Presented at Second International Conference on the Advanced concepts in: Applications of Digital
Information and Web Technologies, ICADIWT '09. pp494 - 499, 4-6 Aug 2009

Discovering the Home : Advanced Concepts

James Dooley Vie Callaghan

Hani Hagras Phil Bull

Intelligent Inhabited Intelligent Inhabited Intelligent Inhabited — Customer Networks

Environments Group, Environments Group, Environments Group,

University of Essex, University of Essex,
UK. UK.
Jpdool(@essex.ac.uk vic@essex. ac.uk
Abstract

In this paper we present the experimentally
validated discovery methods of our “Nexus”
framework for use in home networks. These methods
allow “client” software applications to dynamically
search and access an entire set of distvibuted
software resources in a home network in close to
real time. The novelty of this framework is two-fold;
firstly, no prior knowledge of the network is required
by the client application. Secondly, the network itself
does not need to actively maintain state by using
servers/registries/caches.

1. Introduction

With an increasing deployment of heterogeneous
electronic devices and associated soft resources
(media, data files, processes, etc) into our homes,
there is an opportunity to compose applications from
these functional resources at runtime. This applies
not only to a small sub-set of application domains
(entertainment or lighting automation), but to nearly
all functionality that exists in our homes
(safety/security, communications, air conditioning,
monitoring, lifestyle, etc). This has been the vision of
pervasive/ubiquitous computing research [1][2] for
some time now.

To illustrate this, consider the “jukebox” example
where an application discovers hardware (speakers,
GUI displays, person tracking) and software
resources (codecs, audio files/playlists) necessary in
the “Home Area Network” (HAN) to fulfill user
requirements. Such an application would retrieve the
audio files/streams (source) according to user
preferences, pass them through the necessary codecs
(processing) and attempt to stream the audio to
speakers and present a GUI to the user
(output/render). The speaker outputs and GUI could
be dynamically changed in response to users moving
through the home environment (using the person
tracking component).

In order for this to be realised, unified
methods/models are required to allow the entire set

Group, British
University of Essex, Telecom, UK.

UK. phil bullbt.com
hani(@essex.ac.uk

of resources available in the HAN to be discovered
and utilised by software across differing application
domains. Furthermore, these methods/models must
operate under the constraints of real world home
environments.

In [3] we presented the overall conceptual view of
a unifying middleware framework we call “Nexus™’,
in which all software resources in a network can be
uniquely identified, discovered, located and
described. In that paper we addressed the basic
requirements of discovery (discovering all the
entities in a HAN) and lookup (finding the location
of a specific entity given its unique identity). The
experimental results we reported demonstrate an
improvement in performance time by two orders of
magnitude when compared to other middleware
solutions. In this paper we provide more detail of the
nexus framework, in particular we describe

1. The “Entity Model”,

2. The Network model,

3. An overall software framework for
deplovment,

4. Advanced distributed search methods.

In earlier work, we have shown that, current
methods are unsuitable for time efficient discovery
of distributed, high volume, resource deployments
[3] Also, current approaches do not offer generic
abstractions which are required to allow a multitude
of resource types to be used across differing
application domains.

2. Functional Requirements

Formally, a HAN 1s composed of a set of software
entities (SE) distributed over a set of physical
devices (ID). Where an individual (and uniquely
identified) entity (£) is hosted by an individual
device (d). Additionally, the set of entities which a
single device (d) hosts 1s labelled (E), and every (E)
1s a subset of (SE). Inversely, we say that (SE) 1s the
superset of entities in the HAN.

From the superset of entities (SE) in a HAN,
discovery 1s the process of retrieving a subset that

1 : From the word meaning *“a connected group”!

fulfills certain criteria. The exception to this rule is
the DISCOVER ALL OP operation which
unconditionally selects all entities (otherwise known
as an enumeration). When there are large numbers of
entities in a HAN, this is clearly going to take a
(relatively) long time. At the other extreme is the
lookup operation (DISCOVER_OP) which specifies
the unique identity of the single entity to be retrieved
(this however requires prior knowledge of the entity
ID).

There is a very obvious need for additional
operations which can find entities based on certain
specifiable criteria (and fills the gap between
specificity and enumeration). More formally (and
forming our first requirement); we need a standard
set of selection functions to map members of the set
(SE) into a “results” set (RE). Where :

re € RE,
then,
f:RE — SE, f(rg)=r¢

That is; the function f is the inclusion map of
(RE) into (SE).

Naturally; if we are selecting entities based on
specifiable criteria, each entity must have an
information space against which we can evaluate our
selection functions. This forms our second
requirement; Each entity must have an associated
information space against which selection functions
can be evaluated.

These two requirements are addressed in sections
4 and 3.1. respectively.

3. Model

In this section we describe the Nexus model, with
specific emphasis on the concepts needed to
understand the discovery methods presented in the
next section. With regards to the second of our
functional requirements, the information space is
described as a set of facets in [3.1.Entity Model].

3.1. Entity Model

In the Nexus framework, an individual software
resource is known as an “Entity” [Figure 1]
independent of what it exactly is (this is similar to
the concept of an object in object-oriented
computing). This abstraction forms the basis of our
“Entity model” and allows equal treatment of files,
processes, humans, agents, devices, etc.

Each individual entity has a unique immutable
namespace qualified identity formatted as a URN
(universal resource name). Additionally, each entity
is self describing and presents its information space
to the network. This information space is composed
of individual XML encoded knowledge
representations called “Facets”. Each facet declares a
“knowledge language” to which it adheres, thig is
enforced through XML schema (XML documents
can be validated against XML schema). An

Presented at Second International Conference on the Advanced concepts in: Applications of Digital
Information and Web Technologies, ICADIWT '09. pp494 - 499, 4-6 Aug 2009

individual facet is identified by the URN of the
language that it obeys, therefore a gpecific item of
information can be identified as :
“<Entity-ID>.<Facet-Name>.<XPath>"
Where an XPath is a standard (W3C) way of
querying a single XML document for content.

EJURN
Atnibutes
~ nameSpace : String
— name : String

Operations
+ getNamespace() : String
+ getNamel) : String

_— = 1

<<interface>> <<interface>>
[Entity | Facet
Attributes Attributes

- facetType : URN

- content : Document

- entitylD : URN
- facets : FacetMap

Operations 1 Operations
+ getFacetType() - URN

+ getContent() : Document

+ getidentity() : URN

+ getAllFacets() : FacetList

+ getFacet(facetType - URN) : Facet

+ getAllGroups() - GroupUrnList

+ getMembershipCertificate(grouplD : GroupURN) : void

[ElLocalEntity
Attributes ElLocalFacet
Amnbutes

Operations
+ addFacet(newFacet - LocalFacet) : void I Operations

+ removeFacet(facetType : URN) : void 1 0. + updateContent(update : String) - voic
+ joinGroup(groupiD : GroupURN) : void
+ leaveGroup(grouplD : GroupURN) : void

Figure 1: UML class diagram of the basic Entity
components.

[Figure 1] shows the Entity and Facet interfaces
in UML and the concrete “local” implementations.
These concrete classes are the entities themselves,
which specific entity implementations can extend (or
simply populate with the necessary facets).

Not shown are the concrete “proxy” classes
which network clients use to represent the remote
entity and Facet objects (and which hide the network
layer interactions).

3.2. Network Model

Unlike other middleware models, nexus clients
directly find and interact with entities (no middle-
man). This is in contrast to the typical method of
dynamically locating “servers”, then
programmatically interacting with those servers to
access items (for example finding a multimedia file
in UPnP requires that the “media servers” are first
located, then the “media server interface™ be
interacted with on each of those servers to find the
actual files). The result is that fewer interactions are
required by fewer network components, thus
improving task performance time and reducing the
number of possible failures that could occur.

On first ingpection this would suggest that the
network model employed is flat, making it hard to
manage. To combat this, the Nexus model supports
native grouping. A group is itself an entity and can
therefore be interacted with in the same ways (has
identity, has an information space, can be
dynamically discovered, etc.). Each group has a
policy that governs its specific behavior. The two
most notable properties that are enforced through
this policy are :

1. Embedding : Governs whether or not sub-
groups can be embedded within this group.
The consequence of allowing this is the
formation of a hierarchical tree with a root
group.

2. Duplication : Governs whether or not an
entity can exist in multiple subgroups of the
same tree. If this is not allowed, the root
group can be considered a superset, with
each sub-group forming a sub-set.

The combination of these two behavioral
modifications allow the single group concept to be
treated as strict sets, single groupings or hierarchies.

When an entity successfully joins a group, it is
given a cryptographically signed (currently using an
512-bit RSA algorithm to create an SHA-1 signature)
membership certificate. This certificate declares that
the entity is a valid member of the group for a certain
time period (a quantum). Third parties can validate
the certificate using the public key of the group
which 1is freely available (published in the groups
information space).

Multiple root groups may exist in a single HAN,
to fulfill different requirements. A single entity can
belong to as many different group trees as is
necessary (but can only be duplicated in the same
tree if permitted by the group policy).

As an example, consider a group which reflects
the physical layout of a home. The root group may
represent the home itself, with several sub-groups
representing the rooms/spaces in the home (such as
kitchen, bedroom, hall, etc.). To go further, each
room/space could be split into logical sub-groups
representing areas in a room. Each group can then
have entities as its members. This arrangement
provides for a very simple method of context
awareness (to discover which display to use for a
user, simply discover a display entity in the same
group as the user).

The final note to make about the Nexus network
model is that there is no centralisation. If a device
goes offline, only those entities it hosts will
disappear from the network. When the device goes
back online, they will again be made available. This
highlights the dynamic nature of the network and can
be considered self-healing. Furthermore the level of
distribution has the very simple consequence that a
HAN can be considered a parallel system. This is
important when we discuss methods of discovery
later on in this paper [4.Methods of Discovery].

3.3. Software Architecture

As already described, each device in the HAN
hosts a set of entities. This 1s achieved through the
use of a relatively low (ideally one) instance of the
Nexus framework running per device which
“contain” the entity objects themselves.

The Nexus framework has been implemented
using the OSGi component framework [Figure 2]

Presented at Second International Conference on the Advanced concepts in: Applications of Digital
Information and Web Technologies, ICADIWT '09. pp494 - 499, 4-6 Aug 2009

and tested to work on both embedded (Java ME) and
desktop (Java SE) deployments. The “Nexus Core”
bundle provides the necessary functionality and
services to allow dynamic entity publishing and
discovery. It 1s intended that applications and “entity
farms™ will be implemented as bundles that use the
functionality exposed by the core bundle.

0SGi Framework:

[Nexus Applications / Farms]

— Entity
Messaging/Eventing

Entity Consumer

" Nexus Framework

Future
Message
Protocols

Entity
Nexus Util | |Publisher
Packages

Other OSGi
Bundles

N Iris Messaging]

Figure 2: Software architecture.

While it is not hard to conceptually grasp what an
application is, the concept of an “entity farm” needs
some explaining; An entity farm is a factory that
produces and configures entities. A farm directly
interfaces with the entity publisher who's
responsibility it is to publish all entities to the
network. Many farms can exist within a single
runtime (and be presented as entities themselves),
each providing specific management of a logical
group of entities. For example, a single runtime
could be comprised of the following farms :

1. Media farm : That scans a directory on the
local file system and wraps each media file
(audio/video/image) as an entity (attaching
suitable facets to describe each file).

2. Agent Farm : Hosting of sofiware agents
that interact with the network to fulfill some
specific task. For example; a lighting agent
could monitor light levels (read from light
sensor entities) and adjust lighting entities
as required in response to user preferences.

3. X10 Farm : Providing a wrapper for the
X10 powerline control standard and
allowing individual X10 devices to be
presented to the network as entities.

By now it should be obvious that the mindset
behind the model is to allow uniform network
interaction with a variety of conceptual items (these
three farms alone discuss agents, devices and media
files). It is intended that any application can discover
and interact with any item on the network without
the need to use other protocols, it is however easy to
get absorbed into an over enthusiastic habit of
creating overly fine grained representation (as an
extreme example; one could decide to represent each
word in a document as an entity and present facets
which specify where in a document they belong...
this is obviously a miss use of the model).

4.2. Namespace Disc (DISCOVER NS OP)

A namespace based discovery operation
(OP_CODE=0x05) takes a URN namespace as its
parameter. Any entity IDs in that namespace will be
considered a match to the discovery. A unicast
comnection is used to send all responses back to the
requestor.

For example, [Table 1] shows a selection of
example entity IDs and identifies those which would
match if a namespace discovery operation was
performed with the namespace parameter :

“urn:nexus:resource:media”

Table 1: Namespace maich resuits.

Entity ID Matches
um:nexus:group:mgl N
urn:nexus:resource: media:audio:song 1 Y
urn:nexus:resource:media:video:song1 b
urn:nexus:resource:filel N

A standard set of namespaces exist to provide
crude but fast static typing of entities. This is useful
for applications which want to find a commonly
understood “type” of entity such as software agents.

4.3. Group Disc (DISCOVER_GRP_OP)

As previously described in this paper, groups are
a way of organising entities in the HAN. A group
based discovery operation (OP_CODE=0x06) takes
a group entity ID (in the namespace
“urn:nexus:group”) as its parameter and will yield a
result set where all members belong to that group. As
with the namespace based discovery operation,
results are sent using unicast.

This form of discovery is appropriate for
discovering members of a group when the semantics
of membership to that group are understood. Going
back to the example given earlier in this paper, if the
semantics of group membership are :

“all siblings of a group in a hierarchy are

physically co-located (eg in a kitchen) ",
then group based discovery is useful to find
physically co-located entities for purposes of context
aware applications. More specifically, if speakers
and a GUI are required in the same physical space by
an application, group based discovery is appropriate.

4.4. Query Disc (QUERY_OP)

This operation (OP_CODE=0x07) is the slowest
to evaluate, but the most flexible to use. As a
parameter, this operation accepts a query script. The
script language supports standard programmatic
features such as constants, variables, arithmetic and
functions. Each script is centered around the concept
of testing each entity in the HAN against some
conditions. If all those conditions pass, the entity is
considered to match the query and becomes a
member of the result set. A query has the ability to

Presented at Second International Conference on the Advanced concepts in: Applications of Digital
Information and Web Technologies, ICADIWT '09. pp494 - 499, 4-6 Aug 2009

evaluate Xpath expressions against specific (named)
facets in each entity. This provides the query
mechanism with the ability of information space
inspection for each entity. For those familiar with
databases, 1t 1s functionally equivalent to an SQL
query which can inspect table values. Thus we can
treat the HAN itself as a large distributed database
and select those entities which match certain criteria.
Going back to the “jukebox™ example, consider
each “music” entity (for example an mp3 file) to
have a facet that captures the meta data of that song
(similar to the content found in ID3 tags). Such a
facet may appear as in [Figure 4]* (each song would
have different values in the respective positions).

<?xml version= encoding= 7>
<fns:Facet

facet-type='

parent= >

<nsl:MetaMusic>
<nsl:Songlnfo>
<nsl:SongName>Radio GaGa</ns1:SongName>
<nsl:Artist>Queen</ns1:Artist>
<nsl:Released>1984</ns1:Released>
<nsl:Genre>Rock</ns1:Genre>
<nsl:Genre>Pop</nsl:Genre>
</ns1:Songlnfo>
</ns1:MetaMusic>
</fns:Facet>

Figure 4: Example facet for a music entity.

An application that needed to find all the music in
the HAN by the artist “Queen”, would generate a
query script that evaluates an Xpath expression :

“ns:MetaMusic/ns:SongInfo/ns: Artist[text()="0 I8

A complete script for this kind of query would
look like [Figure 5].

$baseNS =
$xp="ns:MetaMusic/ns:Songlnfo/ns: Artist[text()= 17

SfacetType=
DefineNS ns=$baseNS/media

EVAL XPATH($facetType, $xp)
Figure 5: Example query script
4.5. Enumeration (DISCOVER_ALL_ OP)
This operation (OP_CODE=0x08) takes no

arguments and yields a result set equal to the entity
superset, ie :

RE =SE

4 : The xm| namespace declarations are omitted for clarity.

For this, each entity container will establish a
unicast connection and send details about every
entity it hosts. Quite obviously, when the number of
entities grows in size the time taken to achieve this
grows. While a useful tool for small deployments
(<2500 entities) and development/debugging, its real
world applications are limited due to the latency
involved. This latency validates the need for the
other discovery operations in terms of performance
time, especially where the system 1s required to scale
upwards to large deployments.

3. Discovery Method Comparison

To give an idea of how well the Nexus framework
operates, we have deployed two devices in a 100MB
network. The first is a 500Mhz ITX based
“embedded” linux PC running a Nexus farm. The
second 1s an Apple Mac Pro desktop computer
running a Nexus client. We then carried out a set of
50 tnals for each discovery method. The results in
[Table 2] show the time required (as an average of
the 50 trmals in milliseconds, including network
message exchange and all processing) to complete
each method of discovery with varying numbers of
deployed entities (in the range 10-1500).

Table 2: Discovery “fime fo complete” (ms).

No. of deployed entities

10 100 500 1000 | 1500
Lookup 236 2.4 328 2.08 2.64
Namespace 9.6 1132 2126 2312| 3772
Group 1338 128 2292 2418 2084
Query 147.04 | 1686 356876 | 8407 972.28
Enumeration 7.6 331 22238 43238 609.58

Consistent with previously published data, a
lookup operation completes in approximately
constant time independent of the deployment size.
Obviously, there 1s a small increase in completion
time which 1s dependent on entity storage/indexing
and the position of the entity in that store.

In contrast, the time requred to complete
enumeration and query operations is noticeably
proporticnal to the number of deployed entities. For
enumeration this is dependent only on the amount of
time required to communicate the results (varied
based on publisher device speed and network
conditions) and can be considered linear. For a
network with 7 devices and coefficient m for each
device (the multiplier that accounts for a specific
device speed and network latency involved in
communicating results to the requester), the
enumeration time will be approximately :

enum_time = MAX((m xsize of(E)) ...
(m, xsize of(E)))

Presented at Second International Conference on the Advanced concepts in: Applications of Digital
Information and Web Technologies, ICADIWT '09. pp494 - 499, 4-6 Aug 2009

We anticipate that there is also a “result
integration” time penalty (proportional to the number
of responding devices) which we hope to discover.

For the Query operation, the increase is dependent
on the complexity of the query script and the number
of facets that the script must be evaluated against per
entity. We hope data from future trials will help
formulate a query time complexity generalisation.

The two remaining operations (namespace and
group based discovery) both display small variance
{<12ms for group and <29ms) across the test range.
These two methods appear to scale particularly well,
but the completion time for group based discovery is
however dependent on the number of groups to
which each entity belongs.

6. Conclusions

In this paper we have extended our previous work
and presented the basic concepts for the Nexus
model through the entity model, the network model
and the discovery mechanisms that are currently
available. Furthermore we have given an account of
the software architecture used to implement and
deploy modular solutions using the Nexus
framework.

We have validated this model with
experimentation on a live network with both desktop
and embedded systems and presented results which
are consistent with our previously published data.
Through this experimentation we have identified the
need to optimize the way in which the framework
stores and queries the entity facet content. Originally
we used the xindice xml database, and migrated to
the eXist XML database for reasons of query
execution speed. However, we observed that when
1500 entities were deployed using eXist, the memory
consumed by the Nexus framework was approaching
100MB! This 1s due to the use of the “in-memory”
DOM model for XML representation. We now wish
to implement a SAX model (freeing memory) and
compare the impact of query execution.

We also wish to evaluate each of the query
operations for comparison between themselves and
comparison against other middleware solutions on a
large scale deployment (40-100 devices).

7. References

[1] WK. Edwards & R. Grinter. “4¢ Home with Ubiguitous
Computing: Seven Challenges”. Proceedings of the Conference
on Ubiquitous Computing (Ubicomp 2001). Atlanta, GA.
September 30-Cctober 2, 2001.

[2] S. Helal, W. Mannm H. El-Zabadani, J. King, Y. Kaddoura &
E. Jansen. “The Gator Tech Smart House: A Programmable
Pervasive Space”. Computer. IEEE Computer society press.
Vol.38, Issue 3, pp.50-60. 2005.

[3] I. Dooley, V. Callaghan, H. Hagras & P. Bull. “Discovering
the Home”. To appear, International conference on intelligent
environments (IE'09). Barcelona, Spain. July 20-21 2009,

	jpdool-icadiwt09 5_Page_1
	jpdool-icadiwt09 5_Page_2
	jpdool-icadiwt09 5_Page_3
	jpdool-icadiwt09 5_Page_4
	jpdool-icadiwt09 5_Page_5
	jpdool-icadiwt09 5_Page_6

