
Genetic Algorithms and Differential

Evolution Algorithms Applied to Cyclic

Instability Problem in Intelligent

Environments with Nomadics Agents

Alejandro Sosa a,1, Vı́ctor Zamudio, a Rosario Baltazar, a Vic Callaghan, b and

Efren Mezura c

a División de Estudios de Posgrado e Investigación, Instituto Tecnológico de León, Av.
Tecnológico S/N, CP 37290 Guanajuato, México

b School of Computer Scienceand Electronic Engineering, University of Essex,
Wivenhoe Park CO4 3SQ, UK

c Departamento de Inteligencia Artificial, Universidad Veracruzana, Sebastián
Camacho #5, Centro, Xalapa, Veracruz, 91000, México.

Abstract. In this paper the problem of cyclic instability in dynamic environments

is presented. This cyclic instability is generated when binary rule-based nomadic

agents (agents entering or leaving the environment) interact in complex ways, gen-

erating undesirable outputs for the final user. Our strategy is focused on minimiz-

ing this cyclic behaviour, using optimization algorithms, in particular Genetic and

Differential Evolution Algorithms. These algorithms are applied to the Average

Change Function. Different test instances were used to evaluate the performance of

these algorithms. Additionally, statistical tests were applied to measure their per-

formance.

Keywords. Nomadic Agents, Cyclic Instability, Genetic Algorithms, Differential

Evolution

Introduction

Smart environments integrate the future vision of telecommunications, consumer elec-

tronics and computing. In a world of smart environments, the environment will be

intended to assist people and provide customized services for monitoring, education,

health, leisure, energy optimization, in a non-invasive way. Devices are getting smarter,

smaller and cheaper, and they will be fully integrated to the environment, being able to

communicate their states, and following the rules (learned or programmed) of the user.

Cyclical instability is a fundamental problem characterized by the presence of unex-

pected oscillations caused by the interaction of the rules governing the agents involved

[1] [2] [3] [4]. As mentioned before one of the challenges faced in intelligent environ-

1Alejandro Sosa, Vı́ctor Zamudio; E-mail:alejandro sosa@ieee.org, vic.zamudio@ieee.org

Presented at the Cloud-of-Things 2013, Athens, Greece, 16-17th July 2013

(c) Instituto Tecnologico de Leon, Universidad Veracruzana, University of Essex 2013

ments is to prevent this cyclic instability; in our case we are considering the case of no-

madic agent, in particular new agents joining the environment. New agents join the en-

vironment randomly, connecting and interacting with the agents already present in the

system.

An Instability Prevention System (INPRES) has been successfully applied to the prob-

lem of cyclic instability [1] [2] [3] This strategy is based on analyzing the interaction

network associated (a digraph, where the vertex are the agents, and the edges represent

the dependencies of the rules of the agents), finding the cycles and locking an agent for

each cycle. One of the main disadvantages of this strategy is the computational cost, as

in big systems with high interconnectivity finding the cycles or loops can be computa-

tionally expensive. In the case of dynamic scenarios (where the topology of the network

is changing, growing with time), INPRES is not the best option, as for each new change

in the topology (in our case, a new agent joining the system) the interaction network

should be analysed. Due to these problems, in this paper we are applying an optimization

approach, comparing the performance of Differential Evolution and Genetic Algorithm.

These algorithms aims to minimize the average change to the system required to prevent

instability by locking a set of agents. By using this approach, we avoid finding the loops

in the interaction network of the system. [2] [3] [4] [5].

1. Internet/Cloud of things

The Internet of Things (IoT) is an idea based on which a layer of digital connectivity

to existing things, where ”things” refers to all kinds of everyday objects, and even their

components. This idea is expected to bring benefits in the short term, with application

such as: mobile phones that open doors, sensors detecting leaks in pipes, billboards

changing their ads according to the consumer profile of people passing through the street,

small sensors measuring the temperature of a room or the traffic on the streets, and secu-

rity cameras watching over the safety, and subway panels indicating the time remaining

until the arrival of the next train[6].

Internet of Things is the kind of ubiquitous society where all people and all objects

will be connected, and they will be identified and will be found. Everything will be

connected to each other and exchange of information between objects and devices will

become reality. In this world all objects and parts would be recorded, making it pracically

impossible for an object to be lost[7] [8].

One of the problems facing these interactions are the instabilities that may be generated

between the devices, generating undesirable behavior in the intelligent environment. In

this paper we analyze this problem (considering nomdic agents leaving the environment)

and propose a solution based on optimization algorithms (GA and DE).

2. Problem in Cases Real

In rcent years it has been found a numbers of cases showing unwanted cyclic behaviour,

for example Robotics and manufacture, operating systems, telephony and emails [1] that

have unwanted behavior as is the case of the Toyota Prius 2010 car which had faults

(c) Instituto Tecnologico de Leon, Universidad Veracruzana, University of Essex 2013

Presented at the Cloud-of-Things 2013, Athens, Greece, 16-17th July 2013

in the braking system [9], however, by the complexity of the system and the number of

agents involved is extremely difficult to locate the agents that cause unwanted behavior.

Another problem caused by instability cyclic intelligent environments are, for ex-

ample, in telephony, since it was not possible to have many devices connected together

[1], another reported instability occurs with the software agent in this case by sending an

email list because some are forming loops and causing instabilities in the system. Since

it is very difficult to find when an occur oscillation strategies have been proposed to find

the probability of occurrence of this instability, the probability of finding such instability

can be calculated with:

Poscillations =
G(c,S0)

∏N
i=1

2ki N!
(n−ki)!

(1)

where N is the number of nodes and ki is the connectividad of node n. The number of

sistem with oscillations, denoted by the function G depends on the cycles, denoted by c
and the initial conditions denoted by S0. The demonstration can be seen in [1].

3. Differential Evolution

Differential Evolution (DE) [10] [11]is an algorithm developed by Rainer Storn and Ken-

neth Price for continuous space optimization, applied to solving complex problems. Dif-

ferential Evolution has a population of candidate solutions, which recombine and mu-

tate to produce new individuals to be elected according to the value of the function per-

formance. Differential Evolution is a parallel direct search method which utilizes NP

D-dimensional parameter vectors

xi,G, i = 1,2, ...,NP (2)

as a population for each generation G. NP does not change during the minimization pro-

cess. The initial vector population is chosen randomly and should cover the entire param-

eter space. As a rule, we will assume a uniform distribution of probability for all random

decisions unless otherwise stated. In case that a preliminary solution is available, the ini-

tial population might be generated by adding normally distributed random deviations to

the nominal solution xnom,0.DE generates new parameter vectors by adding the weighted

difference between two population vectors to a third vector. Let this operation be called

mutation. The mutated vectors parameters are then mixed with the parameters of another

predetermined vector, the target vector, to yield the so-called trial vector. If the trial vec-

tor yields a lower cost function value than the target vector, the trial vector replaces the

target vector in the following generation. This last operation is called selection. Each

population vector has to serve once as the target vector so that NP competitions take

place in one generation [12].More specifically DEs basic strategy can be described as

follows:

• Initialization: an initial population is generated randomly with a distribution uni-

form [12].

(c) Instituto Tecnologico de Leon, Universidad Veracruzana, University of Essex 2013

Presented at the Cloud-of-Things 2013, Athens, Greece, 16-17th July 2013

• Mutation: randomly select three vectors that are different, subtract two of them

and the differences are applied weight given to them by a factor and finally add

the difference to the third vector difference [13].

• Recombination: Recombination is performed, taking each of the individuals in

the population as the primary parent and other parents are randomly selected three

generating a son. If the child has generated a value of the objective function better

that the primary parent, then replaces it [12].

• Selection: All vectors are selected once as primary parent without depending on

the objective function, checks whether the selected parent is better that their child

preserved generated this otherwise its value is replaced by the child [13].

3.1. Binary Differential Evolution

The binary DE (binDE)[14] borrows concepts from the binary particle swarm opti-

mizer (binPSO), developed by Keneedy and Eberhart, in similar way, the binDE uses

the floating-point DE individuals to determine a probability for each component. These

probabilities are he used to generate a bitstring solution form the floating-point vector.

This bitstring is used by the fitness function to determine its qulity. The resulting fitness is

then associated with the floating point representation of the individual. Let xi(t) represent

a DE indivua, with aech xij(t)(j=1,,nx, where nx is the dimension of the binary-valued

problem) a floating-point number. Then, the corresponding bitstring solution, yi(t), is

calculate using:

yi j(t) =
{

1 if U(0,1) < f (xi j(t))
0 otherwise

(3)

Where f is the sigmoid function

f (x) =
1

1+ e−x (4)

The fitness of the individual xi(t) is the simply the fitness obtained using the binary

representation yi(t).

Algorithm 1 Binary Differential Evolution Algorithm.

1: Initialize a population and set control parameter values:

2: Repeat
3: Select parent xi(t)
4: Select individuals for reproduction.

5: Produce one offspring x′(t)
6: yi(t)=generated bitsting form xi(t).
7: y′i(t)=generates bitsting form x′i(t).
8: if f (y′i(t)) is better than f (yi(t)) then
9: Replace parent xi(t) with offspring x′i(t)

10: else
11: Retain parent

12: end if
13: Until a convergence criterion is satisfied

(c) Instituto Tecnologico de Leon, Universidad Veracruzana, University of Essex 2013

Presented at the Cloud-of-Things 2013, Athens, Greece, 16-17th July 2013

4. Genetic Algorithm

Genetic Algorithm (GA) [15] is a search technique proposed by John Holland based on

the theory of evolution by Darwin [15] [16][17]. This technique is based on the selection

mechanisms that nature uses, according to which the fittest individuals in a population

are those who survive, to adapt more easily to changes in their environment.

A fairly comprehensive definition of a Genetic Algorithm is proposed by John Koza

[18]: It is a highly parallel mathematical algorithm that transforms a set of individual

mathematical objects with respect to time using operations patterned according to the

Darwinian principle of reproduction and survival of the fittest and after naturally have

arisen from a series of genetic operations from which highlights the sexual recombina-

tion. Each of these mathematical objects is usually a string of characters (letters or num-

bers) of fixed length that fits the model of chains of chromosomes and is associated with

a certain mathematical function that reflects their ability.

The GA seeks solutions in the space of a function through simple evolution. In gen-

eral, the individual fitness of a population tends to reproduce and survive to the next gen-

eration, thus improving the next generation. Either way, inferior individuals can, with a

certain probability, survive and reproduce. In Algorithm 3, a genetic algorithm is pre-

sented in a summary form [16].

Algorithm 2 Algorithm Genetic

1: Data: t (population size), G (maximum allowed function evaluations).

2: Result: Best Individual (Best Individual of last population).

3: P← Initialize-population(t) Generate (randomly) an initial population

4: Evaluate(P) Calculate the fitness of each individual

5:

6: for g = 1 to G do
7: P← Select(P) Choose the best individuals in the population and pass them to the next generation

8: P’← Select(P) Choose the best individuals in the population and pass them to the next generation

9: P’←Mutation(P”) Mutate one individual of population randomly chosen

10: Evaluate (P’) Calculate the fitness of each individual of new population

11: P← (P’) Replace the old population with new population

12: end for

5. Using Optimization Algorithms to Solve the Problem of Cyclic Instability

In order to solve the problem of cyclic instability using optimization algorithms we need

to minimize the amplitude of the oscillations. In the best-case scenario this would re-

sult in a stable system. Additionally we are interested on affecting the fewest number of

agents (agents locked).

In order to measure the oscillatory behaviour of the system, two functions have been re-

ported in the literature: Average Cumulative Oscillation (ACO)[16] and Average Change

of the System (ACS)[19].

In this paper we use the Average Change of the System (ACS) function, which has been

reported to be more accuracy to measure cyclic instability [19].

(c) Instituto Tecnologico de Leon, Universidad Veracruzana, University of Essex 2013

Presented at the Cloud-of-Things 2013, Athens, Greece, 16-17th July 2013

O =
Σn−1

i=1 xi

n−1

{
1 si Si �= Si+1

0 en otro caso
(5)

O: average change in system.

n : number of generations of scenario to test (total time of test).

with S(t) being the state of the system in time t and S(t +1) being the state of system in

time t +1.

In the case of a stable system, this equation will show a flat line. Due to the previous, it

is possible to use them as objective functions in a minimization algorithm.

6. Test Instance

Experiments were performed using test instance with following characteristics: they start

with a 2x2 matrix of agents which was subsequently increased in size, ending with a

30x30 matrix of agents. In Figure 2 we can see the incidence matrix, increasing its size

(as an example) from 2x2 to 4x4. Incoming agents were added at different times to the

existing system, increasing the interaction network of the system.

The objective function is the weighted average of changes in the system which evaluates

and retains the states of the agents that have fewer oscillations. It is intended that the

system does not oscillate, affecting the system as little as possible, to ensure that it keep

its own integrity and functionality to the end user.

A scenario where the system is no longer evolving shown in Figure 1, using the same

topology and without applying any technique to minimize oscillations in the system.

Figure 1. Graph Instability

Figure 2. Matrix of agents

(c) Instituto Tecnologico de Leon, Universidad Veracruzana, University of Essex 2013

Presented at the Cloud-of-Things 2013, Athens, Greece, 16-17th July 2013

Figure 3. Graph of Agents associated to Figure 2.

In our case we will use the incidence matrix to represent of the digraph and manage

the list of incidence, with the restriction that the main diagonal contains only 0’s, in order

to prevents the formation of loops on the same node.

As we mention before, we begin with a system with 2 agents (ie a 2x2 matrix),

which will be increased randomly (as shown in Figure 2 and 3), ending with 30 agents,

ie a 30x30 matrix (see Figure 4).

Figure 4. Digraph with 30 agents, associated to a 30x30 matrix.

To generate the test instance we used the following parameters

Parameters Values

% of Connectivity 30

% of AND gate 40

% of Agents Locking 30

Dimension 30

Lifecycle 100

Table 1. of parametrs

(c) Instituto Tecnologico de Leon, Universidad Veracruzana, University of Essex 2013

Presented at the Cloud-of-Things 2013, Athens, Greece, 16-17th July 2013

7. Experimental Result.

For the test performed with DE and AG for test instances we used the parameters shown

in Tables 2 and 3.

Parameters Values

Particles 30

W 1

C1 0.4

C2 0.6

Function Call 1000

Table 2. Parameters of PSO algorithm

Parameters Values

Particles 30

% of Elitism 55

% of Cross 35

% of Mute 29

Function Call 1000

Table 3. Parameters of GA

The results are shown in Table 4 and Figure 5 which allows say the dynamic intel-

ligent ambient can be stabilized over a given period provided. From these results it can

be seen that cyclic instability arising from dynamic environments (where the interaction

network is randomly increased with time) can be stabilized successfully using the GA

and DE algorithms.

Median Best

AG 1.01011339 1.01011339

DE 1.00250249 1.00250249
Table 4. Result

The above results were subjected to nonparametric signed ranks Wilcoxon test [20]

to analyze the identity statistics regarding the results of the calculation of the average

change in the system of algorithms, from which were obtained T + = 437, T = 27, with

T0 = 109 for a sampling of 30 test with a significance level of 0.01. The results indi-

cate that there is enough statistical evidence to establish which algorithm shows better

performance; in our case Differential Evolution has better results.

(c) Instituto Tecnologico de Leon, Universidad Veracruzana, University of Essex 2013

Presented at the Cloud-of-Things 2013, Athens, Greece, 16-17th July 2013

Figure 5. Graph Stability

8. Conclusions

In this paper we analysed the problem of cyclic instability with nomadic agents. In this

particular case we are considering nomadic agents joining the environment, and interact-

ing with those already present in the system. Two algorithms were considered: Differ-

ential Evolution and Genetic Algorithms. These algorithms were applied to the Average

Change Function, which measured the number of changes in the state of the system in

a given unit of time. The instability generated in these dynamic scenarios was success-

fully controlled using these algorithms. Using the Wilcoxon test (and due the fact there

was enough statistical evidence) it was found that Differential Evolution algorithm had a

better performance controlling these oscillations. These results are preliminary, but show

very promising results. At the moment we are working on more complex test instances,

including agents leaving the system (ie matrixes growing and shrinking), and a moni-

toring system to optimize the use of our strategy. We hope to report our result in future

conferences.

References

[1] V. M. Zamudio, Understanding and Preventing Periodic Behavior in Ambient Intelligence. PhD thesis,

University of Essex, Oct. 2009.

[2] V. Callaghan and V. Zamudio, ““Facilitating the Ambient Intelligent Vision: A Theorem, Representa-

tion and Solution for Instability in Rule-Based Multi-Agent Systems,” Special Section on Agent Based
System Challenges for Ubiquitoues and Pervasive Computing. International Transactions on System
Science and Applications, vol. 4, May 2008.

(c) Instituto Tecnologico de Leon, Universidad Veracruzana, University of Essex 2013

Presented at the Cloud-of-Things 2013, Athens, Greece, 16-17th July 2013

[3] V. Callaghan and V. Zamudio, “Understanding and Avoiding Interaction Based Instability in Pervasive

Computing Environments,” International Journal of pervasive Computing and Communications, vol. 5,

pp. 163–186, 2009.

[4] V. Zamudio, R. Baltarzar, and M. Casillas, “c-INPRES: Coupling Analysis Towards Locking Optimiza-

tion in Ambient Intelligence,” The 6th International Conference on Intelligent Environments IE10, July

2010.

[5] A. Egerton, V. Zamudio, V. Callaghan, and G. Clarke, “Instability and Irrationality: Destructive and

Constructive Services within Intelligent Environments,” Essex University: Southend-on-Sea, UK, 2009.

[6] D. Ucklemann, M. Harrison, and F. Michehelles, eds., Architecting the Internet of Things. springer-

verlag berlin heidelberg ed., 2011.

[7] F. Mattern and C. Floerkemeier, “From active data management to event-based systems and more,”

ch. From the internet of computers to the internet of things, pp. 242–259, Berlin, Heidelberg: Springer-

Verlag, 2010.

[8] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things (IoT): A Vision, Architectural

Elements, and Future Directions,” CoRR, pp. –1–1, 2012.

[9] “oyota. Prius, 2010. URL http://www.toyota.com/espanol/recall/abs.html.,”

[10] R. Storn and K. Price, “Differential evolution - a fast and efficient heuristic for global optimization over

continuous spaces,” Journal of Global Optimization, 1997.

[11] S. Rainer and K. Price, “Differential evolution -a simple and efficient adaptative scheme for global

optimization over continuous space,” International Computer Science, Mar. 1995.

[12] L. V. Santana Quintero and C. A. Coello Coello, “Un Algoritmo Basado en Evolución Diferencial para

Resolver Problemas Multiobjetivo,” Master’s thesis, IPN, 204.

[13] R. d. C. Gomez Ramon, “Estudio empı́rico de variantes de Evolución Diferencial en optimización con

restricciones,” Master’s thesis, Laboratorio Nacional de Informática Avanzada., 2001.

[14] A. Engelbrecht and G. Pampara, “Binary differential evolution strategies,” pp. 1942–1947, 2007.

[15] J. Holland, Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor.,

1975.

[16] C. Houck, J. Joines, and M. Kay, “A Genetic Algorithm for Function Optimization: A Matlab Imple-

mentation,” Technical Report NCSU-IE-TR-95-09, 1995.

[17] C. Coello Coello, “Introducción a la Computación Evolutiva,” Available online:
http://delta.cs.cinvestav.mx/ ccoello/genetic.html, 2012.

[18] J. Koza, “Genetic Programming: On the Programming of Computers by Means of Natural Selection,”

MIT Press: Cambridge, MA, USA, 1992.

[19] L. A. Romero, V. Zamudio, M. Sotelo, R. Baltarzar, and E. Mezura, “A Comparison between Meta-

heuristics as Strategies for Minimizing Cyclic Instability in Ambient Intelligence,” Sensors 2012, 2012.

[20] F. Wilcoxon, “Individual comparisons by ranking methods ,” Biometrics Bulletin, vol. 1(6) (1945) 80–

83.

(c) Instituto Tecnologico de Leon, Universidad Veracruzana, University of Essex 2013

Presented at the Cloud-of-Things 2013, Athens, Greece, 16-17th July 2013

