smart.html

[Web44] TINI SDK http://www.ibutton.com/TINI/software/index.html

[Web45] Phone.com http://www.openwave.com/

[Web46] M3Gate http://www.numeric.ru/m3platform/m3gate/technology/

[Web47] Jstiks http://jstik.systronix.com/specs.htm

[Web48] SNAP http://snap.imsys.se/

[Web49] Mark Weiser http://www.ubiq.com/weiser/

[Web50] Internet Users latest figures
http://cyberatlas.internet.com/markets/advertising/article/0,1323,5941_1448151,0
0.html

[Web51] Echelon Ltd www.echelon.com (Lonworks originator; they have
numerous informative papers and seminar presentations archived on their site),
plus a live demo of using the web to control a room at their HQ in California see
http://demo.echelon.com/) The following link contains all the documents and
manuals provided by Echelon:

[Web52] Siemens Smart Home - A concept home in Milan built using Siemans
and other Eibus/lonworks technologies . http://www.siemens.ie

[Web53] Cisco http://www.cisco.com/go/home

[Web54] EHSA (European Home Systems Association - The need for a
European standard for the Home Automation field has led to substantial
standardisation work. A major result is the European Home Systems (EHS)
specification, supported by the EHSA association. EHS is a crucial step in the
process towards a unique European standard.

[Web55] BACnet www.amhac.com/bacnet.html

[Web56] Facts and Figures http://www.internetindicators.com/facts.html

[Web57] Smart-its http://smart-its.teco.edu/

[Web58] Internet Appliance- ipot http://www.useit.com/alertbox/20010318.html

Jeannette S Chin Page 88

http://www.siliconvalley.com/mld/siliconvalley/
http://sensorwebs.jpl.nasa.gov/
http://www.calit2.net/building/smart.html
http://www.ibutton.com/TINI/software/index.html
http://www.openwave.com/
http://www.numeric.ru/m3platform/m3gate/technology/
http://jstik.systronix.com/specs.htm
http://snap.imsys.se/
http://www.ubiq.com/weiser/
http://cyberatlas.internet.com/markets/advertising/article/0,1323,5941_1448151,00.html
http://cyberatlas.internet.com/markets/advertising/article/0,1323,5941_1448151,00.html
http://www.echelon.com/
http://demo.echelon.com/
http://www.siemens.ie/
http://www.cisco.com/go/home
http:// www.amhac.com/bacnet.html
http://www.internetindicators.com/facts.html
http://smart-its.teco.edu/
http://www.useit.com/alertbox/20010318.html

TESA –Towards Embedded-Internet System Applications

[Banett01] Chris Banett, Practical WAP Developing Application for the wireless
web, pp 32, 73, ,Cambrige University Press 2001

[Eisenreich03] Eisenreich, D., DeMuth, B., Designing Embedded Internet
Devices, pp31, Newnes 2003.

[Garber01]Garber, L., Computer, “Browsing the Mobile Internet”, pp18,
December 2001.

[Harte02] Harte,L., Levine,R., Kikta, R., 3G Wireless Demystified, pp1, 2002.

[Loomis01] Loomis,D., The TINI Specification and Developer’s Guide, pp1, 25,
26, 2001.

[Metcalfe01] Robert Metcalfe, ACM1 conference, 2001
http://www.computerworld.com/softwaretopics/software/appdev/story/0,10801,58
971,00.html

[Miller02] Miller, B.A., Bisdikian,C., Bluetooth Revealed, pp3, Prentice Hall PTR,
2002.

[SmartVo1] Smarthouse, vol.1, issue9, pp12. http://www.smart-house.net

[SmartVo2]Smarthouse, vol.2, issue6, pp32-34. http://www.smart-house.net

 [Walker02] Walker, Leslie, “Wi-Fi, Heading for Air Supremacy”, Washington
Post, P.E1, 11/07/02.

[Weiser88] Mark Weiser in 1988 at the Computer Science Lab at Xerox PARC.
http://www.ubiq.com/hypertext/weiser/UbiHome.html

Jeannette S Chin Page 89

http://www.computerworld.com/softwaretopics/software/appdev/story/0,10801,58971,00.html
http://www.computerworld.com/softwaretopics/software/appdev/story/0,10801,58971,00.html
http://www.smart-house.net/
http://www.smart-house.net/
http://www.ubiq.com/hypertext/weiser/weiser.html
http://www.ubiq.com/hypertext/weiser/UbiHome.html

TESA –Towards Embedded-Internet System Applications

Papers:

[ISTAG10] ISTAG (EU) “Scenarios for Ambient Intelligent in 2010 “ see
www.cordis.lu/ist/istag.htm

[Holmes02] A. Holmes, H. Duman, A. Pounds-Cornish (2002), The iDorm:
Gateway to Heterogeneous Networking Environments, In Proceedings of the
International ITEA Workshop on Virtual Home Environments, Paderborn,
Germany, February 2002.

[Cornish02] Pounds-Cornish A, Holmes A, "The iDorm - a Practical Deployment
of Grid Technology" 2nd IEEE International Symposium on Cluster Computing
and the Grid (CCGrid2002), Berlin, Germany. May 21-24 2002

[Vial01] Vial,P, Doulai P, “Applications of the Web in Electrical Engineering
Teaching and Research”, Proceedings of the Australasian Universities Power
Engineering Conference(AUPEC), pp 385-389 Perth, Australia, 23-26 September
2001.

[Cameron02] Cameron, E, “Examing the LBS industry’s revenue hot spots:
Security-privacy-roaming-interoperability” IEE First European Workshop on
Location Based Services 2002.

[Weiser91] M. Weiser, The Computer of the 21st Century, In Scientific American,
Vol.265,No. 3, pages 66-75, 1991.

Jeannette S Chin Page 90

http://www.cordis.lu/ist/istag.htm

TESA –Towards Embedded-Internet System Applications

Appendix

A – TESA User Setup Notes
B – TINI Setup
C – TiniHttpServer Setup
D – Performance Testing Data
E – Output data results
F – User Evaluation Sample Question
G – Embedded-Internet devices comparison
H – Software Listings

Jeannette S Chin Page 91

TESA –Towards Embedded-Internet System Applications

Appendix A

TESA User Setup Notes

These setup notes assume the TINI board has already been set up on a network.
If the TINI board has to be set up from the scratch, then refer to Appendix B for
the system control device – Tini set up, and Appendix C for TiniHttpServer set
up. The Tini software can be downloaded from
http://www.ibutton.com/TINI/software/index.html, and the TiniHttpServer from
http://www.smartsc.com/tini/TiniHttpServer/docs/HowToGet.html.

TESA setup

1. Copy the CD software into your TiniHttpServer home /docs directory.
2. Bring up a command window and navigate to your TiniHttpServer /doc

directory.
3. In your command window, type “ant”.
4. Bring up the TiniHttpServer using a telnet session with the TESA. Refer

Appendix C for how to bring up the TiniHttpServer.
5. Once the TiniHttpServer is up and running, type :

http://replaceherewithyourownipaddress/servlet/services on the address
bar of your Web browser.

Jeannette S Chin Page 92

http://www.ibutton.com/TINI/software/index.html
http://www.smartsc.com/tini/TiniHttpServer/docs/HowToGet.html
http://replaceherewithyourownipaddress/servlet/services

TESA –Towards Embedded-Internet System Applications

Appendix B

Tini Setup

This page is extracted from site: http://www.junun.org/TINI/GettingStarted.jsp

Installing the Java 2 SDK

1. Get the latest release of the Java 2 Software Development Kit for your
operating system from Sun's web site http://java.sun.com/products/j2se/.
Install the Java 2 software. The base directory of this installation will be
further referred to as JAVA_HOME. This is the directory where you should
find these files (when a typical installation is done):

2. UNINST ISU 227,228 09-05-99 10:57a Uninst.isu
3. BIN <DIR> 09-05-99 10:56a bin
4. README 5,910 06-29-99 6:20a README
5. LICENSE 8,617 06-29-99 6:20a LICENSE
6. COPYRI~1 946 06-29-99 6:20a COPYRIGHT
7. README~1 HTM 21,014 06-29-99 6:20a readme.html
8. JRE <DIR> 09-05-99 10:56a jre
9. LIB <DIR> 09-05-99 10:57a lib
10. INCLUDE <DIR> 09-05-99 10:57a include
11. INCLUD~1 <DIR> 09-05-99 10:57a include-old
12. DEMO <DIR> 09-05-99 10:57a demo
13. SRC JAR 17,288,462 06-29-99 6:20a src.jar

Installing the Java Communications API

1. Download the Java Communications API implementation from Sun's web
site at http://www.javasoft.com/products/javacomm/. Unzip the package.
The directory where you unzip the files will be subsequently referred as
COMMAPI. This is the directory where you should find these files:

2. JAVADOCS <DIR> 09-05-99 11:44a javadocs
3. WIN32COM DLL 27,648 11-15-98 4:00p win32com.dll
4. COMM JAR 28,043 11-15-98 4:00p comm.jar
5. README~1 HTM 3,913 11-15-98 3:59p Readme.html
6. RECEIV~1 HTM 1,821 11-15-98 3:59p ReceiveBehavior.html
7. JDK12~1 HTM 2,182 11-15-98 3:59p jdk1.2.html
8. PLATFO~1 HTM 3,715 11-15-98 3:59p PlatformSpecific.html
9. COMM20~1 TXT 8,141 11-15-98 3:59p COMM2.0_license.txt
10. APICHA~1 HTM 3,335 11-15-98 3:59p apichanges.html
11. COMMAP~1 TXT 5,374 11-15-98 3:59p CommAPI_FAQ.txt
12. JAVAXC~1 PRO 467 11-15-98 3:59p javax.comm.properties
13. SAMPLES <DIR> 09-05-99 11:44a samples

Jeannette S Chin Page 93

http://www.junun.org/TINI/GettingStarted.jsp
http://java.sun.com/j2se/
http://www.javasoft.com/products/javacomm/

TESA –Towards Embedded-Internet System Applications

14. Copy win32com.dll from COMMAPI to your %JRE_HOME%\jre\bin
directory

15. Copy comm.jar from COMMAPI to your %JRE_HOME%\jre\lib\ext
directory

16. Copy javax.comm.properties from COMMAPI to your
%JRE_HOME%\jre\lib directory

17. Jump to your TINI_HOME and create a .BAT file with this line in it. (Note
that this is case sensitive, especially JavaKit - a common mistake.)

18. %JAVA_HOME%\bin\java -classpath %TINI_HOME%\bin\tini.jar JavaKit

This runs JavaKit, the program you will use to interact with your TINI
Board. You will use JavaKit often, so a batch file saves time.

19. Double-click the batch file you have just created. If everything was
installed properly, you should be able to scroll through the combo box at
the bottom and see the COM ports you have on your computer.

Connecting up the TINI Board

1. Attach a "known to work" RS-232 cable to the TINI Board. It is very
important to check your cable since the majority of communication
problems reported on the mailing list are related to that.

2. Attach power to the TINI Board.

Installing and running the TINI software

1. Get the TINI Board software package from Dallas Semiconductor's web
site ftp://ftp.dalsemi.com/pub/tini/tini1_01.tgz. If you're using Netscape on
Windows, you need to make sure you save the file using this exact name:
"tini1_01.tar.gz". Otherwise, WinZip will not be able to properly extract the
software. Uncompress this. The TINI directory will be further referred as
TINI_HOME. This is the directory where you should find these files:

2. 06/02/00 03:34p <DIR> .
3. 06/02/00 03:34p <DIR> ..
4. 06/02/00 03:33p <DIR> bin
5. 06/02/00 03:34p <DIR> docs
6. 06/02/00 03:34p <DIR> examples
7. 06/02/00 03:33p <DIR> native
8. 06/02/00 11:45a 19,072 README.txt
9. 06/02/00 03:33p <DIR> src

Jeannette S Chin Page 94

ftp://ftp.dalsemi.com/pub/tini/tini1_01.tgz

TESA –Towards Embedded-Internet System Applications

10. 8 File(s) 19,072 bytes
11. The TINI Board software documentation is included in the above

distribution.
12. Jump to your TINI_HOME and create a .BAT file with this line in it. Note

that this is case sensitive, especially JavaKit (common mistake). This runs
JavaKit, the program you will use to interact with the Board. You will use
JavaKit often so a batch file is time saving:

13. java -classpath %TINI_HOME%\bin\tini.jar JavaKit
14. Double-click the batch file you have just created. If everything was

installed properly, you should be able to scroll through the combo box at
the bottom and see the com ports you have on your computer.

Loading the Firmware

There are three things you need to download to your TINI Board to get it up and
running. The first is the TINI firmware, found in %TINI_HOME%\bin\tini.hex. Then
comes the Java class libraries, found in %TINI_HOME%\bin\tiniapi.hex. Finally,
you need the interactive command shell "slush" found in
%TINI_HOME%\examples\slush\Slush.hex.

1. In JavaKit, select the COM port you will be using for the serial I/O. This is
whatever COM port you have attached your adapter to on your computer.

2. Make sure the speed is selected as 115200.
3. Press the OPEN PORT button.
4. When the RESET button becomes enabled, hit it. This sends a reset

signal to the TINI Board. The reset circuitry of the TINI Board is connected
to the DTR signal of the RS232 cable. By hitting reset, JavaKit generates
a short pulse on the DTR line so that the board is going into the power on
reset internal procedure. This procedure starts the "loader" that allows us
to communicate with the board and download the firmware.

5. In the text area above a prompt should appear along with the words:
6. TINI loader 05-15-00 17:45
7. Copyright (C) 2000 Dallas Semiconductor. All rights reserved.
8.
9. >
10. Go up to the FILE menu above and select LOAD. Load the following file:

%TINI_HOME%\bin\tini.tbin. There is no need to change banks first. The
file has the bank information embedded in it. It should report the bank(s) it
was loaded in. This will take several seconds.

11. Next, clear the heap by doing the following:
12. b18 //changes to bank 18
13. f0 //fills bank 18 with 0's, effectively erasing it
14. Select FILE/LOAD one more time and load the following file:

%TINI_HOME%\bin\slush.tbin

Jeannette S Chin Page 95

TESA –Towards Embedded-Internet System Applications

15. If everything is loaded, type 'e' to execute. You should see output similiar
to:

16. ----> TINI Boot <----
17. TINI OS 1.01
18. API Version 8006
19. Copyright (C) 1999, 2000 Dallas Semiconductor Corporation
20. 01000000
21. Doing First Birthday
22. Memory Size: 07E600
23. Addresses: 181A00,200000
24. Skip List MM
25. L01
26. Running POR Code
27. Memory POR Routines
28. 000020
29. Transient block freed: 0000, size: 000000
30. Persistant block freed: 0000, size: 000000
31. KM_Init Passed
32. Ethernet MAC Address Part Found
33.
34. TTS Revision: 154 , Date: 7/19/00 3:13p
35. Thread_Init Passed
36. External Serial Port Init
37. External serial ports not enabled
38. Memory Available: 075F00
39. Creating Task:
40. 0100
41. 01
42. Loading application at 0x070100
43. Creating Task:
44. 0200
45. 02
46. Application load complete
47.
48.
49. [-= slush Version 1.01 =-]
50. [System coming up.]
51. [Beginning initialization...]
52. [Not generating log file.] [Info]
53. [Initializing shell commands...] [Done]
54.
55. [Checking system files...] [Done]
56.
57. [Initializing and parsing .startup...]
58. [Initializing network...]
59. [Network configurations not set.] [Skip]

Jeannette S Chin Page 96

TESA –Towards Embedded-Internet System Applications

60.
61. [Network configuration] [Done]
62. [System init routines] [Done]
63.
64. [slush initialization complete.]
65.
66.
67. Hit any key to login.
68.
69. Welcome to slush. (Version 1.01)
70.
71.
72. TINI login: root
73. TINI password:
74.
75. TINI />

NOTE: There are two default accounts on this revision of slush, 'guest'
with the password 'guest' and 'root' with the password 'tini'

76. Type "help" to get help. Type "help " to have help on a specific command.
Try "help ipconfig".

77. You can now set your IP address using the ipconfig command. You can
use the DHCP setting to get your IP dynamically or set it by yourself. For
instance:

78. ipconfig -a your.IP.fits.here \
79. -m network.mask.fits.here \
80. -g gateway.fits.in.here

Note that the -a flag must be accompanied by the -m flag.

81. If you set your network information correctly using ipconfig, you should
now be able to telnet and ftp to the TINI Board. You can also try to ping
your TINI Board from a subnet PC or a subnet PC from the TINI Board to
confirm your configuration.

Jeannette S Chin Page 97

TESA –Towards Embedded-Internet System Applications

Appendix C

TiniHttpServer Setup

This page is extracted from site:
http://www.smartsc.com/tini/TiniHttpServer/docs/index.html

How to Use TiniHttpServer on your TINI

These instructions assume you have obtained all of the required hardware and
software. If you run into problems, please make sure you have the proper
versions of the various software pieces before you ask for help.

1. Make sure that you have all of the required items listed in the Using
TiniHttpServer as Distributed section of the System Requirements page.

2. Extract the TiniHttpServer distribution file, TiniHttpServer10.zip. Be sure to
maintain the directory structure.

3. Open a Command Prompt (shell) window and change to the
TiniHttpServer1.0 directory that should have been created in Step 1.

4. Run the batch file deploy.bat (Windows derivatives) or the shell script
deploy.sh (UNIX derivatives), passing three or four parameters:

1. The hostname or IP address of your TINI (e.g. kumquat)
2. A user name (e.g. root)
3. The password for that user (e.g. tini)
4. (Optional) The amount of RAM (in KB) on your TINI.

Specifying the fourth parameter as 512 or 1024 will deploy
TiniHttpServer512.tini or TiniHttpServer1024.tini, respectively. Specifying
any other value (or no value at all) will deploy TiniHttpServer.tini, which
starts out the same as TiniHttpServer512.tini, but may be different if you
have rebuilt TiniHttpServer. Regardless of which copy is deployed, the file
name on TINI will always be TiniHttpServer.tini.

TiniHttpServer512.tini is a smaller file containing no 1-Wire containers
except those needed by the sample servlets.

TiniHttpServer1024.tini contains all of the 1-Wire containers, making
OneWireServlet much more interesting, but is much larger and might not
run on a 512 KB TINI.

Jeannette S Chin Page 98

http://www.smartsc.com/tini/TiniHttpServer/docs/index.html
http://www.smartsc.com/tini/TiniHttpServer/docs/SystemRequirements.html
http://www.smartsc.com/tini/TiniHttpServer/docs/SystemRequirements.html

TESA –Towards Embedded-Internet System Applications

The 1024 option is recommended only if your TINI has 1 MB of RAM.

For example, if your TINI with 1 MB of RAM is named kumquat and you
have not changed the default users or passwords, you would type:

Windows: deploy kumquat root tini 1024

UNIX: sh deploy.sh kumquat root tini 1024

After this is finishes, your TINI should have the following files:

o /bin/TiniHttpServer
o /bin/TiniHttpServer.tini
o /docs/favicon.ico
o /docs/index.html
o /docs/robots.txt
o /etc/mime.props
o /etc/server.props
o /etc/servlets.props
o /logs

5. Using telnet, login to your TINI. You can use JavaKit to login to your TINI,
but then you will not see the output when TiniHttpServer is run in the
background.

6. Type: source /bin/TiniHttpServer

After a short while, you should see the following:

SSC Web Server/1.0
Copyright (C) 1999-2002 Smart Software Consulting

OneWireServlet: init

If you instead see a message containing "OutOfMemoryError" or
"Insufficient Heap", you should re-deploy without using the 1024 option. If
you see one of these messages after deploying with the 512 option, your
heap is probably too fragmented for TiniHttpServer to run. To fix this try
these steps (listed easiest to hardest) one-by-one until the problem goes
away:

Jeannette S Chin Page 99

TESA –Towards Embedded-Internet System Applications

o Make sure TiniHttpServer is not already running when you deploy a
new copy.

o Reboot TINI. This will coalesce all the free memory into one big
area. If programs start from .startup, disable them before
rebooting.

o Clear your TINI's heap and start over with a blank slate.
7. Point your web browser at your TINI. For example, if your TINI is named

kumquat, you should go to the following URL:

http://kumquat/

8. If you want to serve other documents from your TINI, FTP them to the
/docs directory (or below it). The file /docs/foo/bar.html can be accessed
from a web browser via the following URL:

http://kumquat/foo/bar.html

Jeannette S Chin Page 100

TESA –Towards Embedded-Internet System Applications

Appendix D

Performance Testing Data

1. Request for putting on the top lights (bright)

2. Request for putting on the bottom lights (bright)

3. Request for putting on the heater (100%)

4. Request for putting on the fan (100%).

5. Request for input mode to input 18 for the requested room temperature.

6. Request for select mode to select 28 for the requested room temperature.

7. Stop all the actions.

Jeannette S Chin Page 101

TESA –Towards Embedded-Internet System Applications

Appendix E

Data Output Results

Mo thread== Thread-17 pdormtemp now is =25.5

Mo thread== Thread-17 pdormtemp target is =28.0

Mo thread== Thread-17 pdormtemp now is =25.5

Mo thread== Thread-17 pdormtemp target is =28.0

Mo thread== Thread-17 pdormtemp now is =25.5

Mo thread== Thread-17 pdormtemp target is =28.0

Mo thread== Thread-17 pdormtemp now is =25.5

Mo thread== Thread-17 pdormtemp target is =28.0

Mo thread== Thread-17 pdormtemp now is =26.0

Mo thread== Thread-17 pdormtemp target is =28.0

Mo thread== Thread-17 pdormtemp now is =26.0

Mo thread== Thread-17 pdormtemp target is =28.0

Mo thread== Thread-17 pdormtemp now is =26.0

Mo thread== Thread-17 pdormtemp target is =28.0

Mo thread== Thread-17 pdormtemp now is =26.0

the header is image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/x

-gsarcade-launch, application/vnd.ms-powerpoint, application/vnd.ms-excel, appli

cation/msword, application/x-shockwave-flash, */*

about to create a SetpDormStates thread..

SetpDormStates thread created here

Jeannette S Chin Page 102

TESA –Towards Embedded-Internet System Applications

SetpDormStates thread aboout to run..

SetpDormStates thread run

running setStates here

The TESA bottom lights states before the request is = 98

main thread is aboout to sleep...

Mo thread== Thread-17 pdormtemp target is =28.0

Mo thread== Thread-17 pdormtemp now is =26.0

main thread is waking up ...

in the current state routine

No Moisture Sensor Found

Mo thread== Thread-17 pdormtemp target is =28.0

Mo thread== Thread-17 pdormtemp now is =26.0

Mo thread== Thread-17 pdormtemp target is =28.0

Mo thread== Thread-17 pdormtemp now is =26.0

Mo thread== Thread-17 pdormtemp target is =28.0

Mo thread== Thread-17 pdormtemp now is =26.0

the header is image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/x

-gsarcade-launch, application/vnd.ms-powerpoint, application/vnd.ms-excel, appli

cation/msword, application/x-shockwave-flash, */*

in the current state routine

No Moisture Sensor Found

Mo thread== Thread-17 pdormtemp target is =28.0

Mo thread== Thread-17 pdormtemp now is =26.5

Jeannette S Chin Page 103

TESA –Towards Embedded-Internet System Applications

Mo thread== Thread-17 pdormtemp target is =28.0

Mo thread== Thread-17 pdormtemp now is =26.5

Mo thread== Thread-17 pdormtemp target is =28.0

Mo thread== Thread-17 pdormtemp now is =26.5

get the monitor class object to stop the old thread running

is there any running thread? = true

stopRunning()---sleep....

Mo thread== Thread-17 now out of while loop, switch off heater and fan.

Mo thread==set keepRunning = true;

Mo threadd==sleep....

interrupt the Monitor thread== stopRunning()

stopRunning()---sleep wait to test if the old thread still alive....

Monitor current thread == Thread-17 now dies..

old thread should stop running by now

main thread is aboout to sleep...

main thread is waking up ...

the double representation of the list value 26.0

TESA new request temp is = 26.0

get the Monitor thread running

Monitor current thread == Thread-24 is run

Monitor thread is Thread-24

Monitor current thread Thread-24 in the while loop running the
monitorP_DTemper

ature();

Jeannette S Chin Page 104

TESA –Towards Embedded-Internet System Applications

Mo thread Thread-24 enter monitorP_DTemperature()

Mo threadd== Thread-24 need to cool down the pDorm .

Mo threadd== Thread-24 set fan to full speed = 100.

Mo threadd== Thread-24 sleep....

Mo threadd== Thread-24 wakes up.

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =26.5

Mo threadd== Thread-24 sleep....

Mo threadd== Thread-24 wakes up.

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =26.5

Mo threadd== Thread-24 sleep....

Mo threadd== Thread-24 wakes up.

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =26.5

Mo threadd== Thread-24 sleep....

Mo threadd== Thread-24 wakes up.

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =26.5

Mo threadd== Thread-24 sleep....

Mo threadd== Thread-24 wakes up.

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =26.5

Jeannette S Chin Page 105

TESA –Towards Embedded-Internet System Applications

Mo threadd== Thread-24 sleep....

Mo threadd== Thread-24 wakes up.

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =26.5

Mo threadd== Thread-24 sleep....

Mo threadd== Thread-24 wakes up.

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =26.5

Mo threadd== Thread-24 sleep....

Mo threadd== Thread-24 wakes up.

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =26.5

Mo threadd== Thread-24 sleep....

Mo threadd== Thread-24 wakes up.

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =26.5

Mo threadd== Thread-24 sleep....

Mo threadd== Thread-24 wakes up.

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =26.5

Mo threadd== Thread-24 sleep....

Mo threadd== Thread-24 wakes up.

Mo thread== Thread-24 pdormtemp target is =26.0

Jeannette S Chin Page 106

TESA –Towards Embedded-Internet System Applications

Mo thread== Thread-24 pdormtemp now is =26.5

Mo threadd== Thread-24 sleep....

Mo threadd== Thread-24 wakes up.

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =26.5

Mo threadd== Thread-24 sleep....

Mo threadd== Thread-24 wakes up.

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =26.5

Mo threadd== Thread-24 sleep....

Mo threadd== Thread-24 wakes up.

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =26.5

Mo threadd== Thread-24 sleep....

Mo threadd== Thread-24 wakes up.

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =26.5

Mo threadd== Thread-24 sleep....

Mo threadd== Thread-24 wakes up.

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =26.0

Mo thread== Thread-24 now out of the while loop, switch off the fan.

Mo threadd==sleep....

Jeannette S Chin Page 107

TESA –Towards Embedded-Internet System Applications

Mo threadd==wakes up.

Monitor current thread Thread-24 in the while loop running the
monitorP_DTemper

ature();

Mo thread Thread-24 enter monitorP_DTemperature()

Mo thread== Thread-24 pDorm temp is just okay .

Mo threadd== Thread-24 sleep..ok..

Mo threadd== Thread-24 sleep..ok..

Mo threadd== Thread-24 sleep..ok..

Mo threadd== Thread-24 sleep..ok..

Mo threadd== Thread-24 sleep..ok..

Monitor current thread Thread-24 in the while loop running the
monitorP_DTemper

ature();

Mo thread Thread-24 enter monitorP_DTemperature()

Mo thread Thread-24 ==need to warm up the pDorm.

Mo thread Thread-24 ==put on the heater ==100 .

Mo threadd== Thread-24 sleep....

Mo threadd== Thread-24 wakes up.

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =25.5

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =25.5

Mo thread== Thread-24 pdormtemp target is =26.0

Jeannette S Chin Page 108

TESA –Towards Embedded-Internet System Applications

Mo thread== Thread-24 pdormtemp now is =25.5

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =25.5

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =25.0

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =25.0

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =25.0

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =25.0

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =25.0

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =25.0

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =25.0

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =25.0

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =25.0

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =25.0

Jeannette S Chin Page 109

TESA –Towards Embedded-Internet System Applications

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =25.0

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =25.0

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =25.0

in the current state routine

No Moisture Sensor Found

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =25.0

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =25.0

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =25.5

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =25.5

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =25.5

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =25.5

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =25.5

Mo thread== Thread-24 pdormtemp target is =26.0

Jeannette S Chin Page 110

TESA –Towards Embedded-Internet System Applications

Mo thread== Thread-24 pdormtemp now is =25.5

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =25.5

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =25.5

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =25.5

the header is image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/x

-gsarcade-launch, application/vnd.ms-powerpoint, application/vnd.ms-excel, appli

cation/msword, application/x-shockwave-flash, */*

about to create a SetpDormStates thread..

SetpDormStates thread created here

SetpDormStates thread aboout to run..

SetpDormStates thread run

running setStates here

The TESA bottom lights states before the request is = 0

Mo thread== Thread-24 pdormtemp target is =26.0

main thread is aboout to sleep...

Mo thread== Thread-24 pdormtemp now is =25.5

main thread is waking up ...

print top/bottom ack ...

in the current state routine

No Moisture Sensor Found

Jeannette S Chin Page 111

TESA –Towards Embedded-Internet System Applications

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =25.5

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =25.5

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =25.5

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =25.5

Mo thread== Thread-24 pdormtemp target is =26.0

Mo thread== Thread-24 pdormtemp now is =26.0

Mo thread== Thread-24 set keepRunning = false

Mo thread== Thread-24 now out of while loop, switch off heater and fan.

Mo thread==set keepRunning = true;

Mo threadd==sleep....

Mo threadd==wakes up. and leave

Monitor current thread Thread-24 in the while loop running the
monitorP_DTemper

ature();

Mo thread Thread-24 enter monitorP_DTemperature()

Mo thread== Thread-24 pDorm temp is just okay .

Mo threadd== Thread-24 sleep..ok..

the header is image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/x

-gsarcade-launch, application/vnd.ms-powerpoint, application/vnd.ms-excel, appli

cation/msword, application/x-shockwave-flash, */*

Jeannette S Chin Page 112

TESA –Towards Embedded-Internet System Applications

about to create a SetpDormStates thread..

SetpDormStates thread created here

SetpDormStates thread aboout to run..

SetpDormStates thread run

running setStates here

The TESA bottom lights states before the request is = 98

main thread is aboout to sleep...

Mo threadd== Thread-24 sleep..ok..

main thread is waking up ...

in the current state routine

No Moisture Sensor Found

Mo threadd== Thread-24 sleep..ok..

Mo threadd== Thread-24 sleep..ok..

Mo threadd== Thread-24 sleep..ok..

Mo threadd== Thread-24 sleep..ok..

Mo threadd== Thread-24 sleep..ok..

Mo threadd== Thread-24 sleep..ok..

Mo threadd== Thread-24 sleep..ok..

the header is image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/x

-gsarcade-launch, application/vnd.ms-powerpoint, application/vnd.ms-excel, appli

cation/msword, application/x-shockwave-flash, */*

get the monitor class object to stop the old thread running

is there any running thread? = true

Jeannette S Chin Page 113

TESA –Towards Embedded-Internet System Applications

stopRunning()---sleep....

interrupt the Monitor thread== stopRunning()

stopRunning()---sleep wait to test if the old thread still alive....

Could not complete temperature conversion

Monitor current thread == Thread-24 now dies..

old thread should stop running by now

main thread is aboout to sleep...

main thread is waking up ...

about to create a SetpDormStates thread..

SetpDormStates thread created here

SetpDormStates thread aboout to run..

SetpDormStates thread run

running setStates here

shut down all the devices.

main thread is aboout to sleep...

main thread is waking up ...

in the current state routine

No Moisture Sensor Found

current state: moisture value is = 0

current state: string rep moisture value is = V.Dry

Jeannette S Chin Page 114

TESA –Towards Embedded-Internet System Applications

Appendix F

User Evaluation Sample Question

TESA User Evaluation

Name:……………………../anonymous Date: ………………

1-Strong Agreed 2-Agreed 3-Neither Agreed or Disagreed 4-Disagreed 5-Strongly
Disagreed

1. The system did what you would like it to do. 1 2 3 4 5

2. The system interface looks good. 1 2 3 4 5

3. The system display information is adequate. 1 2 3 4 5

4. The system is very friendly to use. 1 2 3 4 5

5. The system response to your request was good.
1 2 3 4 5

6. Which aspect of the system do you think it done well?…………………………………..

7. Which aspect of the system do you think it should be improved?………………………….

8. If the cost was not an issue, would you buy this system for yourself? Yes/No

Which interface were you using? Web / Pda / Wap

Comment and suggestions:……………………………………………………………………………….
…….

Thank you very much for your time and all feed back gracefully received.*

Jeannette S Chin Page 115

TESA –Towards Embedded-Internet System Applications

Appendix G

Embedded-Internet devices comparison

This page was extracted from: http://jstik.systronix.com/compare.htm

JStik, JStamp and SaJe
JStik has a 32-bit wide data path to memory so it can fetch opcodes and data in one cycle. This makes
JStik 4-5X faster than JStamp at the same clock rate.

JStik, TINI390, TINI400 TStik, JStamp, SaJe, Javelin Stamp compared (email us with any corrections or additions) Note
color of changes

 TINI390 1MB

TINI400
TStik.72.nb

(future
product - Q1

2003)

TINI400
TStik.72.buf

(future
product)

Javelin Stamp JStik JStamp/JStamp+ SaJe

JVM
edition,
type, size

custom 1.1.8
version

firmware, 448
KBytes

custom 1.1.8
version

firmware, 448
KBytes

custom 1.1.8
version

firmware, 448
KBytes

subset of
JavaCard?

J2ME/CLDC
native, 0 KBytes

(in silicon)

J2ME/CLDC
native, 0 KBytes

(in silicon)

J2ME/CLDC
native, 0 KBytes

(in silicon)

Java Tools Standard JDK Standard JDK Standard JDK custom Parallax
JIDE Standard JDK Standard JDK Standard JDK

use
standard
.class
files?

yes yes yes no yes yes yes

RealTime
Java
Support?

no no no no yes yes yes

Native
methods?

yes, 8051 assy
language

yes, 8051
assy

language

yes, 8051
assy

language
no yes, in Java note

6
yes, in Java note

6
yes, in Java note

6

JINI
support yes yes yes no yes yes yes

thread
switch 2 msec 2 msec 2 msec only one thread 1 usec <8 usec? <1 usec

execution
(byte
codes per
sec)

?? ?? faster than
TINI390

?? faster than
TINI390 8000? 15,000,000 3,000,000 15,000,000

of
threads 16 max 16 max 16 max 1

unlimited
(to max heap

size)

unlimited
(to max heap

size)

unlimited
(to max heap size)

SRAM 512 KB or 1
MB note4

512 KB or 1
MB

512 KB or 1
MB 32 KBytes 1-2 MB 512K 1 MB

Jeannette S Chin Page 116

http://jstik.systronix.com/compare.htm
mailto:jstik_compare@systronix.com

TESA –Towards Embedded-Internet System Applications

Jeannette S Chin Page 117

Flash 512K note1,
note4 2 MBytes 2 MBytes 32 KBytes 4-8 MB 512K (JStamp)

2 MB (JStamp+) 4 MB

UARTS

1x RS232
1x TTL or

1Wire
115 kbaud

1x RS232, 1x
TTL

1x 1Wire
115 kbaud

1x RS232, 1x
TTL

1x TTL or
1Wire

115 kbaud

three full duplex
or 7 one-way in
firmware, 57.6

kbaud

2x RS232
or TTL, 115

kbaud

2x TTL, 115
kbaud

1x RS232
1x RS232 or

1Wire, 115 kbaud

External
UARTs?

yes, up to two
(SimmSerial) yes, via SPI yes, up to two

(SimmSerial) no? Yes, up to 12 with
JSimmQuadSerial possible via SPI

yes, via SBX
(SBX2 adds one

UART
RS232/485/IrDA)

javaxcomm
serial I/O? yes yes yes no yes yes yes

SPI yes, firmware yes, firmware yes, firmware ?? yes, hardware yes, hardware yes, hardware

System
Bus

TINI
proprietary,

unbuffered on
SIMM72

modified TINI
proprietary,
no memory
mapped I/O

modified TINI
proprietary,
buffered, on

SIMM72

BASIC Stamp
pinout

SimmStick
compatible

JSimm

DIP package,
JSimm

compatible
SBX

High
Speed I/O
interface

unbuffered
SIMM72

8-bit data path

no memory
mapped I/O

Buffered
SIMM72

8-bit data path
no

buffered
highspeed I/O

bus, 2mm
connector, 8-bit

data path,
addresses,

strobes and chip
selects

22 I/O bits, but
none are byte

wide

buffered 8-bit data
path on SBX

connector (slower
than JStik's high
speed I/O bus)

Other I/O
interface SPI, I2C, CAN SPI, I2C, CAN SPI, I2C, CAN ?? SPI, I2C SPI, I2C SPI, I2C

IrDA
support yes yes yes no yes yes yes

ethernet 10BaseT 10/100BaseT 10/100BaseT no 10BaseT no 10BaseT

1Wire net yes - onboard yes - onboard yes - onboard no yes (note3) yes (note3) yes - onboard

1Wire Java
API
support

yes yes yes no yes yes yes

Size
(inches)

4.25 x 1.25
SIMM72

4.25 x 1.25
SIMM72

4.25 x 1.??
SIMM72

1.2 x 0.3
DIP24

3.00 x 2.65
SIMM30

1.00 x 2.00
DIP40

3.9 x 6.2
Euroboard

voltage
range 5V 5V, onboard

3.3V regulator
5V, onboard

3.3V regulator 5-15V, 50 mA 3.3 or 5-14V
note2

3.3 or 5-14V
note2 6-20 VDC

power for
you none none none none? 3.3V at 100 mA

note2
3.3V at 100 mA

note2 none

power
(running) 1.25 W TBD, less

than TINI390
TBD, less

than TINI390 300 mW 500 to 1000 mW
note 5

80 to 300 mW
note 5

500 to 1000 mW
note 5

cost @10 $85 from
Systronix under $100 TBD $89 $299 $99 $399

Key benefit

lowest cost
embedded

Java system

TINI400 in
familiar
SImm72
format,

upgrades
most TINI390

TINI400 in
familiar
SImm72
format,

upgrades
most TINI390

fits in BASIC
Stamp socket

fast, low power,
small native Java

system with

lowest
cost/power,

smallest size
fastest realtime

native Java

TESA –Towards Embedded-Internet System Applications

Jeannette S Chin Page 118

systems
which don't

need
memory-

mapped I/O

systems
which need
memory-

mapped I/O

URL ibutton.com/tini www.tstik.com www.tstik.com javelinstamp.com jstik.com jstamp.com saje.systronix.com

note1: TINI uses all but 64K of its flash for the firmware JVM. You can store one Java program in the remaining flash. It is also possible to
extend the flash off-TINI -- for example our STEP+ board has an external flash socket.

note2: JStamp and JStik run on 3.3V internally, and have an onboard switching regulator. JStamp and JStik can be powered with either
3.3V regulated or 5-14 VDC unregulated. JStik can power its RS232 level shifters and parallel I/O port buffers with 5V or 3.3V. JSimm pin
5 is the optional 3.3 VDC power input or output pin. If you provide 5-14VDC to JStamp or JStik, they provide 3.3V at 100 mA for your
external use.

note3: 1Wire net requires external serial adapter or expansion board

note4: TINI applications typically reside in SRAM. SRAM is also shared by the heap and file system. Only 64 KBytes of TINI390 flash is
available for user program or data.

note 5: the processor clock is user adjustable from 1X to 14X times the frequency of the crystal

note 6: aJile controllers native instruction set is Java, therefore Java is its "assembly code" so high speed native methods are written in
Java!

note 7: See the JIR project at SourceForge. IrDA adapter hardware is required for all systems.

Systronix 555 South 300 East, Salt Lake City, Utah, USA 84111
Tel +1-801-534-1017, Fax +1-801-534-1019

email: info@systronix.com Time Zone: MDT (UTC-6)

http://www.ibutton.com/tini
http://www.tstik.com/tstik72nb_data.html
http://www.systronix.com/tinistik/tstik72buf_data.html
http://www.javelinstamp.com/
http://www.jstik.com/
http://www.jstamp.com/
http://www.saje.systronix.com/
mailto:info@systronix.com

TESA –Towards Embedded-Internet System Applications

Appendix H

Software Listing

Service.java
PC.java
Pda.java
Wap.java
Formatte.java
PcHandler.java
PdaHandler.java
WapHandler.java
Tesa.java

 TesaStub.java

Jeannette S Chin Page 119

	Figure 2. The Octopus
	Figure 3 The TINI
	Figure 6. The mDorm
	
	
	
	
	
	Figure 8. The iPaq 3970

	Java –cp %TINI_HOME%\\bin\\tini.jar TINIConver�
	
	
	
	Figure 9. A WAP mobile phone communicating with WAP server

	Figure 10. A WAP mobile phone communicating with WEB server
	
	
	
	
	
	
	
	Figure 15. TESA’s interface image

	Figure 16. TESA’s Web interface \(1\)
	Figure 17. TESA ‘s Web interface \(2\)
	Figure 18. TESA’s PDA interface \(1\)
	Figure 19. TESA’s PDA interface \(2\)
	Figure 21. TESA’s WAP interface \(2\)
	Figure 24. Integration Testing
	Figure 26. Performance Testing in actions.
	Figure 27. Summary of test results
	
	
	References
	Appendix B
	Tini Setup

	Installing the Java 2 SDK
	Installing the Java Communications API
	Connecting up the TINI Board
	Installing and running the TINI software
	Loading the Firmware

	How to Use TiniHttpServer on your TINI

