
Presented at Artificial Intelligence Techniques for Ambient Intelligence

(AITAmI’11), Nottingham 26th July 2011

© Essex University 2011 1

Towards an Object Oriented Ambient

Computing Model

Idham Ananta
a,1

, Vic Callaghan

b,
Jeannette Chin

c

a
 Computer Science and Electronic, Universitas Gadjah Mada, Indonesia

b
 Computer Science and Electronic Engineering, University of Essex, UK

c
Institute of Social & Economic Research, , University of Essex, UK

Abstract. As creative creatures, people like to change and customise their

environments. In the computing world, this has led to a growing demand for

people to be able to customise their ‘electronic spaces such personal computers

and mobile phones’. In this work-in-progress paper, we argue that this reasoning

can also be applied to AmI (Ambient Intelligence) Environment. However,

existing computational models have significant shortcoming that act as a barrier to

implementing the concept of end-user development in AmI environments. This

paper presents a scenario that illustrates the need for a more functional and robust

underlying computational model. We argue that OO (object-oriented) concepts

could form the basis of such a system and, to these ends, present preliminary ideas

for an object oriented end-user development system for building AmI applications.

Keywords. Object Oriented, End-user Development, AmI Applications

Introduction

Lieberman [1] defined end-user development as: “a set of methods,

techniques, and tools that allow users of software systems, who are

acting as non-professional software developers to create, modify, or

extend a software artefact.” He provided some supporting arguments for

end-user development research, mentioning that there will be

exponential growth in the number of end-user developers compared to

the number of software professionals [2]. Lieberman’s approach could

radically change the software development model, noticeably from

professional developers to the application end users. Empowering end-

users and allowing domain experts to directly program or customize

their digital environments would have significant advantages, especially

when coping with dynamically changing environments [3].

 Blackwell [4] argued that there is an urgent requirement to

develop facilities to enable end-user development for more complex

1

 idham@ugm.ac.id.

Presented at Artificial Intelligence Techniques for Ambient Intelligence

(AITAmI’11), Nottingham 26th July 2011

© Essex University 2011 2

longer-term needs, rather than servicing trivial tasks with short lifetimes.

He also advocated psychological research to create novel programming

systems and new theoretical characterizations of human problem solving.

He provided a valuable user perspective on several end-user

technologies such as scripting languages, visual programming,

spreadsheets, and programming-by-example.

Enabling end-user development of Intelligent Environments is not an

easy task. There has been some discussion related to how intelligent

environment applications can be developed or be programmed.

Callaghan et al [5] suggest two approaches: embedded-agent-based

approaches and end-user programming based approaches. The

embedded-agent-based approach utilizes artificial intelligence

techniques to reduce the user’s cognitive load, whilst the end-user

programming based approach is directly programmed by people, which

advocates of this approach argue allows more creative input and adds

some transparency, engendering a sense of trust in the system. For

example, Ball conducted an online study on users preferences and found

almost 70% of users preferred end-user programming to agent control

[6] which was consistent with a general finding of numerous studies that

concludes a fundamental requirement of users is to be in control of their

environment, rather than to be controlled by it. These studies are

described exhaustively in Chin seminal work on end-user programming

in digital homes which outlined the main arguments in favour of the end-

user approach which may be summarised as being:

1. End users demand a full control over their environment

2. User wish to customize their technology and, in particular, the

functionality of smart-homes (personalising homes is an age old

tradition)

3. People wish to understand why home technology does what it

does (ie the operation of personal technologies needs to be

transparent).

4. People were worried about losing too much human control in

digital homes.

Of course, as we mentioned previously, there are also arguments in

favour of autonomous agents, the most powerful being as a way to

manage the complexity of the technology (i.e. reduce the cognitive load

on people. Thus, later, Ball suggested an alternative paradigm;

adjustable autonomy, which he hoped, might offer the best of both

approaches [8]. Beyond such considerations there is the issue of

providing appropriate lower level infrastructural support for end-user

programming paradigms; for example, how are the basic components,

Presented at Artificial Intelligence Techniques for Ambient Intelligence

(AITAmI’11), Nottingham 26th July 2011

© Essex University 2011 3

and their aggregations implemented so provide the required portability,

scalability and mobility required. In the remainder of this paper we will

argue that OO (object-oriented) concepts could form the basis of such a

system and, to these ends, present preliminary ideas for an object

oriented end-user system for building AmI applications.

1. Related Work

Chin [7] introduced Pervasive Interactive Programming (PiP) as an

alternative method to empower end users to customize Digital Homes.

PiP is a form of end-user programming and provides a computational

model that introduces the concept of a Virtual Appliance (i.e. an

appliance constructed by aggregating network services), Meta-

Appliance/Applications (MAps, virtual appliance data object

representations), and a supporting ontology called dComp (Decomposed

Community Programming). PiP used the Programming by Example

(PBE) paradigm to bring programming activities to non-technical end-

users.

Table 1. Comparison of end-user techniques used in AmI Research

Research Development Framework End-User Techniques

PiP Rule Based, Ontology PBD/Visual

Herranz Rule Based/ Agent Script/Visual

Alfred Goals and Plan Concept Verbal & Physical

Hague Rule based Cube/Visual

Humble Programming Jigsaw & Puzzle

Herranz et al [9] have successfully separated the environment

representation from the programming system to enable the design of an

Intelligent Environments in a way that makes it easy to integrate and

incorporate new technologies into the Environment. They have done this

by creating a rule based agent mechanism as the kernel of a ubiquitous

end user, UI independent programming system.

The MIT Alfred project [10] sought to allow users to compose a

program via teaching-by-example, using a ‘goals’ and ‘plans’ concept.

Their system proposed to make use of a macro programming approach

that could be generated by verbal or physical interaction. Truong’s

CAMP project [11] utilized a fridge magnet metaphor and pseudo

natural language interface to realize context-aware ubiquitous

applications in the home. Hague [12] proposed a tangible media

metaphor to represent programming logic in which programming was

Presented at Artificial Intelligence Techniques for Ambient Intelligence

(AITAmI’11), Nottingham 26th July 2011

© Essex University 2011 4

undertaken by turning appropriate faces of cube. Humble [13] proposed

a jigsaw puzzle like metaphor as graphical programming representation

to build applications.

Table 1 compares, differing End-user approaches that have been

applied to AmI environments. From the table it is clear that no other

researchers have used an object-oriented framework to support end user

development and, although not shown here, neither have they used it to

create an AmI support framework. Instead most researchers have

focused on the programming metaphors and ignored the underlying

frameworks, which we argue are critical to enabling commercial

deployment of these system in a robust and large scale manner befitting

the vision for future AmI environments. In this paper, we will discuss

how OO might be a good candidate to solve this challenge.

2. Motivations for Bringing End-User Programming into Intelligent

Environments

Cypher [14] presented several examples to motivate end-user

programming on the web. We believe that some of them are also

relevant to AmI Environment, which we now describe:

1. More options and personalization. In a private domain, such as a

home, apartment, or car, personalization will add a more colourful

experience to ritual activities or daily routines. For example, a

homeowner could be given more options for creating customized

domestic appliances or, for example, creating a personalised care

environment tailored to various disabilities.

2. Triggering automatic response. It is easy to imagine users

creating a simple application that sends texts to a user when their

security alarm rings but it may be more interesting to get alerts

when beverages or items in their refrigerator run low.

3. Information Gathering. End-users could programme reports

about the state and usage of their consumption of unhealthy food,

wasteful use of energy or perhaps connecting food replenishment

to a refrigerator’s stock, or recipes.

Those examples are simply examples from a set of almost unlimited

possibilities that could be creatively developed by end-user.

Presented at Artificial Intelligence Techniques for Ambient Intelligence

(AITAmI’11), Nottingham 26th July 2011

© Essex University 2011 5

3. End-User Development Scenario

“Tony is a young executive living in his own home that is enriched

with some programmable smart devices called AmbiO’s. He had

created a few bespoke AmbiO’s a few years ago to help him around his

home. One of the simpler AmbiO’s is called the ‘wake up’ AmbiO. It

uses a combination of network services to create his AmbiO’s, namely

his automatic window curtains, digital alarm clock, mp3 player, and hi-

fi surround sound system. Tony created this AmbiO using the OOEUD,

to draw the curtains in his room, and play some energetic song every

weekday morning at 7am.

One day, Tony visited his friend Sarah, a young attractive girl who

had created her own AmbiO’s. Sarah told Tony that she also had

developed a similar AmbiO to wake her up in the morning. However,

Tony realized that Sarah’s AmbiO was far more interesting than his, as

her AmbiO played real-time news on her video displays to show the

weather forecast and traffic news of the day. Also while she was still

lying on her bed, her AmbiO turned on her toaster, which contains 2

slices of bread she inserted the night before, as well as her coffee

machine next to it, before triggering her alarm (and if she didn’t get out

of bed, as a safety feature, it even turned them off). Tony was very

impressed with Sarah’s AmbiO. He asked her whether she was willing

to share it with him. Sarah agreed and emailed it to him right away.

Back home Tony examined the AmbiO Sarah had sent him. Because

it was an object, customising it was simple, as he simply created a new

“wake AmbiO” that inherited Sarah’s, functions, and then using an

intuitive graphical interface, manipulated it to create a new “wake

AmbiO”. Tony noticed that he did not have a digital toaster, so he

disabled that feature. When Tony was satisfied that his AmbiO worked

(by running it on his object simulator), he saved it before instantiating

his ‘wake up’ AmbiO object straight away.

The next day Tony realized that tomorrow was his cousin’s birthday.

Suddenly he got a brilliant idea; why not send his cousin an AmbiO as a

present? He then set about modifying his ‘wake-up’ AmbiO. He

instantiated a new version of his ‘wake-up’ AmbiO, inheriting the

functions of his original AmbiO and then used his graphical interface to

disable the news feed, and change the video stream to one that played a

happy birthday video from YouTube. He also added a special ‘pizza

order’ function, billed to his account, and mailed this new “birthday

surprise’ AmbiO to his cousin’s email address. It allowed his cousin,

after playing the video, to choose his favourite pizza menu, using touch

screen services via his cousin’s interactive screen. Mike, his cousin,

was thrilled to get such a thoughtful birthday present from him.”

Presented at Artificial Intelligence Techniques for Ambient Intelligence

(AITAmI’11), Nottingham 26th July 2011

© Essex University 2011 6

The scenario illustrates the how OO concepts assist the end-user

develop AmI applications. Whilst it doesn’t illustrate all the advantages

of OO, it introduces some such as the portability of applications and

suggests some requirements to provide development environments for

end user that:
1. Reduce/eliminate duplicate codes/logics

2. Maintain high degree of reusability, and use interchangeable

component

3. Manage various level of access and privileges

4. Able to distribute application across different platform (portability, and

heterogeneity)

5. Allow mobility of applications and devices

6. Provide a robust computational framework

4. Motivations for Bringing Object Oriented Concept on End User

Development

Brad J Cox [15] said object-orientation represented a major change in

how programmers would do their jobs. Most interestingly, he also

speculated on encapsulating hardware as a means to create worlds

populated by heterogeneous mixes of soft and hard objects. As far as we

know, nobody has succeeded in realizing this vision, which is a major

motivation underpinning my work. The main benefits in applying object-

oriented concepts as the underlying computational model for building

end-user AmI application are:

1. The power of inheritance provides end-users with reusable

components, allowing them to avoid rewriting the code from

scratch rather they just “extend” their class to “inherit” all of

attributes and services. If they want to customize functions

(methods in OO terms), they edit the customized part. In AmI

there are numerous similar objects in terms of attributes and

functions. Inheritance allows similarities to be described in one

central place, whilst differences can be managed in local object

instantiations. This is provides a tractable way to deal with

managing changes to objects, especially systems comprising

massive numbers of objects, as is the vision for AmI calls for.

Since generic functionality is made once, but used many times,

inheritance boosts productivity. Thus, in the end-user

programming world, inheritance could bring efficiencies to the

development process.

Presented at Artificial Intelligence Techniques for Ambient Intelligence

(AITAmI’11), Nottingham 26th July 2011

© Essex University 2011 7

2. The power of encapsulation shields the end-users from the need

to understand the system at a detailed code level (they simply

need to know what an object does, not how it does it).

Encapsulation is a mechanism to protect attributes/data in an

object with procedures that shield them from improper use or

invalid access. Some sophisticated procedures built by suppliers,

or other end-users, could have complex logic, so the advantage to

end-users is that they don’t have to understand “how” procedures

work in detail. Encapsulation also can be used to set a secure

boundary of values an object can have. For example, an

encapsulation mechanism could prevent an application from

conducting unauthorised actions (e.g. missetting parameters or a

malicious access). In AmI application, this is really an important

aspect.

Figure 1. OpenBlock used by Google AppInventor.

The core of our argument is not about the choice of end-user

programming metaphor, but that there are significant challenges faced

by the underlying computational model, such as portability, mobility,

heterogeneity or even inheritance, that need to be solved to make end-

user programming (of any form) a commercial success. In particular, we

argue that OO provides a more effective computational model to support

higher-level end-user programming paradigms. We also argue that end-

users would find OO concepts such as inheritance, encapsulation and

polymorphism easy to understand, as this concept is derived from nature

and the world we are all familiar with as Cox eloquently has argued [15].

This view is further supported with the recent appearance of products

such as MIT scratch [16], Google AppInventor [17] (figure 1), and the

Presented at Artificial Intelligence Techniques for Ambient Intelligence

(AITAmI’11), Nottingham 26th July 2011

© Essex University 2011 8

simplified Object Oriented development environment, Greenfoot [18]

(figure 2).

5. OO Based Model For Pervasive Computing

In real the world, people interact with real objects, physically. Chin’s

work has demonstrated that people prefer to work with real world

representations rather than abstract descriptions; in her case she used the

notion of virtual appliance or MetaApps.

Figure 2 Greenfoot, Simplified OO Development Environment

Here we have the same view except we add to this by proposing that

by adding object-oriented formalisms to Chins MetaApps, we introduce

a more formal mechanism to support the wider development and

maintenance needs via mechanism such as inheritance, encapsulation

and polymorphism. That is why we believe that interacting with objects

somehow provides both a natural and formal model (the best of both

worlds). Like Chin’s MetaApps, our “AmbiOs” (Ambient Objects) can

also represent, not only physical abstractions of appliances inside digital

homes, but also external soft entities such as information, media or

higher order abstractions (e.g. a library), etc.

However, whilst Chin’s work, had introduced conceptual support for

application mobility, as it stood, it hadn’t addressed how these concepts

would be translated into a practical framework to support mobility. Thus,

in practice, Chin’s implementation couldn’t practically accomplish the

end-user development scenario above. Thus, our OO model advances

Presented at Artificial Intelligence Techniques for Ambient Intelligence

(AITAmI’11), Nottingham 26th July 2011

© Essex University 2011 9

this area by providing a computational framework to enable portability

and mobility of what she termed ‘virtual appliances’ and what we term

‘AmbiOs’ (Ambient Objects). Also, although Chin’s work on MetaApps

(Meta-Appliance/Applications) provided a way of aggregating abstract

services (e.g. information, deconstructed software etc), apart from a

MP3 player, she never pursued this line of research, which will be a

main thread of activity in our follow-on work.

Therefore, the research described in this paper takes the best of PiP’s

work by Chin (that supports end-user programming in AmI

environments), and marries them to the best of OO computational model

concepts to come up with a novel solution that we tentatively call, OOPc

(Object Oriented Pervasive Computing).

Figure 3 shows OOPc model for building AmI applications in our

iSpace research facility that functions as follows. It has resources that

connect to the digital home network and are managed by middleware

(UPnP in our Essex iSpace). The Object Palette Space discovers

resources (network services) via the middleware. These resources are

structured as embodied objects. For example, the embedded-internet

devices (Tini boards) run an AmbiOs virtual machine (Avm) that acts as

a standardised interface to the device, emulating encapsulation and

allowing any inherited customisations from parent objects to be

subsumed. Soft data objects such as media or text files can be managed

through a process that is equivalent to the Avm or through more

conventional mechanisms such as cast them as objects with

functionalities that support inheritance and encapsulation.

Object oriented software mechanisms are more developed and so

how we handle this in hardware, or in hardware-software hybrids is an

area we intend to research. These objects (hardware and software) are

presented to End-User Development Interface. The interface works with

the OOPc management that provides object discovery, repository, and

management. From an end-users viewpoint, objects, take the form of

visual representations using blocks and animations, or entities. These

can be managed by a variety of end-user interaction modules (see top

row of figure 3) ranging, for example, from PiP, Jigsaw to voice

command. They might also be combined with interaction modes such as

gesture or VR to support more sophisticated end-user experiences.

Presented at Artificial Intelligence Techniques for Ambient Intelligence

(AITAmI’11), Nottingham 26th July 2011

© Essex University 2011 10

Figure 3 Pervasive End User OO World Model based on iSpace Infrastructure

Figure 4 The iSpace (our testbed)

For out pervasive world test-bed we will use the iSpace (Figure 4).

Features of our out OOPc model may be summarized as follows:

1. Hybrid Aggregation - Applications in our model can be

developed by combining multiple objects of differing types (eg

hardware or software) and from differing sources, such as local

repositories remote Internet repositories, or even commercial

providers, etc.

2. Inheritance - Inheritance, make it possible for end-users to

create customised objects easier by modifying the functionality of

Presented at Artificial Intelligence Techniques for Ambient Intelligence

(AITAmI’11), Nottingham 26th July 2011

© Essex University 2011 11

objects that previously worked well to get more personalised

applications. We envisage this working with single (atomic) or

aggregated (compound) objects.

3. Mobility – An important feature of pervasive computing is the

movement of people and devices across different spaces. Our

AmbiOs (akin to Chin’s virtual appliances) are compound objects

made from collections of objects. Mobility presents a particularly

difficult problem for the movement of sub-objects that are

members of AmbiOs, in that replacements are needed to allow the

overall system to continue to work, Likewise, people moving

presents a similar challenge to reconstruction of AmbiOs. Our

model well seek to cope with this by utilise encapsulation to

provide a standardized object interface, rather than the need to

deal with endless variations of hardware and software.

4. Security – security is a number one concerns for consumers.

Encapsulation provides the basis of a perfect mechanism to build

a security layer such that, for example, when an object is placed

inside a home, it can be considered as "private" object where

only the owner has privileges to modify it.

We believe that an object-oriented pervasive computing world will

make the development of more complex end user applications possible,

whilst supporting good levels of maintainability and portability.

6. Conclusion

In this work-in-progress paper, we have presented a scenario to

illustrate the benefits of utilising OO for a pervasive computing

computational model. For this we argued that inheritance and

encapsulation ease the end-user development processes, by providing

effective and robust means to support object sharing and mobility in a

secure way within AmI applications.

Towards these ends, our research tries to marry the best of earlier

work by Chin that provides an elegant concept for creating and

programming virtual appliances with object orientation, to provide an

easy to use, robust and secure way for end users to customise the

functionalities of their own electronic spaces.

We believe that distributed applications, created by end-users, will

change how people interact with their environment, enabling new

lifestyles and business opportunities for people in the near future. Finally,

our vision for a pervasive object oriented world (a heterogeneous mix of

Presented at Artificial Intelligence Techniques for Ambient Intelligence

(AITAmI’11), Nottingham 26th July 2011

© Essex University 2011 12

soft and hard objects) can be likened to developing applications, in a

very big computer, called ‘the World’!

Acknowledgements

This research is partly funded by Higher Education Directorate,

Ministry of National Education, Indonesia.

References

[1] Lieberman, H., Paterno F., Klan M., Wulf V. End-User Development: An Emerging Paradigm,

Lieberman H., Paterno F., Wulf V. Eds End User Development, Human-Computer Interaction Series.

Volume 9, Springer, 2006, 1-8

[2] Boehm, B.W., Abts, C., Brown, A., Chulani, S., Clark, B., Horowitz, E., Modochy, R., Reifer, D. and

Steece, B. (2000). Software Cost Estimation with COCOMO II. Upper Saddle River, NJ: Prentice Hall

PTR.

[3] Costabile, M.F., Fogli, D., Fresta, G., Mussio, P. and Piccinno, A. (2002). Computer Environments for

Improving End-User Accessibility. ERCIM Workshop “User Interfaces For All”, Paris.

[4] Blackwell A.F, Psychological Issues in End-User Programming, Lieberman H., Paterno F., Wulf V. Eds

End User Development, Human-Computer Interaction Series. Volume 9(Springer 2006), 9-30

[5] Callaghan V., Colley M., Hagras H., Chin J., Doctor F., Clark G. Programming iSpaces – A Tale of Two

Paradigms, Intelligent Spaces, The Application of Pervasive ICT, Springer, London, 2006.

[6] Ball M., Callaghan V., “Perceptions of Autonomy” Intelligent Environments 2011, Nottingham, UK 25-

28th July 2011.

[7] Chin, Jeannette., Pervasive Interactive Programming: Empowering End Users to Customise Digital

Homes, Thesis, University of Essex, 2009

[8] Ball M., Callghan V., Gardner M., Trossen D., Exploring Adjustable Autonomy and Addressing User

Concern is Intelligent Environments, Intelligent Environments 2009, Proceeding of the 5th International

Conference on Intelligent Environments, IOS Press, Netherlands, 2009

[9] Herranz, M.G., Haya P., Alaman X., Towards a Ubiquitous End-User Programming System for Smart

Spaces, Journal of Universal Computer Science, vol.16. no 12, 2010

[10] Gajos K., Fox, H., & Shrobe, H., “End User Empowerment in human centered pervasive computing”,

in Proceedings of Pervasive 2002, 1-7

[11] Truong, KN., et al “CAMP: A Magnetic Poetry Interface for End-User Programming of Capture

Applications for the Home”, Proceedings of Ubicomp 2004, 143-160

[12] Hague, R., et al: “Towards Pervasive End-User Programming”. In Adjcunt Proceedings of UbiComp

2003, 169-170

[13] Humble J., et al “Playing with the Bits, User-Configuration of Ubiquitous Domestic Environments,

Proceedings of UbiComp 2003, Springer Verlag, Berlin Heidelberg New York, 2003, 256-263

[14] Cypher Allen, “End User Programming in The Web”, No Code Required, Giving User tools to

Transform The Web, Elsevier USA, 2010

[15] Cox, Brad J., Novobilski Andrew J., “Object Oriented Programming, an Evolutionary Approach”,

Addison Wesley Publishing Company, 1991

[16] http://scratch.mit.edu

[17] http://appinventor.googlelabs.com

[18] http://www.greenfoot.org

