
In the International Journal of Pervasive Computing and Communications, Vol. 5 Iss: 2, pp.163 – 186, 2009

1. INTRODUCTION

One vision for the future is that people will inhabit high-
tech environments in which services such as heating, lighting,
entertainment, security etc are derived from a host of
interacting networked embedded-computers, the so-called
digital home, intelligent building or smart office (to use but
some terms). This is a natural extension of the Internet in
which appliances such as Mp3 players, TVs, telephones,
lights, heathers, etc. are all networked together and
programmed, either manually [1] or automatically [2], to
meet the user’s desires and needs [2,3]. By sensing user
actions and coordinating actions, environments can be
orchestrated to create an ambient holistic intelligence. For
instance, an incoming video conference call could be
programmed to pause a DVD player, raise the lights (if it was
dark) and patch the call through to the video screen
(previously used for replaying the DVD). Clearly such
environments form a complex social interaction of people
and agents resulting in complex behaviour [4]. However,
without careful design, such convenience is susceptible to
unwanted disruptive behaviour can arise. This is the case for
example, of continuous loop oscillating between cooling and
heating [5].

This problem is rooted in the presence of interacting rules in
the connected devices. Such rules are fundamental to most
ambient intelligence or interacting pervasive computing
systems. Also, temporal delays related to network latency,
speeds of processing, etc. can result in some devices receiving
old information, contributing to unstable behaviour [6]. This
problem has been observed in our own systems (EU eGadgets
project [7]), and is being observed increasingly in pervasive
computing systems with distributed control [8].

In this paper we describe this phenomenon in more detail and
present a theoretical framework, an Interaction Network (IN),
which captures the functional dependencies of the rules of
behaviour in pervasive computing systems, and represents
them as a digraph. A Multidimensional Model (MDM) for task
representation is introduced, which enables reasoning about
the devices composing the environment, in terms of their local
state and temporal evolution. We present INPRES (Instability
Prevention System), a set of algorithms to prevent unwanted
cyclic behaviour. To evaluate our methods we have devised an
Interaction Benchmark (IB) that we use to evaluate,
experimentally, the effectiveness of our approach using both
simulated and physical implementations based in our digital-
home testbed, the iDorm. Finally, we evaluate a hybrid
strategy comprising INPRES together with a user-driven
selective node disabling mechanism, which we term
Intelligent Locking.

2. RELATED WORK

In home automation, instability due to cyclic behaviour has
been reported in the EU Project CUSTODIAN
(Conceptualisation for User involvement in Specification and
Tools Offering the Delivery of system Integration Around
home Networks). This project was funded through the
European Commission’s Telematics for Improving
Employment and Quality of Life Sector. Its central objective
was to enable access to technology and services for disabled
and elderly people and use information and communication
technologies to improve the quality, effectiveness and
efficiency of services which support the independent living
and integration in society of disabled and elderly people [9-
10].
In this project, it is possible to specify the functionality of

 © Essex University 2009

Understanding and Avoiding Interaction Based Instability in
Pervasive Computing Environments

Victor Zamudio and Victor Callaghan
Department of Computing and Electronic Systems, University of Essex,

Wivenhoe Park, Colchester CO4 3SQ
United Kingdom

Email: {vmzamu, vic}@essex.ac.uk
http://iieg.essex.ac.uk

This paper addresses a fundamental problem related to the interaction of rule-based autonomous agents in pervasive and
intelligent environments. Some rules of behaviour can lead a multi-agent system to display unwanted periodic behaviour,
such as networked appliances cycling on and off. We present a framework called Interaction Networks (IN) as a tool to
describe and analyse this phenomena. In support of this, and as an aid to the visualisation and understanding of the
temporal evolution of agent states, we offer a graphical Multidimensional Model (MDM). We describe an Instability
Prevention System (INPRES) based in identifying and locking network nodes. Both IN, MDM and INPRESS enable
system designers to identify and prevent such unwanted behaviour. Finally we introduce an Interaction Benchmark (IB)
that we use to evaluate, experimentally, the effectiveness of our approach using both simulated and physical
implementations.

1

In the International Journal of Pervasive Computing and Communications, Vol. 5 Iss: 2, pp.163 – 186, 2009

each smart device, giving the logical condition that must be
TRUE for the device to be activated. A simulation module
propagated any change that occurred in the network until it
settled down, and each smart device modified its status
according to its rules. When a device changed its status, the
simulation module was notified by means of a message, and
the process continued until all devices had settled down to
their final status. In this work they noticed that under some
circumstances the network didn’t stabilize due to a user-
programmed “livelock”, requiring them to terminate the
process so that the network could be manually debugged [11].

Another example of cyclic instability in Ambient Intelligence
is found in heating and air conditioning services. In this case,
on reaching certain temperature, an air conditioning is turned
on, causing the temperature to drop below a certain level and
triggering a heating service, resulting in periodic behaviour
[12-14].

In other applications software agents may be involved in
cyclic loops, for example in email mailing list, where users
have configured auto-replays that answer each other [15].

Also, in communications and distributed asynchronous
systems, a similar problem relating to the assignment of
resources, known as a deadlock, has been encountered [16]. A
deadlock state occurs when two or more processes are waiting
indefinitely for an event that can only be completed by one of
the waiting processes. In order to explain this more clearly, the
concept of a WAITFOR graph is useful.

More formally, a WAITFOR graph for the allocation status
of a set of resources is a directed bipartite graph

€

D=(V,E)
where

€

V1 and

€

V2 are a bipartition of

€

V . The elements of

€

V1={P1,...,Pn} represent users of the resources, and the
elements of

€

V2={R1,...,Rm}represent resources. For

€

P∈V1
and

€

R∈V2 there is an edge

€

(P,R)∈E if the user

€

P
requested resource

€

R and has not been granted resource

€

R ,
and an edge

€

(R,P)∈E if user

€

P has been allocated the
resource

€

R .

FIG. 1: Example of a deadlock in a WAITFOR graph:
USER1-DEVICE 3-USER3-DEVICE 1-USER1

If the WAITFOR graph contains a directed cycle, then there is
a deadlock in the system. The simplest case is when two

transactions are waiting, and each is dependent on the other. In
Figure 1 we can see a deadlock in a WAITFOR graph,
involving the loop USER1-DEVICE 3-USER3-DEVICE 1-
USER1.

As mentioned previously, a deadlock may be detected by
finding cycles in the WAITFOR graph, and a transaction could
be selected for abortion to break the cycle. If the transactions
have different priorities, the transaction with the lowest
priority is aborted.

Deadlock can be viewed as being the opposite problem to the
cyclic instability addressed by this paper as, in the case of a
deadlock, every device in the loop is static, but in cyclic
instability every device or agent in the loops changes
indefinitely. However, the idea of “breaking the cycle” is very
useful, and we apply this principle as part of the Interaction
Networks framework which we describe in the next section to
find the cycles associated with rules of interaction between
agents. In addition, the ability to associate different priorities
to transactions is a useful concept which we use this to capture
the preferences of a user, thereby allowing the least
inconvenient transaction (programmed action) to the user to be
disabled.

Research into ‘system dynamics’ has advanced the
understanding of the dynamics of massively interconnected
systems. From this work what is termed an attractor of a
dynamic system is an infinite loop in the state space (the same
sequences of states are visited each time). The basin of
attraction is defined as the set of configurations which
converge toward an attractor. However, although a dynamic
system can be solved theoretically (ie, finding the attractors
and the basin) an important result is that it is not possible to
solve this for a general boolean network a problem that
matches the type of pervasive computing environment we are
addressing [17]. An additional problem is that perturbations to
the system (when the user interacts with the environment) add
significant complexity to the dynamics. It is useful to observe
that the complexity of the periodic behaviour problem
addressed by this paper is rooted in the rules of interaction
between the devices as the time delays can be regarded as
being equivalent to a new initial condition to the system.

Even though system dynamics work has shown it is not
possible to solve an arbitrary system, it is possible to detect
and prevent cyclic instability. We have developed a framework
called Interaction Networks, which enables the
interrelationships between the agents due to the rules to be
visualised, and a mechanism to prevent cyclic behaviour
called INPRES (Instability Prevention System) to be applied.

3. THE PROBLEM

In the previous section we reviewed several problems related
to our research. From Complex Dynamics Systems, we found
that it is not possible to theoretically analyse a Boolean
network to isolate cases of instability. In addition, initial

 © Essex University 2009 2

In the International Journal of Pervasive Computing and Communications, Vol. 5 Iss: 2, pp.163 – 186, 2009

conditions play a very important role on the dynamics of a
system. From the domain of Distributed Systems, we found
that a deadlock state occurs when two or more processes are
waiting indefinitely for an event that can be completed only by
one of the waiting processes. This could be prevented by
aborting one of the transactions on the loop. The problem
addressed in this paper is the other way around: two or more
processes are running indefinitely.

In summary, as explained earlier, this paper focuses on the
behaviour of autonomous interacting devices (eg rule based
agents). Such devices can interact with each other according to
rules provided by, in general, several users. Besides that, there
can be some delays in the propagation of information between
devices, due to different speeds of processing in each device,
differences in computational load or because of differing
network paths. In situations where the state of one device is
dependent on that of a second device, and vice versa, there is
the potential for a closed loop and for oscillation. If oscillation
is not wanted, then this is a problem that needs to be identified
and eliminated, which is the motivation driving this research.

The objective of this research may be stated as providing the
means to identify and stop unwanted periodic behaviour in
pervasive autonomous environments. In order to stop this
behaviour, we propose the use of an Intelligent Locking
strategy which:

a) Detects loops in the Interaction Network
b) Locks a variable in a candidate loop
c) Learns, from the user based on his response to

locking actions, the locking priorities, and acts on
these (stored) priorities whenever a variable needs to
be locked in the future.

This process of detecting loops and locking variables raises
several issues: How to choose the variable to be locked, if
there are several variables in the loop? What happens if there
are coupled loops (ie more than one interacting loop? When
the variable should be locked; immediately, after one
oscillation (or more) and for how long? What impact could
this locking have in the original dynamics of the system? For
example would it inhibit critical behaviour or prevent vital
information being propagated throughout the system? In this
paper we present results from both coupled and uncoupled
systems. In order to have the least impact on the network, the
node with least connectivity is locked.

As described earlier, the strategy to eliminate instability is
based on detecting cycles: either isolated cycles (with
potentially independent oscillations) or coupled cycles
(potentially, with very complex oscillations). In terms of the
functional dependencies, the behaviour of a device could
depend on a single or several devices. Figure 2 presents a
taxonomy of the problem, which reflects the topological and
functional aspects of the agent instability problem.

TAXONOMY

TOPOLOGY

DEPENDENCIES

ACYCLIC

CYCLIC

ISOLATED

COUPLED

1 POINT

+1 POINT

1 VARIABLE

+1 VARIABLE

FIG. 2: Taxonomy of the inter-agent instability problem.

As will be described later, the user may interact with the
agents which could alter the behaviour of the system, leading
it new periodic behaviours (ie a new initial state), which may
be unwanted and need to be stopped.

In order to study this problem, we first introduce some
definitions and use these to describe the principles of an
interaction network. In the following description we use the
term agent as meaning any autonomous interacting rule-based
control device.

4. THEORETICAL FRAMEWORK

In order to solve the problem of instabilities, we have
developed a graph-based formalism, the Interaction Networks
(IN). This Interaction Networks let us reason about multiagent
system, showing the mutual interdependencies of the rules of
behaviour of them.

4.1 Interaction Networks

A directed graph

€

G (also known as digraph) consists of a
finite set

€

V of vertices or nodes, and a binary relation

€

E on

€

V
. The graph

€

G is denoted as

€

(V,E). The relation is called the
adjacency relation. If

€

w is relative of

€

v , i.e.

€

(v,w)∈E, then

€

w is adjacent to

€

v [18].

An agent

€

A is an autonomous device with a state

€

s∈{0,1},
where 0 and 1 mean off and on respectively. If we have

€

n
autonomous devices agents

€

A1,A2,...,An the state of the
system is

€

S=(s1,s2,...,sn). Each agent

€

Ai has two rules:

 If

€

ϕ i then

€

si =1 (1)
 If

€

ψ i then

€

si =0 (2)
where

€

ϕi,ψi:Sn→{0,1} (3)

An Interaction Network (IN) is a digraph

€

(V,E) in which the
vertex

€

v∈V is a pervasive autonomous agent

€

A and

€

(vi,vj)∈E if the Boolean functions

€

ϕ j or

€

ψ j of the

 © Essex University 2009 3

In the International Journal of Pervasive Computing and Communications, Vol. 5 Iss: 2, pp.163 – 186, 2009

pervasive autonomous agent

€

A j depends on the state

€

s i of the
agent

€

Ai .

Let

€

U⊆S be a subset of

€

S . Because of the dynamics of the
system, the system will produce a sequence of states

€

U1,U2,U3,...,Up. If this sequence of states is periodic, then the
subsystem

€

U is said to be periodic.

The functionality of a node is defined as the number of
descendants in the Interaction Network. This characteristic of
a node is very important, as it shows the impact of a device in
the system, in terms of the number of devices whose rules
could be triggered.

Figure 3 provides an example of an Interaction Network,
showing the dependencies of 5 devices or services: Sofa
Sensor, Light Sensor, MP3 Player, Light, and Word. The light
depends on the state of the light sensor, and in the state of the
MP3 player. The software application word depends on the
state of the light, and in the occupancy of the sofa (sofa
sensor).

FIG. 3: Example of the Interaction Network showing the
dependencies of 5 devices in pervasive computing
environments.

4.2 Multidimensional Model for Task Representation

A temporal allocation is a tuple

€

(d,T,ti,tf), where

€

d is a

simple device,

€

T is a simple task,

€

t i is the initial time and

€

t f
is the final time. In other words, the device

€

d will be
performing the task

€

T during

€

tf −ti units of time, beginning
on the instant

€

t i .
So, a temporal community, denoted by

€

C t , is a non-empty set
of temporal allocations:

€

Ct = {(dj,Tj,tji,tjf)}
j=1

k

U (4)

This definition allows us to locate the devices in a 3-axes
graph: device, task (or state) and time [19].

This model is used in section 5.2 in order to show, in detail,
the dynamics of the systems tested in the iDorm.

4.3 Instability Prevention System (INPRES) and
Intelligent Locking

Our strategy (Patent No: GB 0624827.2) is based on finding
all the simple cycles in the digraph, and for each cycle, lock
the node with minimum functionality:

Cycles C =extractCycles(Graph g);
for each cycle c in C:

list.empty(); //initialize list
for each node n in c:
 f=functionality(g,n,c);
 list.add((n,f));
od;
nodeMin=list.min();
nodeMin.lock();

od;

The strategy has several auxiliary functions. The first is
functionality. This function receives as arguments the
graph g, the node n and the corresponding cycle c. It
temporally deletes all the nodes of the cycle c in g, returning
the number of total descendants of the node n in the graph,
using ‘depth-first’ traversal:

int functionality(Graph g, node n, cycle c):
 g’=g-c+n;

return DepthFirst(g’,n).Length();

The function extractCycles prunes all the root nodes in
the graph (as they cannot be part of a cycle), storing all the
remaining nodes in list. For each node n in list, a search
for cycles is performed by the function analyze: it receives
the node n as argument, and maintains a list for each branch
of a ‘breadth-first’ traversal. If the node n is found, a cycle has
been found and it will not be expanded further. If a repeated
node is found, the list containing it is pruned. The process
terminates when it is not possible to expand the list of
branches further, and the function analyze returns the list of
all cycles, which will be stored in the list cycles. When all
the nodes in list have been searched by the function
analyze, repeated cycles are removed and the remaining list
of cycles is returned:

Cycles extractCycles(Graph g):
list = prunnedList(g);
for each node n in list:
 c = analyze(g,n);
 cycles.add(c);
od;
return cycles.removeRepeatedCycles();

It is important to notice that, as we are interested on finding
the members of a cycle, permutations of the members of a
cycle are considered indistinguishable (ie we are considering
the cycles as sets of nodes).

 © Essex University 2009 4

In the International Journal of Pervasive Computing and Communications, Vol. 5 Iss: 2, pp.163 – 186, 2009

5 IMPLEMENTATION AND RESULTS

5.1 Computer Simulations

The experiments used 64 interacting agents. These agents
were allocated in a grid of

€

4×4×4 (see Figure. 4). The
experiments were implemented using Mathematica® 6 [20], a
programming language with powerful tools for quick
prototyping. In particular, the package Combinatorica [21]
was extremely useful, as it provided tools for graph theory,
graphics and combinatorics.

Using the simulator it was possible to control a number of
parameters, such as the number of agents involved, probability
of perturbations, generation of random topologies and random
rules of interaction, amongst others. Boolean functions were
assigned randomly, as rule of behaviour, to each device
represented as a binary string, where 0 and 1 would be
interpreted as an OR and AND gates respectively.

The experiments used the following topologies:

a) non-coupled systems,
b) coupled in 1 point
c) coupled in two points
d) random systems.

FIG. 4: 64 agents allocated in the nodes of a grid.

5.1.1 Non Coupled Systems

For the case of non coupled systems, 64 agents were
distributed over a grid of

€

4×4×4 (see Fig 5.) with 16 cycles
of length 4 being used.

FIG. 5: Grid with 64 nodes, and 16 uncoupled cycles.

The rules of interaction were set randomly: {0,1,1,0,0,0,1,1,0,
0,0,1,1,1,1,1,0,1,1,0,0,0,1,0,1,0,1,0,1,0,0,0,0,0,1,1,1,1,1,0,1,1,
1,1,1,0,0,0,1,0,1,0,0,1,0,1,0,1,0,0,0,0,0,1}. The initial
condition was set randomly also. Under these conditions, the
system oscillated as shown in Figure 6. As we can see, the
perturbations take the system from one mode of oscillation to
another.

FIG. 6: Oscillations for the case of a system with 16
uncoupled cycles. No locking was applied.

When the locking mechanism was applied, the instability was
removed, as shown in Figure 7. 16 nodes have been locked,
and the locking vector of the system was: {0,1,0,1,1,1,
1,1,0,1,0,1,1,1,1,1,0,1,0,1,1,1,1,1,0,1,0,1,1,1,1,1,0,1,0,1,1,1,1,
1,0,1,0,1,1,1,1,1,0,1,0,1,1,1,1,1,0,1,0,1,1,1,1,1}.

 © Essex University 2009 5

In the International Journal of Pervasive Computing and Communications, Vol. 5 Iss: 2, pp.163 – 186, 2009

FIG. 7: Systems with 16 cycles. The systems has been locked
and the oscillations have stopped.

5.1.2 Coupled Systems: one point

For the case of coupled systems ‘in one point’, we used the
topology defined in Figure 8. In order to create this topology,
we added a cycle to the middle of the corresponding plane of
the topology shown in Figure 7. The rules of interaction were
{1,0,1,0,1,1,1,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0,1,1,0,0,0,0,1,0,1,
1,0, 1,1,1,0,0,0,1,1,1,1,1,0,1,1,1,1,1,0,1,0,1,1,1,1,1,0,0,0,0,0}.

FIG. 8: Grid with 64 nodes, and 20 cycles coupled in one
node.

Without locking, the system oscillated as shown in Figure 9.
The discontinuities in Figure 9 were not related to the
dynamics of the system, but to the scale of the graph, as we
were focusing on the oscillations.

FIG. 9: Oscillations for the case of 20 cycles coupled ‘in one
point’.

When the locking was applied, the oscillations were
prevented. In this case 20 nodes were locked, and the locking
vector was:
{0,1,0,1,1,0,1,1,0,1,1,0,1,1,1,1,0,1,0,1,1,0,1,1,0,1,1,0,1,1,1,1,0
,1,0,1,1,0,1,1,0,1,1,0,1,1,1,1,0,1,0,1,1,0,1,1,0,1,1,0,1,1,1,1}.
Figure 10 shows the evolution of the system without
oscillations. There were some spikes due to the random
perturbations (emulating a user interacting with the system),
but after the user perturbations (ie spikes) the system stabilised
again.

FIG. 10: System with 20 cycles coupled in one point. The
system is stable after locking.

5.1.3 Coupled Systems: two points

In order to have coupled systems ‘in two points’, we grew the
digraph with 20 cycles coupled in one node shown in Figure.
8. For each plane 4 edges were added as shown in Figure 11.
With this, each plane has 10 cycles, and 40 cycles in total.
Central cycles share one or two nodes with each of the 8
remaining cycles.

 © Essex University 2009 6

In the International Journal of Pervasive Computing and Communications, Vol. 5 Iss: 2, pp.163 – 186, 2009

FIG. 11: Grid with 64 nodes, and 40 cycles. Coupling in two
nodes.

The rules of interaction were: {0,1,1,0,0,1,0,1,1,1,0,0,1,0,1,0,
1,1,0,0,0,0,1,0,1,0,0,1,0,1,1,0,0,0,1,0,0,0,0,0,1,0,1,1,1,1,0,1,1,
0,1,0,1,1,1,1,0,1,0,0,1,1,0,0}. Without locking, the system
oscillated as shown in Fig. 12. Due to the random
perturbations, the system presented two modes of oscillation.

FIG. 12: Grid with 64 nodes, 40 cycles and coupling in two
nodes. The system was unstable.

FIG. 13: Response of the system with 64 nodes and 40 cycles.
After the locking, the system was stable.

When the locking mechanism is applied, the system became
stable. In this case the locking vector was:

{0,0,1,0,1,0,1,0,0,1,1,1,1,1,0,1,0,0,1,0,1,0,1,0,0,1,1,1,1,1,0,1,
0,0,1,0,1,0,1,0,0,1,1,1,1,1,0,1,0,0,1,0,1,0,1,0,0,1,1,1,1,1,0,1}.
The evolution of the system is shown in Figure. 13.

5.1.4 Arbitrary System

In order to test our approach with an arbitrary system (as one
person could set in a real intelligent environment) we
generated randomly the topology and rules of interaction of a
system with 4 agents, allocated in a grid structure. The rules of
interaction were: {0,1,0,1,0,1,1,0,1,0,0,0,0,0,
1,1,1,1,0,1,1,1,0,1,1,0,0,1,0,0,0,1,1,0,1,0,1,1,1,0,0,0,0,1,1,0,0,
1,1,1,0,1,0,0,0,1,0,0,0,1,0,0,1,0}. Figure 14 shows a digraph of
the system. The algorithm found 81 simple cycles.

FIG. 14: Grid with 64 node and random connections. The
system had 81 cycles.

The system showed oscillations, that are shown in Fig. 15.

FIG. 15: Response of the system with 64 nodes and 81 cycles,
showing instabilities.

When the locking mechanism is applied, the oscillatory
behaviour was prevented. In this case the locking vector was
{1,1,1,1,1,0,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,
1,1,0,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,0}.
Figure16 shows the response of the system with locking.

 © Essex University 2009 7

In the International Journal of Pervasive Computing and Communications, Vol. 5 Iss: 2, pp.163 – 186, 2009

FIG. 16: Response of the system with 64 nodes and 81 cycles.
When the locking is applied, the system was stable.

5.2 Implementation in the iDorm

5.2.1 Experimental Setup

The iDorm is a multipurpose space, taking the form of a
domestic apartment, with areas for varied activities such as
sleeping, working and entertaining. It is based around three
wired networks, Lonworks, 1-wire (TINI) and IP plus two
wireless networks; WiFi & Bluetooth. Universal Plug and Play
(UPnP) is used as the common interface to the iDorm,
enabling automatic discovery and configuration. Our system
was built on top of the low level UPnP control architecture,
enabling it to communicate with the UPnP devices and
orchestrate their action in the iDorm [22].

5.2.2 Experiments: Automatic Locking using INPRES

In order to test our approach with a real intelligent
environment, we used a system with 4 devices. The topology
of the Interaction Network (IN), in terms of the adjacency list
for this 4 devices is {{1,2},{2,3},{3,2},{4,3}}, where devices
1 and 4 are software-based UPnP lights. Device 2 is the bed
light, and device 3 is the desk lamp. The system has one cycle
including the bed light and the desk lamp. In Figure 17 we can
see the system’s Interaction Network. In these experiments
we utilized the Multidimensional Model (MDM) to represent
and visualize the local state of the devices in the environment.

FIG. 17: Topology of the Interaction Network (IN) for 4
agents. Agents 2 and 3 are lamps, and agents 1 and 4 are
software-based lamps. There is a cycle involving lamps 2 and
3.

The rules of interaction are encoded as {0,1,1,0}, where 1 is
an AND gate, and 0 is an OR gate. The bed and desk lamp
were allocated an AND gate, whilst agents 1 and 4 an OR
gate. As in the simulations, if there was only one argument for
the Boolean functions AND and OR, they behave as identical
functions: AND(x) = OR(x) = x.

In this experiment, the user interacted with the system. If there
was no locking, the system was instable. In Figure 18 the
evolution of the system was presented using the MDM. The
agents involved in the oscillations were agents 2 and 3. Figure
19 shows the evolution of the system, using a decimal
representation of the states of the system, corresponding to the
MDM in Fig. 18. This shows the oscillations of the system,
together with the delays due to the different velocities of
processing, network delays, etc.

(a) (b) (c)

 © Essex University 2009 8

In the International Journal of Pervasive Computing and Communications, Vol. 5 Iss: 2, pp.163 – 186, 2009

(d) (e)

FIG. 18: Evolution of the system using the MDM, and
showing instability.

FIG. 19: Evolution of the system without locking, showing
delayed oscillatory behaviour.

When the locking mechanism is activated, agent 2 (bed lamp)
had been locked. The only way agent 2 could change its state
was when the user turned it on/off. Figure 20 (a) shows the
initial state of the system (1,1,1,1) followed by the user
turning device 2 off. After some delay, due to the rules, agent
3 is in an off state, and the system is stable. In Figure 20 (b)
the user turns on agent 3, but because of the rules and the
locking of agent 2, the system goes back to the state (1,0,0,1).
In Figure 20 (d) the user turns on agent 2 and, after a delay,
the system goes to state (1,1,1,1). This is consistent with the
representation in Figure 21.

(a) (b) (c)

(d) (e)

FIG. 20: MDM of the system with agent 2 locked

FIG. 21: Evolution of the system when agent 2 is locked. The
spikes represent the user interaction with the system, which
rapidly goes back to the previous state due to the locking. The
flat spike represents a delay on the response of the system (see
Fig. 20 b).

 © Essex University 2009 9

In the International Journal of Pervasive Computing and Communications, Vol. 5 Iss: 2, pp.163 – 186, 2009

Figure 22 and 23 shows another example, when the system is
locked in agent 2. In Fig. 22 (b) agent 2 is turned on, when
agent 1 and 3 are off; due to the rules, agent 2 should be off,
however, because it is locked, it remains on.

(a) (b) (c)

(d) (e)
FIG. 22: MDM of the system when agent 2 is locked. The
system is stable.

FIG. 23: Response of the system when agent 2 is locked.

5.2.3 Hybrid Solution: Automatic Locking using INPRES
and User-based locking

As was shown, a member of a loop needs to be locked in order
to have a stable system. Under some circumstances, the user
may want a specific device on; however, as we have shown, if
that device is not locked, the system could automatically turn
it off. This is the case of Figure 20 (b) where the user turns on
agent 3, but because of the rules, and the locking of agent 2,
the system automatically turns off agent 3.

In order to prevent this situation arising, it is possible to refine
our approach with a hybrid solution: In first instance the
strategy defined by INPRES is used in order to prevent
instabilities (locking agent n); once the system is stable, the
device the user has just interacted with is locked (if that device
is part of a cycle):

automaticLocking();//node n is locked
if the user interacts with agent n’:

if agent n’ is part of a Cycle :
lock(agent n’);
unlock(agent n);

fi;
fi;

In order to capture the user interaction with the system, the
user is provided with an 8 button controller (on/off for each
device - see Fig. 24).

FIG. 24: Controller for user interaction.

Figure 25 and 26 shows the evolution of the system using the
hybrid strategy. Agent 3 is locked automatically, being in state
‘off’. The user then turns on agent 3, and agent 3 remains
locked (Fig. 25 a). In Fig. 25 (b) the user turns off agent 4, but
it is not locked as it was not part of the loop. At around
iteration 30, agent 1 is turned off, and agent 2 is automatically
turned off; agent 3 remains on because it is locked. In Fig. 25
(c) agent 2 is turned on and is locked, preventing any change
(without the locking it would automatically be turned off);
agent 3 is not locked anymore, and is automatically turned off.

 © Essex University 2009 10

In the International Journal of Pervasive Computing and Communications, Vol. 5 Iss: 2, pp.163 – 186, 2009

(a) (b) (c)

(d) (e)

FIG. 25: MDM of the system showing the user based locking.

FIG. 26: Evolution of the system, showing stability due to the
user-based locking.

Figure 27 and 28 shows another example of the strategy. In
this case agent 3 is locked automatically. In Figure 27 (b) all
the agents 1, 2, and 4 are off, while agent 3 (locked) is on. In
Figure 27 (d) the user turns on agent 2 (now locked),
preventing any automatic change.

(a) (b) (c)

(d) (e)

FIG. 27: MDM of the system.

FIG. 28: Evolution of the system.

5.3 Results Discussion

We have implemented and tested a strategy to prevent cyclic
behaviour using both computer simulations and real
networked devices. The simulator was programmed in
Mathematica ® 6, using 64 agents distributed over a grid of

€

4×4×4 (see Fig. 4). Consistent with our taxonomy, we used
4 topologies: non-coupled cycles, coupled cycles (1 point),
coupled cycles (multiple point), and finally a randomly

 © Essex University 2009 11

In the International Journal of Pervasive Computing and Communications, Vol. 5 Iss: 2, pp.163 – 186, 2009

generated system. Our algorithm to find cycles correctly
identified 16, 20, 40 and 81 simple cycles respectively. In
order to visualize the evolution of the system over time, we
used the decimal representation of the binary state of the
system.

As part of our experimental procedures we first calibrated the
systems in order to have a set of rules that could induce cyclic
behaviour. These rules were generated randomly and for each
case we showed the instabilities. In the cases of non coupled
system and the system coupled in 2 points, the random
perturbations (playing the role of a user interacting with the
environment) drive the system to show different modes of
oscillations. In all the cases our INPRES system proved able
to prevent instabilities satisfactorily.

In the case of systems with 40 and 81 cycles, INPRES locked
28 and 9 agents respectively. As our algorithm was based on
locking one agent in each cycle, clearly INPRES chose the
same agent to be locked for multiple cycles.

In order to test our strategy with real networked devices, we
used system with 4 agents (see Fig. 17). As mentioned
previously, time delays can play an important role in the
instabilities [6]. For instance, in Figure 19 we have oscillations
together with delays. In all the cases INPRES removed
satisfactorily all the instabilities, as these delays can be
interpreted as equivalent to perturbations generating new
initial conditions to the system.

The Multidimensional Model MDM proved to be a very useful
tool to analyze locally the evolution of the system. In
particular, it helped to interpret the spikes present in the
iteration-state graph of the evolution of the system.

We also used a hybrid strategy combining automatic and user
based locking. We used INPRES to automatically lock the
system and, after that, we adapted the locking using user
interaction. If a device was directly interacted with by the user,
we locked that device if it was part of a cycle. This approach
proved more satisfactory to the user as the system, due to the
rules, could reverse the user’s last interaction. This was the
case shown in Figure 20 (b) where agent 2 is locked, and the
user turns on agent 3, however due to the rules and the locking
of agent 2 the system automatically turns agent 3 off.

6 CONCLUSIONS AND FUTURE WORK

In this paper we have addressed the problem of cyclic
instability that occurs in pervasive computing systems
composed of multiple distributed interacting pervasive
computing devices (rule based agents). Earlier systems, such
as smart homes, were based mainly on centralized control
servers where such problems do not exist. The move to
distributed models has exposed this issue which is rooted in

interacting rules and delays between interdependent devices,
We have discussed how this issue relates to other engineering
domains such as dynamic systems and distributed computing.

Dynamics systems are closely related to our research,
because they show complex behaviour that depends on the
interaction of the members of the system. In order to solve a
dynamic system, it is necessary to find the attractors and the
basin. The evolution of the system depends on the initial
conditions, and in general, it is not possible to solve it
theoretically. This is a very important result, because it shows
that periodic behaviour depends on the rules of interaction
between agents.

In the domain of distributed system, the problem of deadlocks
has some similarities to our problem: devices and users are
waiting for further interaction, but in our problem the agents
are interacting indefinitely. A deadlock can be found if there is
a loop in the WAITFOR graph, which can be solved aborting a
process in the loop.

We have presented an Interaction Network, which is a
mathematical model based on a directed graph that lets us
reason about the rules and the interaction of the devices,
showing the interdependencies of rules. These dependencies
could be cyclic, leading our system to an oscillatory state. We
have also presented our Instability Prevention System
INPRES, which is a strategy based on finding the cycles in the
IN associated, in order to lock a device with the minimum
functionality, ie, the minimum impact on the network. We
tested successfully this strategy using not only computer
simulation but an implementation in the iDorm, our test bed.

Whilst it would be possible to use any network topology to
evaluate our system it is preferable to have an arrangement
that is both easy to reason about and for others to duplicate as
part of verification or benchmarking results. Therefore we
have proposed the use of a 3D grid to allocate the agents and
allow the complexity of the tests be grown in an ordered and
intuitive way. We refer to this as the Interaction Benchmark
(IB). In the IB, the complexity of the topology can be
controlled using 4 independent but identical layers of
interconnected devices and by increasing the number of edges
progressively for subsequent trials (which, as a consequence
results in, additional cycles in each tested topology). This
independence is evident to the observer, but not to the search
and locking algorithms used by INPRES. We hope that this IB
will, in itself, be a useful model for other researchers.

In our tests, for the IB, we have adopted a random topology
and rule set based on a symmetric 4x4x4 array (ie 64 nodes or
agents). Whilst some nodes were disconnected (for example,
node 4 and 29 in figure 14), our algorithm found 81 cycles,
with 9 nodes locked (to provide a stable system). These 9
nodes covered all the possible instability cycles, indicating
there was a high degree of overlap between the cycles
(otherwise more nodes would have needed to be locked).

 © Essex University 2009 12

In the International Journal of Pervasive Computing and Communications, Vol. 5 Iss: 2, pp.163 – 186, 2009

It is important to note that cycles having exactly the same
elements, disregarding their connectivity or order, are
considered to be indistinguishable by INPRES, and do not
need to be considered nor locked separately.

It is evident from examining the results presented that the
algorithm defined by INPRES proved to be successful on
removing oscillations in all the cases.

In the experiments performed in the iDorm we use the
MDM, which proved to be a very useful for analyzing
individual behaviour due to its expressiveness and simplicity.
This model could be used in larger systems focusing on a
small subset of the whole system, ie, in a convenient
neighbourhood in the device-time-state space (see Figure 39).

Using the MDM, we realized that event tough INPRES
prevents successfully the cyclic behaviour, it has a drawback:
due to the rules and the state of the system, the device that the
user has just interacted with (changing its sate), could be
reversed. This can be possible because of several conditions:
state of the system, rules, and the device locked. The strategy
can be improved using a hybrid approach: using an automatic
locking using INPRES, and after that adjust the locking using
the user interaction. This hybrid approach was tested
successfully in terms of the prevention of oscillations;
however, more research is needed in this direction using more
realistic scenarios.

In our experiments with coupled systems, we found out that
sometimes it is not so easy to find instabilities, compared to
systems with less coupling or less number of cycles. We
postulate that high coupling and high number of cycles
contributes dramatically to this self-locking; however, more
research is needed. We look forward to reporting on our
progress in this direction in future publications.

Finally, before this work there was no framework for
analysing and eliminating problems of unwanted cyclic
behaviour related to the interaction of rule-based autonomous
agents in pervasive and intelligent environments. The
Multidimensional Model, Interaction Benchmark, Interaction
Network Theory, Instability Prevention System and intelligent
locking techniques described in this paper offer a practical
solution to this problem.

FIG. 29: This graph shows instability using the MDM for the
case of 64 nodes. Focusing on a small part of the information
sometimes could be useful in order to process and analyze the
dynamics of the systems.

ACKNOWLEDGEMENTS

Victor Zamudio would like to acknowledge the support of
the Mexican National Council for Science and Technology
(CONACYT).

REFERENCES

[1] J. Chin, V. Callaghan, G. Clarke. “An End-User
Programming Paradigm for Pervasive Computing
Applications”, International Conference on Pervasive
Services, 26-29 June 2006, Lyon, France.

[2] V. Callaghan, M. Colley, H. Hagras, J. Chin, F. Doctor, G.
Clark. “Programming iSpaces: A Tale of Two Paradigms”,
in iSpaces. Springer Verlag, 2005, Chapter 24.

[3] H. Hagras, V. Callaghan, M. Colley, G. Clarke, A.
Pounds-Cornish and H. Duman, Creating an ambient-
intelligence environment using embedded agents. IEEE
on Intelligent Systems, Volume 19, Issue 6, Nov-Dec
2004 Page(s):12 – 20

[4] V. Callaghan, G. Clarke, J. Chin, “Some Socio-Technical
Aspects Of Intelligent Buildings and Pervasive
Computing Research”, Intelligent Buildings International
Journal, Vol 1 No 1, 2008

[5] M. Wilson, E. Magill, M. Colberg. “An Online Approach
for the Service Interaction Problem in Home
Automation”. Consumer Communications and
Networking Conference 2005 CCNC Second IEEE, 3-6,
Jan. 2005, pp. 251-256.

[6] V. Zamudio and V. Callaghan. Unwanted Periodic
Behaviour in Pervasive Computing Environments, The
IEEE International Conference on Pervasive Services,
Lyon, France, 26-29 June 2006

[7] V. Callaghan, M. Colley, G. Clarke and H. Hagras, The
Cognitive Disappearance of the Computer: Intelligent

 © Essex University 2009 13

In the International Journal of Pervasive Computing and Communications, Vol. 5 Iss: 2, pp.163 – 186, 2009

Artefacts and Embedded Agents, Proceedings of the i3
2001, workshop WS4 on Cognitive Versus Physical
Disappearance, Porto, Portugal, April 2001

[8] D. Estrin, D. Culler, K. Pister and G. Sukhatme,
Connecting the physical world with pervasive networks.
IEEE on Pervasive Computing, Jan-March 2002,
Volume: 1, Issue: 1, pages: 59-69

[9] The CUSTODIAN Project [Online]. Available at
http://www.rgu.ac.uk/sss/research/page.cfm?pge=33336

[10] D. Paulson, C. Nicolle, M. Galley. Review of the current
status of research on ‘Smart Homes’ and other domestic
assistive technologies in support of TAHI trials-Prepared
for The Department of Trade and Industry. Ergonomics
and Safety Research Institute (ESRI), Loughborough
University October 2002. Available on
http://dspace.lboro.ac.uk/dspace/bitstream/2134/1030/1/A
R2320.pdf

[11] J. M. Martins Ferreira, T. Amaral, D. Santos, A.
Agiannidis and M. Edge, The Custodian Tool: Simple
Design of Home Automation Systems for People with
Special Needs. Presented at the EIB Scientific
Conference. Munich, October 2000.

[12] M. Kolberg, E. Magill, D. Marples and S. Tsang, Feature
interactions in services for Internet personal appliances.
IEEE International Conference on Communications,
2002. ICC 2002. Volume 4, 28 April-2 May 2002
Page(s):2613 – 2618

[13] M. Wilson, E. Magill and M. Colberg, An Online
Approach for the Service Interaction Problem in Home
Automation. Consumer Communications and Networking
Conference 2005 CCNC Second IEEE, 3-6, Jan. 2005, pp.
251-256.

[14] M. Wilson and E. Magill, A Model for Service Interaction
Avoidance in Home Networks. In Proc. Of the 5th Annual
Postgraduate Symposium on the Converge of
Telecommunications, Networking and Broadcasting.
Liverpool. June 2005.

[15] M. Mowbray, M. Williamson. “Resilience for
Autonomous Agents” Technical Report HPL-2003-210.
Internet Systems and Storage Laboratory, HP Laboratories
Bristol. October 17th 2003.

[16] G. Coulouris, J. Dollimore and T. Kindberg. Distributed
Systems. Concepts and Design. 4th Ed. Addison Wesley.
2005.

[17] G Weisbuch. Complex Systems. Lecture Notes Volume II.
Santa Fe Institute Studies In the Sciences of Complexity.
1991.

[18] G. Haggard, J. Schlipf and S. Whitesides. Discrete
Mathematics for Computer Science. Thomson 2006.

[19] V Zamudio, V Callaghan and J Chin, A Multi-
Dimensional Model for Task Representation and
Allocation in Intelligent Environments Proceedings of
The Second International Symposium on Ubiquitious
Intelligence and Smart Worlds (UISW2005). Nagasaki,
Japan. December 6-7, 2005.

[20] S. Wolfram. The Mathematica Book, 5th ed. Wolfram
Media, 2003.

[21] S. Pemmaraju and S. Skiena. Computational Discrete
Mathematics: Combinatorics and Graph Theory with
Mathematica™. Cambridge University Press 2003.

[22] A. Holmes, H. Duman and A. Pounds-Cornish. The
iDorm: Gateway to Heterogeneous Networking
Environments. Proc. Int’l Test and Evaluation Association
(ITEA) Workshop Virtual Home Environments, ITEA
Press, 2002, pp. 30-37.

 © Essex University 2009 14

	1. INTRODUCTION
	2. Related work
	3. The Problem
	4. Theoretical Framework
	5 Implementation and results
	6 Conclusions and Future Work

