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1. INTRODUCTION

One vision for the future is that people will inhabit high-
tech environments in which services such as heating, lighting, 
entertainment,  security  etc  are  derived  from  a  host  of 
interacting  networked  embedded-computers,  the  so-called 
digital home, intelligent building or smart office (to use but 
some terms).  This is  a natural  extension of  the Internet  in 
which  appliances  such  as   Mp3  players,  TVs,  telephones, 
lights,  heathers,  etc.  are  all  networked  together  and 
programmed,  either  manually  [1]  or  automatically  [2],  to 
meet  the  user’s  desires  and  needs  [2,3].  By  sensing  user 
actions  and  coordinating  actions,  environments  can  be 
orchestrated  to  create  an  ambient  holistic  intelligence.  For 
instance,  an  incoming  video  conference  call  could  be 
programmed to pause a DVD player, raise the lights (if it was 
dark)  and  patch  the  call  through  to  the  video  screen 
(previously  used  for  replaying  the  DVD).  Clearly  such 
environments  form a  complex  social  interaction  of  people 
and  agents  resulting  in  complex  behaviour  [4].  However, 
without  careful  design,  such  convenience  is  susceptible  to 
unwanted disruptive behaviour can arise. This is the case for 
example, of continuous loop oscillating between cooling and 
heating [5]. 

This problem is rooted in the presence of interacting rules in 
the  connected  devices.  Such  rules  are  fundamental  to  most 
ambient  intelligence  or  interacting  pervasive  computing 
systems.  Also,  temporal  delays  related  to  network  latency, 
speeds of processing, etc. can result in some devices receiving 
old information, contributing to unstable behaviour  [6]. This 
problem has been observed in our own systems (EU eGadgets 
project [7]), and is being observed increasingly in pervasive 
computing systems with distributed control [8].

In this paper we describe this phenomenon in more detail and 
present a theoretical framework, an Interaction Network (IN), 
which  captures  the  functional  dependencies  of  the  rules  of 
behaviour  in  pervasive  computing  systems,  and  represents 
them as a digraph. A Multidimensional Model (MDM) for task 
representation  is  introduced,  which enables  reasoning  about 
the devices composing the environment, in terms of their local 
state and temporal evolution. We present INPRES (Instability  
Prevention System), a set of algorithms to prevent unwanted 
cyclic behaviour. To evaluate our methods we have devised an 
Interaction  Benchmark (IB)  that  we  use  to  evaluate, 
experimentally, the effectiveness of our approach using both 
simulated and physical implementations based in our digital-
home  testbed,  the  iDorm.  Finally,  we  evaluate  a  hybrid 
strategy  comprising  INPRES  together  with  a  user-driven 
selective  node  disabling  mechanism,  which  we  term 
Intelligent Locking.

2. RELATED WORK

In home automation, instability due to cyclic behaviour has 
been  reported  in  the  EU  Project  CUSTODIAN 
(Conceptualisation for User involvement in Specification and 
Tools  Offering  the  Delivery  of  system  Integration  Around 
home  Networks).   This  project  was  funded  through  the 
European  Commission’s  Telematics  for  Improving 
Employment and Quality of Life Sector. Its central objective 
was to  enable access to technology and services for disabled  
and elderly people and use information and communication  
technologies  to  improve  the  quality,  effectiveness  and  
efficiency  of  services  which  support  the  independent  living  
and integration in society of disabled and elderly people  [9-
10].
In  this  project,  it  is  possible  to  specify  the functionality  of 
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each smart device, giving the logical condition that must be 
TRUE for  the  device to  be  activated.  A simulation  module 
propagated any change that  occurred in the network until it 
settled  down,  and  each  smart  device  modified  its  status 
according to its rules. When a device changed its status, the 
simulation module was notified by means of a message, and 
the  process  continued  until  all  devices  had  settled  down to 
their final  status.  In this work they noticed that under some 
circumstances  the  network  didn’t  stabilize  due  to  a  user-
programmed  “livelock”,  requiring  them  to  terminate  the 
process so that the network could be manually debugged [11].

Another example of cyclic instability in Ambient Intelligence 
is found in heating and air conditioning services.  In this case, 
on reaching certain temperature, an air conditioning is turned 
on, causing the temperature to drop below a certain level and 
triggering  a  heating  service,  resulting  in  periodic  behaviour 
[12-14].

In other applications software agents may be involved in 
cyclic  loops, for example in email mailing list,  where users 
have configured auto-replays that answer each other [15].

Also,  in  communications  and  distributed  asynchronous 
systems,  a  similar  problem  relating  to  the  assignment  of 
resources, known as a deadlock, has been encountered [16]. A 
deadlock state occurs when two or more processes are waiting 
indefinitely for an event that can only be completed by one of 
the waiting processes. In order to explain this more clearly, the 
concept of a WAITFOR graph is useful.

More formally, a WAITFOR graph for the allocation status 
of a set of resources is a directed bipartite graph  

€ 

D=(V,E) 
where  

€ 

V1 and  

€ 

V2  are  a  bipartition  of  

€ 

V .  The  elements  of 

€ 

V1={P1,...,Pn} represent  users  of  the  resources,  and  the 
elements of  

€ 

V2={R1,...,Rm}represent resources. For  

€ 

P∈V1 
and  

€ 

R∈V2 there  is  an  edge  

€ 

(P,R)∈E if  the  user  

€ 

P  
requested resource  

€ 

R  and has not been granted resource  

€ 

R , 
and  an  edge  

€ 

(R,P)∈E if  user  

€ 

P  has  been  allocated  the 
resource 

€ 

R .

FIG.  1:   Example  of  a  deadlock  in  a  WAITFOR  graph: 
USER1-DEVICE 3-USER3-DEVICE 1-USER1

If the WAITFOR graph contains a directed cycle, then there is 
a  deadlock  in  the  system.  The  simplest  case  is  when  two 

transactions are waiting, and each is dependent on the other. In 
Figure  1  we  can  see  a  deadlock  in  a  WAITFOR  graph, 
involving  the  loop  USER1-DEVICE  3-USER3-DEVICE  1-
USER1.

As  mentioned  previously,  a  deadlock  may  be  detected  by 
finding cycles in the WAITFOR graph, and a transaction could 
be selected for abortion to break the cycle. If the transactions 
have  different  priorities,  the  transaction  with  the  lowest 
priority is aborted. 

Deadlock can be viewed as being the opposite problem to the 
cyclic instability addressed by this paper as, in the case of a 
deadlock,  every  device  in  the  loop  is  static,  but  in  cyclic 
instability  every  device  or  agent  in  the  loops  changes 
indefinitely. However, the idea of “breaking the cycle” is  very 
useful, and we apply this principle as part of the Interaction 
Networks framework which we describe in the next section to 
find the  cycles  associated with rules  of  interaction between 
agents. In addition, the ability to associate different priorities 
to transactions is a useful concept which we use this to capture 
the  preferences  of  a  user,  thereby  allowing  the  least 
inconvenient transaction (programmed action) to the user to be 
disabled.

Research  into  ‘system  dynamics’  has  advanced  the 
understanding  of  the  dynamics  of  massively  interconnected 
systems.  From  this  work  what  is  termed  an  attractor  of  a 
dynamic system is an infinite loop in the state space (the same 
sequences  of  states  are  visited  each  time).  The  basin  of  
attraction is  defined  as  the  set  of  configurations  which 
converge toward an attractor.  However,  although a dynamic 
system can be solved theoretically (ie, finding the attractors 
and the basin) an important result is that it is not possible to 
solve  this  for  a  general  boolean  network  a  problem  that 
matches the type of pervasive computing environment we are 
addressing [17]. An additional problem is that perturbations to 
the system (when the user interacts with the environment) add 
significant complexity to the dynamics. It is useful to observe 
that  the  complexity  of  the  periodic  behaviour  problem 
addressed by this paper is  rooted in the rules  of  interaction 
between the  devices  as  the  time delays  can be  regarded  as 
being equivalent to a new initial condition to the system.

Even though system dynamics work has  shown it  is  not 
possible to solve an arbitrary system, it is possible to detect 
and prevent cyclic instability. We have developed a framework 
called  Interaction  Networks,  which  enables  the 
interrelationships  between the agents  due to  the rules  to be 
visualised,  and  a  mechanism  to  prevent  cyclic  behaviour 
called INPRES (Instability Prevention System) to be applied.

3. THE PROBLEM

In the previous section we reviewed several problems related 
to our research. From Complex Dynamics Systems, we found 
that  it  is  not  possible  to  theoretically  analyse  a  Boolean 
network  to  isolate  cases  of  instability.  In  addition,  initial 
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conditions play a very important  role on the dynamics of a 
system. From the domain of Distributed Systems, we found 
that a deadlock state occurs when two or more processes are 
waiting indefinitely for an event that can be completed only by 
one  of  the  waiting  processes.  This  could  be  prevented  by 
aborting  one  of  the  transactions  on  the  loop.  The  problem 
addressed in this paper is the other way around: two or more 
processes are running indefinitely.

In  summary,  as  explained  earlier,  this  paper focuses  on the 
behaviour of  autonomous interacting devices (eg rule based 
agents). Such devices can interact with each other according to 
rules provided by, in general, several users. Besides that, there 
can be some delays in the propagation of information between 
devices, due to different speeds of processing in each device, 
differences  in  computational  load  or  because  of  differing 
network paths. In situations where the state of one device is 
dependent on that of a second device, and vice versa, there is 
the potential for a closed loop and for oscillation. If oscillation 
is not wanted, then this is a problem that needs to be identified 
and eliminated, which is the motivation driving this research.

The objective of this research may be stated as providing the 
means to  identify  and stop unwanted periodic  behaviour in 
pervasive  autonomous  environments.  In  order  to  stop  this 
behaviour,  we  propose  the  use  of  an  Intelligent  Locking 
strategy which:

a) Detects loops in the Interaction Network 
b) Locks a variable in a candidate loop
c) Learns,  from  the  user  based  on  his  response  to 

locking  actions,  the  locking  priorities,  and  acts  on 
these (stored) priorities whenever a variable needs to 
be locked in the future.

This process of detecting loops and locking variables raises 
several  issues:  How to choose  the variable to  be locked,  if 
there are several variables in the loop? What happens if there 
are coupled loops (ie more than one interacting loop? When 
the  variable  should  be  locked;  immediately,  after  one 
oscillation (or more)  and for how long? What impact could 
this locking have in the original dynamics of the system? For 
example  would  it  inhibit  critical  behaviour  or  prevent  vital 
information being propagated throughout the system?  In this 
paper  we  present  results  from both  coupled  and  uncoupled 
systems. In order to have the least impact on the network, the 
node with least connectivity is locked. 

As  described  earlier,  the  strategy  to  eliminate  instability  is 
based  on  detecting  cycles:  either  isolated  cycles  (with 
potentially  independent  oscillations)  or  coupled  cycles 
(potentially, with very complex oscillations). In terms of the 
functional  dependencies,  the  behaviour  of  a  device  could 
depend on  a  single  or  several  devices.  Figure  2  presents  a 
taxonomy of the problem, which reflects the topological and 
functional aspects of the agent instability problem. 

TAXONOMY

TOPOLOGY 

DEPENDENCIES 

ACYCLIC

CYCLIC

ISOLATED

COUPLED

1 POINT

+1 POINT

1 VARIABLE

+1 VARIABLE 

FIG. 2: Taxonomy of the inter-agent instability problem.

As  will  be  described  later,  the  user  may  interact  with  the 
agents which could alter the behaviour of the system, leading 
it new periodic behaviours (ie a new initial state), which may 
be unwanted and need to be stopped. 

In  order  to  study  this  problem,  we  first  introduce  some 
definitions  and  use  these  to  describe  the  principles  of  an 
interaction network. In the following description we use the 
term agent as meaning any autonomous interacting rule-based 
control device.

4. THEORETICAL FRAMEWORK

In  order  to  solve  the  problem  of  instabilities,  we  have 
developed a graph-based formalism, the Interaction Networks 
(IN). This Interaction Networks let us reason about multiagent 
system, showing the mutual interdependencies of the rules of 
behaviour of them. 

4.1 Interaction Networks

A directed graph 

€ 

G (also known as  digraph) consists of a 
finite set 

€ 

V of vertices or nodes, and a binary relation 

€ 

E  on 

€ 

V
. The graph 

€ 

G is denoted as 

€ 

(V,E). The relation is called the 
adjacency relation. If 

€ 

w is relative of 

€ 

v , i.e. 

€ 

(v,w)∈E, then 

€ 

w is adjacent to 

€ 

v  [18].

An agent 

€ 

A  is an autonomous device with a state  

€ 

s∈{0,1}, 
where 0 and 1 mean off and on respectively. If  we have  

€ 

n 
autonomous  devices  agents  

€ 

A1,A2,...,An the  state  of  the 
system is 

€ 

S=(s1,s2,...,sn). Each agent 

€ 

Ai has two rules: 

                                    If 

€ 

ϕ i  then 

€ 

si =1                                 (1)
                                    If 

€ 

ψ i  then 

€ 

si =0                                (2)
where 
                                 

€ 

ϕi,ψi:Sn→{0,1}                               (3)

An Interaction Network (IN) is a digraph 

€ 

(V,E) in which the 
vertex  

€ 

v∈V is  a  pervasive  autonomous  agent  

€ 

A  and 

€ 

(vi,vj)∈E if  the  Boolean  functions  

€ 

ϕ j  or  

€ 

ψ j  of  the 
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pervasive autonomous agent 

€ 

A j depends on the state 

€ 

s i  of the 
agent 

€ 

Ai .

Let  

€ 

U⊆S be a subset of 

€ 

S . Because of the dynamics of the 
system,  the  system  will  produce  a  sequence  of  states 

€ 

U1,U2,U3,...,Up. If this sequence of states is periodic, then the 
subsystem 

€ 

U  is said to be periodic.

The  functionality  of  a  node is  defined  as  the  number  of 
descendants in the Interaction Network. This characteristic of 
a node is very important, as it shows the impact of a device in 
the system, in  terms of  the  number of  devices  whose  rules 
could be triggered.  

Figure  3  provides  an  example  of  an  Interaction  Network, 
showing  the  dependencies  of  5  devices  or  services:  Sofa 
Sensor, Light Sensor, MP3 Player, Light, and Word. The light 
depends on the state of the light sensor, and in the state of the 
MP3 player.  The software application  word depends on the 
state  of  the  light,  and  in  the  occupancy  of  the  sofa  (sofa 
sensor).

FIG.  3:   Example  of  the  Interaction  Network  showing  the 
dependencies  of  5  devices  in  pervasive  computing 
environments.

4.2 Multidimensional Model for Task Representation

A temporal allocation is  a tuple  

€ 

(d,T,ti,tf),  where  

€ 

d  is  a 

simple device, 

€ 

T  is a simple task, 

€ 

t i  is the initial time and 

€ 

t f  
is  the  final  time.  In  other  words,  the  device  

€ 

d  will  be 
performing the task 

€ 

T  during 

€ 

tf −ti units of time, beginning 
on the instant 

€ 

t i .
So, a temporal community, denoted by 

€ 

C t , is a non-empty set 
of temporal allocations: 

                               

  

€ 

Ct = {(dj,Tj,tji,tjf)}
j=1

k

U                        (4)

This definition  allows us to locate the devices in a 3-axes 
graph: device, task (or state) and time [19].

This model is used in section 5.2 in order to show, in detail,  
the dynamics of the systems tested in the iDorm. 

4.3 Instability Prevention System (INPRES) and 
Intelligent Locking

Our strategy  (Patent No: GB 0624827.2) is based on finding 
all the simple cycles in the digraph, and for each cycle, lock 
the node with minimum functionality:

Cycles C =extractCycles(Graph g);
for each cycle c in C:

list.empty(); //initialize list
for each node n in c:
  f=functionality(g,n,c);
  list.add((n,f));     
od;
nodeMin=list.min();
nodeMin.lock();

od;

The  strategy  has  several  auxiliary  functions.  The  first  is 
functionality.  This function receives as arguments the 
graph  g,  the  node  n and  the  corresponding  cycle  c.  It 
temporally deletes all the nodes of the cycle c in g, returning 
the number of total descendants of the node  n in the graph, 
using ‘depth-first’ traversal:

int functionality(Graph g, node n, cycle c):
      g’=g-c+n;

return DepthFirst(g’,n).Length();

The function  extractCycles prunes all the root nodes in 
the graph (as they cannot be part of a cycle), storing all the 
remaining nodes in list. For each node n in list, a search 
for cycles is performed by the function analyze: it receives 
the node n as argument, and maintains a list for each branch 
of a ‘breadth-first’ traversal. If the node n is found, a cycle has 
been found and it will not be expanded further. If a repeated 
node is  found,  the  list  containing it  is  pruned.  The process 
terminates  when  it  is  not  possible  to  expand  the  list  of 
branches further, and the function analyze returns the list of 
all cycles, which will be stored in the list cycles. When all 
the  nodes  in  list have  been  searched  by  the  function 
analyze, repeated cycles are removed and the remaining list 
of cycles is returned:

Cycles extractCycles(Graph g):
list = prunnedList(g);
for each node n in list:
   c = analyze(g,n);
   cycles.add(c);
od;
return cycles.removeRepeatedCycles();

It is important to notice that, as we are interested on finding 
the members  of  a  cycle,  permutations of  the members of  a 
cycle are considered indistinguishable (ie we are considering 
the cycles as sets of nodes).
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5 IMPLEMENTATION AND RESULTS

5.1 Computer Simulations

The  experiments  used  64  interacting  agents.  These  agents 
were  allocated  in  a  grid  of  

€ 

4×4×4 (see  Figure.  4).  The 
experiments were implemented using Mathematica® 6 [20], a 
programming  language  with  powerful  tools  for  quick 
prototyping.  In  particular,  the  package  Combinatorica  [21] 
was extremely useful,  as it  provided tools for graph theory, 
graphics and combinatorics. 

Using the simulator  it  was possible to  control  a  number  of 
parameters, such as the number of agents involved, probability 
of perturbations, generation of random topologies and random 
rules of interaction, amongst others. Boolean functions were 
assigned  randomly,  as  rule  of  behaviour,  to  each  device 
represented  as  a  binary  string,  where  0  and  1  would  be 
interpreted as an OR and AND gates respectively.

The experiments used the following topologies:

a) non-coupled systems, 
b) coupled in 1 point 
c) coupled in two points 
d) random systems. 

FIG. 4: 64 agents allocated in the nodes of a grid.
 

5.1.1 Non Coupled Systems

For  the  case  of  non  coupled  systems,  64  agents  were 
distributed over a grid of 

€ 

4×4×4 (see Fig 5.) with 16 cycles 
of length 4 being used.

FIG. 5: Grid with 64 nodes, and 16 uncoupled cycles.

The rules of interaction were set randomly: {0,1,1,0,0,0,1,1,0, 
0,0,1,1,1,1,1,0,1,1,0,0,0,1,0,1,0,1,0,1,0,0,0,0,0,1,1,1,1,1,0,1,1,
1,1,1,0,0,0,1,0,1,0,0,1,0,1,0,1,0,0,0,0,0,1}.  The  initial 
condition was set randomly also. Under these conditions, the 
system oscillated as shown in Figure 6. As we can see,  the 
perturbations take the system from one mode of oscillation to 
another. 

FIG.  6:  Oscillations  for  the  case  of  a  system  with  16 
uncoupled cycles. No locking was applied. 

When the locking mechanism was applied, the instability was 
removed, as shown in Figure 7. 16 nodes have been locked, 
and  the  locking  vector  of  the  system  was:  {0,1,0,1,1,1, 
1,1,0,1,0,1,1,1,1,1,0,1,0,1,1,1,1,1,0,1,0,1,1,1,1,1,0,1,0,1,1,1,1,
1,0,1,0,1,1,1,1,1,0,1,0,1,1,1,1,1,0,1,0,1,1,1,1,1}.
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FIG. 7: Systems with 16 cycles. The systems has been locked 
and the oscillations have stopped. 

5.1.2 Coupled Systems: one point

For the case of coupled systems  ‘in one point’, we used the 
topology defined in Figure 8. In order to create this topology, 
we added a cycle to the middle of the corresponding plane of 
the topology shown in Figure 7. The rules of interaction were 
{1,0,1,0,1,1,1,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0,1,1,0,0,0,0,1,0,1, 
1,0, 1,1,1,0,0,0,1,1,1,1,1,0,1,1,1,1,1,0,1,0,1,1,1,1,1,0,0,0,0,0}. 

FIG. 8:  Grid with 64 nodes,  and  20 cycles  coupled in  one 
node. 

Without locking, the system oscillated as shown in Figure 9. 
The discontinuities in Figure 9 were not related to the 
dynamics of the system, but to the scale of the graph, as we 
were focusing on the oscillations. 

FIG. 9:  Oscillations for the case of 20 cycles coupled ‘in one 
point’.

When  the  locking  was  applied,  the  oscillations  were 
prevented. In this case 20 nodes were locked, and the locking 
vector  was: 
{0,1,0,1,1,0,1,1,0,1,1,0,1,1,1,1,0,1,0,1,1,0,1,1,0,1,1,0,1,1,1,1,0
,1,0,1,1,0,1,1,0,1,1,0,1,1,1,1,0,1,0,1,1,0,1,1,0,1,1,0,1,1,1,1}. 
Figure  10  shows  the  evolution  of  the  system  without 
oscillations.  There  were  some  spikes  due  to  the  random 
perturbations (emulating a user interacting with the system), 
but after the user perturbations (ie spikes) the system stabilised 
again.

FIG. 10:  System with 20 cycles coupled in one point. The 
system is stable after locking. 

5.1.3 Coupled Systems: two points

In order to have coupled systems ‘in two points’, we grew the 
digraph with 20 cycles coupled in one node shown in Figure. 
8. For each plane 4 edges were added as shown in Figure 11. 
With this,  each plane has 10 cycles,  and 40 cycles in total. 
Central  cycles  share  one  or  two nodes  with  each  of  the  8 
remaining cycles. 

 © Essex University 2009 6



In the International Journal of Pervasive Computing and Communications, Vol. 5 Iss: 2, pp.163 – 186, 2009

FIG. 11: Grid with 64 nodes, and 40 cycles. Coupling in two 
nodes. 

The rules of interaction  were: {0,1,1,0,0,1,0,1,1,1,0,0,1,0,1,0, 
1,1,0,0,0,0,1,0,1,0,0,1,0,1,1,0,0,0,1,0,0,0,0,0,1,0,1,1,1,1,0,1,1,
0,1,0,1,1,1,1,0,1,0,0,1,1,0,0}.  Without  locking,  the  system 
oscillated  as  shown  in  Fig.  12.   Due  to  the  random 
perturbations, the system presented two modes of oscillation. 

FIG. 12: Grid with 64 nodes, 40 cycles and coupling in two 
nodes. The system was unstable. 

FIG. 13: Response of the system with 64 nodes and 40 cycles. 
After the locking, the system was stable. 

When the locking mechanism is applied, the system  became 
stable.  In  this  case  the  locking  vector  was: 

{0,0,1,0,1,0,1,0,0,1,1,1,1,1,0,1,0,0,1,0,1,0,1,0,0,1,1,1,1,1,0,1, 
0,0,1,0,1,0,1,0,0,1,1,1,1,1,0,1,0,0,1,0,1,0,1,0,0,1,1,1,1,1,0,1}. 
The evolution of the system is shown in Figure. 13. 

5.1.4 Arbitrary System

In order to test our approach with an arbitrary system (as one 
person  could  set  in  a  real  intelligent  environment)  we 
generated randomly the topology and rules of interaction of a 
system with 4 agents, allocated in a grid structure. The rules of 
interaction  were:  {0,1,0,1,0,1,1,0,1,0,0,0,0,0, 
1,1,1,1,0,1,1,1,0,1,1,0,0,1,0,0,0,1,1,0,1,0,1,1,1,0,0,0,0,1,1,0,0,
1,1,1,0,1,0,0,0,1,0,0,0,1,0,0,1,0}. Figure 14 shows a digraph of 
the system. The algorithm found 81 simple cycles. 

 

FIG.  14:  Grid  with  64  node  and  random connections.  The 
system had 81 cycles. 

The system showed oscillations, that are shown in Fig. 15. 

FIG. 15: Response of the system with 64 nodes and 81 cycles, 
showing instabilities. 

When  the  locking  mechanism  is  applied,  the  oscillatory 
behaviour was prevented. In this case the locking vector was 
{1,1,1,1,1,0,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1, 
1,1,0,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,0}. 
Figure16 shows the response of the system with locking. 
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FIG. 16: Response of the system with 64 nodes and 81 cycles. 
When the locking is applied, the system was stable. 

5.2 Implementation in the iDorm

5.2.1 Experimental Setup

The  iDorm  is  a  multipurpose  space,  taking  the  form  of  a 
domestic  apartment,  with areas  for  varied  activities  such as 
sleeping,  working and entertaining. It  is  based around three 
wired  networks,  Lonworks,  1-wire  (TINI)  and  IP plus  two 
wireless networks; WiFi & Bluetooth. Universal Plug and Play 
(UPnP)  is  used  as  the  common  interface  to  the  iDorm, 
enabling automatic discovery and configuration. Our system 
was built on top of the low level UPnP control architecture, 
enabling  it  to  communicate  with  the  UPnP  devices  and 
orchestrate their action in the iDorm [22].

5.2.2 Experiments: Automatic Locking using INPRES

In  order  to  test  our  approach  with  a  real  intelligent 
environment, we used a system with 4 devices. The topology 
of the Interaction Network (IN), in terms of the adjacency list 
for this 4 devices is {{1,2},{2,3},{3,2},{4,3}}, where devices 
1 and 4 are software-based UPnP lights.  Device 2 is the bed 
light, and device 3 is the desk lamp. The system has one cycle 
including the bed light and the desk lamp. In Figure 17 we can 
see the system’s Interaction Network.  In these experiments 
we utilized the Multidimensional Model (MDM) to represent 
and visualize the local state of the devices in the environment. 

FIG.  17:  Topology  of  the  Interaction  Network  (IN)  for  4 
agents.  Agents  2  and  3  are  lamps,  and  agents  1  and  4  are 
software-based lamps. There is a cycle involving lamps 2 and 
3. 

The rules of interaction are encoded as {0,1,1,0}, where 1 is 
an AND gate, and 0 is an OR gate. The bed and desk lamp 
were allocated an AND gate,  whilst  agents  1 and 4 an OR 
gate. As in the simulations, if there was only one argument for 
the Boolean functions AND and OR, they behave as identical 
functions: AND(x) = OR(x) = x. 

In this experiment, the user interacted with the system. If there 
was  no  locking,  the  system was  instable.  In  Figure  18  the 
evolution of the system was presented using the  MDM. The 
agents involved in the oscillations were agents 2 and 3. Figure 
19  shows  the  evolution  of  the  system,  using  a  decimal 
representation of the states of the system, corresponding to the 
MDM in Fig. 18. This shows the oscillations of the system, 
together  with  the  delays  due  to  the  different  velocities  of 
processing, network delays, etc. 

(a) (b) (c)
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(d) (e)

FIG.  18:  Evolution  of  the  system  using  the  MDM,  and 
showing  instability. 

FIG. 19: Evolution of the system without locking, showing 
delayed oscillatory behaviour.

When the locking mechanism is activated, agent 2 (bed lamp) 
had been locked. The only way agent 2 could change its state 
was when the user turned it on/off.  Figure 20 (a) shows the 
initial  state  of  the  system  (1,1,1,1)  followed  by  the  user 
turning device 2 off.  After some delay, due to the rules, agent 
3 is in an off state, and the system is stable. In Figure 20 (b) 
the user  turns  on agent 3,  but  because of  the rules  and the 
locking of agent 2, the system goes back to the state (1,0,0,1). 
In Figure 20 (d) the user turns on agent 2 and, after a delay, 
the system goes to state (1,1,1,1). This is consistent with the 
representation in Figure 21.

(a) (b) (c)

(d) (e)

FIG. 20: MDM of the system with agent 2 locked

FIG. 21: Evolution of the system when agent 2 is locked. The 
spikes represent  the user  interaction with the system, which 
rapidly goes back to the previous state due to the locking. The 
flat spike represents a delay on the response of the system (see 
Fig. 20 b). 
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Figure 22 and 23 shows another example, when the system is 
locked in agent 2. In Fig. 22 (b) agent 2 is turned on, when 
agent 1 and 3 are off; due to the rules, agent 2 should be off, 
however, because it is locked, it remains on.

(a) (b) (c)

(d) (e)
FIG. 22: MDM of the system when agent 2 is  locked. The 
system is stable. 

FIG. 23: Response of the system when agent 2 is locked. 

5.2.3 Hybrid Solution: Automatic Locking using INPRES 
and User-based locking

As was shown, a member of a loop needs to be locked in order 
to have a stable system. Under some circumstances, the user 
may want a specific device on; however, as we have shown, if 
that device is not locked, the system could automatically turn 
it off. This is the case of Figure 20 (b) where the user turns on 
agent 3, but because of the rules, and the locking of agent 2, 
the system automatically turns off agent 3. 

In order to prevent this situation arising, it is possible to refine 
our  approach  with  a  hybrid  solution:  In  first  instance  the 
strategy  defined  by  INPRES  is  used  in  order  to  prevent 
instabilities (locking agent n); once the system is stable, the 
device the user has just interacted with is locked (if that device 
is part of a cycle): 

automaticLocking();//node n is locked
if the user interacts with agent n’:

if agent n’ is part of a Cycle :
lock(agent n’);
unlock(agent n);

fi;
fi;

In order to capture the user interaction with the system, the 
user is provided with an 8 button controller (on/off for each 
device - see Fig. 24).

FIG. 24: Controller for user interaction. 

Figure 25 and 26 shows the evolution of the system using the 
hybrid strategy.  Agent 3 is locked automatically, being in state 
‘off’.  The user  then  turns  on agent  3,  and  agent  3  remains 
locked (Fig. 25 a).  In Fig. 25 (b) the user turns off agent 4, but 
it  is  not  locked as  it  was not  part  of  the  loop.   At  around 
iteration 30, agent 1 is turned off, and agent 2 is automatically 
turned off; agent 3 remains on because it is locked. In Fig. 25 
(c) agent 2 is turned on and is locked, preventing any change 
(without  the  locking  it  would  automatically  be  turned  off); 
agent 3 is not locked anymore, and is automatically turned off. 
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(a) (b) (c)

(d) (e)

FIG.  25: MDM of the system showing the user based locking.

FIG. 26: Evolution of the system, showing stability due to the 
user-based locking. 

Figure 27 and 28 shows another example of the strategy. In 
this case agent 3 is locked automatically. In Figure 27 (b) all 
the agents 1, 2, and 4 are off, while agent 3 (locked) is on. In 
Figure  27  (d)  the  user  turns  on  agent  2  (now  locked), 
preventing any automatic change.

(a) (b) (c)

(d) (e)

FIG.  27: MDM of the system.

FIG. 28: Evolution of the system.

5.3 Results Discussion

We have implemented and tested a strategy to prevent cyclic 
behaviour  using  both  computer  simulations  and  real 
networked  devices.  The  simulator  was  programmed  in 
Mathematica ® 6, using 64 agents distributed over a grid of 

€ 

4×4×4 (see Fig. 4). Consistent with our taxonomy, we used 
4  topologies:  non-coupled  cycles,  coupled  cycles  (1  point), 
coupled  cycles  (multiple  point),  and  finally  a  randomly 
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generated  system.   Our  algorithm  to  find  cycles  correctly 
identified  16,  20,  40  and  81  simple  cycles  respectively.  In 
order to visualize the evolution of the system over time, we 
used  the  decimal  representation  of  the  binary  state  of  the 
system.

As part of our experimental procedures we first calibrated the 
systems in order to have a set of rules that could induce cyclic 
behaviour. These rules were generated randomly and for each 
case we showed the instabilities. In the cases of non coupled 
system  and  the  system  coupled  in  2  points,  the  random 
perturbations (playing the role of a user interacting with the 
environment)  drive  the  system  to  show  different  modes  of 
oscillations. In all the cases our INPRES system proved able 
to prevent instabilities satisfactorily.

In the case of systems with 40 and 81 cycles, INPRES locked 
28 and 9 agents respectively. As our algorithm was based on 
locking one agent  in each  cycle,  clearly INPRES chose the 
same agent to be locked for multiple cycles. 

In order to test our strategy with real networked devices, we 
used  system  with  4  agents  (see  Fig.  17).   As  mentioned 
previously,  time  delays  can  play  an  important  role  in  the 
instabilities [6]. For instance, in Figure 19 we have oscillations 
together  with  delays.  In  all  the  cases  INPRES  removed 
satisfactorily  all  the  instabilities,  as  these  delays  can  be 
interpreted  as  equivalent  to  perturbations  generating  new 
initial conditions to the system.

The Multidimensional Model MDM proved to be a very useful 
tool  to  analyze  locally  the  evolution  of  the  system.   In 
particular,  it  helped  to  interpret  the  spikes  present  in  the 
iteration-state graph of the evolution of the system. 

We also used a hybrid strategy combining automatic and user 
based locking.  We used INPRES to automatically  lock the 
system  and,  after  that,  we  adapted  the  locking  using  user 
interaction. If a device was directly interacted with by the user,  
we locked that device if it was part of a cycle.  This approach 
proved more satisfactory to the user as the system, due to the 
rules,  could reverse the user’s last  interaction. This was the 
case shown in Figure 20 (b) where agent 2 is locked, and the 
user turns on agent 3, however due to the rules and the locking 
of agent 2 the system automatically turns agent 3 off. 

6 CONCLUSIONS AND FUTURE WORK

In  this  paper  we  have  addressed  the  problem  of  cyclic 
instability  that  occurs  in  pervasive  computing  systems 
composed  of  multiple  distributed  interacting  pervasive 
computing devices (rule based agents). Earlier systems, such 
as  smart  homes,  were  based  mainly  on  centralized  control 
servers  where  such  problems  do  not  exist.  The  move  to 
distributed models has exposed this issue which is rooted in 

interacting rules and delays between interdependent devices, 
We have discussed how this issue relates to other engineering 
domains such as dynamic systems and distributed computing. 

Dynamics  systems  are  closely  related  to  our  research, 
because  they  show complex  behaviour  that  depends  on  the 
interaction of the members of the system. In order to solve a 
dynamic system,  it is necessary to find the attractors and the 
basin.  The  evolution  of  the  system  depends  on  the  initial 
conditions,  and  in  general,  it  is  not  possible  to  solve  it 
theoretically. This is a very important result, because it shows 
that  periodic  behaviour  depends  on  the  rules  of  interaction 
between agents.

In the domain of distributed system, the problem of deadlocks 
has  some similarities to our problem:  devices and users are 
waiting for further interaction, but in our problem the agents 
are interacting indefinitely. A deadlock can be found if there is 
a loop in the WAITFOR graph, which can be solved aborting a 
process in the loop.

We  have  presented  an  Interaction  Network,  which  is  a 
mathematical  model  based  on  a  directed  graph that  lets  us 
reason  about  the  rules  and  the  interaction  of  the  devices, 
showing the interdependencies of  rules.  These dependencies 
could be cyclic, leading our system to an oscillatory state.  We 
have  also  presented  our  Instability  Prevention  System 
INPRES, which is a strategy based on finding the cycles in the 
IN associated,  in order  to  lock a device with the minimum 
functionality,  ie,  the  minimum impact  on  the  network.  We 
tested  successfully  this  strategy  using  not  only  computer 
simulation but an implementation in the iDorm, our test bed.  

Whilst it  would be possible to use any network topology to 
evaluate our system it  is  preferable to  have  an arrangement 
that is both easy to reason about and for others to duplicate as 
part  of  verification  or  benchmarking  results.  Therefore  we 
have proposed the use of a 3D grid to allocate the agents and 
allow the complexity of the tests be grown in an ordered and 
intuitive way. We refer to this as the  Interaction Benchmark 
(IB).  In  the  IB,  the  complexity  of  the  topology  can  be 
controlled  using  4  independent  but  identical  layers  of 
interconnected devices and by increasing the number of edges 
progressively for subsequent trials (which, as a consequence 
results  in,  additional  cycles  in  each  tested  topology).  This 
independence is evident to the observer, but not to the search 
and locking algorithms used by INPRES. We hope that this IB 
will, in itself, be a useful model for other researchers.

In our tests, for the IB, we have adopted a random topology 
and rule set based on a symmetric 4x4x4 array (ie 64 nodes or 
agents).  Whilst some nodes were disconnected (for example, 
node 4 and 29 in figure 14), our algorithm found 81 cycles, 
with  9  nodes  locked  (to  provide  a  stable  system).  These  9 
nodes  covered  all  the  possible  instability  cycles,  indicating 
there  was  a  high  degree  of  overlap  between  the  cycles 
(otherwise more nodes would have needed to be locked). 
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It  is  important  to  note  that  cycles  having  exactly  the  same 
elements,  disregarding  their  connectivity  or  order,  are 
considered  to  be  indistinguishable  by  INPRES,  and  do  not 
need to be considered nor locked separately. 

It  is  evident  from examining  the  results  presented  that  the 
algorithm  defined  by  INPRES  proved  to  be  successful  on 
removing oscillations in all the cases. 

In  the  experiments  performed  in  the  iDorm  we  use  the 
MDM,  which  proved  to  be  a  very  useful  for  analyzing 
individual behaviour due to its expressiveness and simplicity. 
This  model  could  be  used  in  larger  systems focusing  on  a 
small  subset  of  the  whole  system,  ie,  in  a  convenient 
neighbourhood in the device-time-state space (see Figure 39).

Using  the  MDM,  we  realized  that  event  tough  INPRES 
prevents successfully the cyclic behaviour, it has a drawback: 
due to the rules and the state of the system, the device that the 
user  has  just  interacted  with  (changing  its  sate),  could  be 
reversed. This can be possible because of several conditions: 
state of the system, rules, and the device locked.  The strategy 
can be improved using a hybrid approach: using an automatic 
locking using INPRES, and after that adjust the locking using 
the  user  interaction.  This  hybrid  approach  was  tested 
successfully  in  terms  of  the  prevention  of  oscillations; 
however, more research is needed in this direction using more 
realistic scenarios. 

In our experiments with coupled systems, we found out that 
sometimes it is not so easy to find instabilities, compared to 
systems  with  less  coupling  or  less  number  of  cycles.  We 
postulate  that  high  coupling  and  high  number  of  cycles 
contributes  dramatically  to  this  self-locking;  however,  more 
research  is  needed.  We  look  forward  to  reporting  on  our 
progress in this direction in future publications. 

Finally,  before  this  work  there  was  no  framework  for 
analysing  and  eliminating  problems  of  unwanted  cyclic 
behaviour related to the interaction of rule-based autonomous 
agents  in  pervasive  and  intelligent  environments.  The 
Multidimensional Model, Interaction Benchmark, Interaction 
Network Theory, Instability Prevention System and intelligent 
locking  techniques  described  in  this  paper  offer  a  practical 
solution to this problem. 

FIG. 29: This graph shows instability using the MDM for the 
case of 64 nodes. Focusing on a small part of the information 
sometimes could be useful in order to process and analyze the 
dynamics of the systems.
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