
In the International Transactions on Systems Science and Applications (special issue on "Agent based
System Challenges for Ubiquitous and Pervasive Computing"), Vol 4, No. 1, 2008

Facilitating the Ambient Intelligent Vision: A Theorem, Representation and Solution for
Instability in Rule-Based Multi-Agent Systems

Victor Zamudio and Vic Callaghan

University of Essex, Department of Computer Science
 Wivenhoe Park, Colchester CO4 3SQ

United Kingdom
Email: {vmzamu; vic}@essex.ac.uk

http://iieg.essex.ac.uk

Abstract: Multi-agent systems underpin the vision for
ambient intelligence. However, developing multi-agent
systems is a complex and challenging process. For example,
pervasive computing has been found susceptible to
instability, due to unwanted behaviour arising from
unplanned interaction between rule based agents. This
instability is impossible to predict, as it depends on the rules
of interaction, the initial state of the system, the user
interaction, and in the time delay of the system (due to
network traffic, different speed of processing, etc). In this
paper we present a theoretical framework, an Interaction
Network (IN), together with a communication locking
strategy that we call INPRES (Instability Prevention System)
that can be used to identify and eliminate this problem. In
addition we describe a Multi-Dimensional Model (MDM) to
represent the agents and the state of each agent over time. A
theorem showing the role of delays in an unstable system is
presented. We present experimental results based on
simulations and a physical emulation that demonstrate the
effectiveness of these methods.
Keywords: agent challenges, pervasive computing,
instability, periodic behaviour, multi-agents.

1. Introduction

Multi-agent systems underpin the vision for ambient
intelligence. At the heart of this vision is the interconnection
of vast numbers of networked devices such as lights, heaters,
TVs, telephones, etc., each programmed according to a
certain rules based on the state of the world, including other
devices These interconnections enable the system to be
programmed with interdependent actions in a simple way,
whether it be manual or automatic [7], [12], [19].

 Pervasive computing is related to other fields, such as
distributed systems (eg personal computers connected via a
local area network) and mobile computing (a distributed
system with mobile clients), but goes much further, as it
could involve more complex characteristics: effective use of
smart spaces, invisibility, localized scalability and masking
uneven conditioning [32]. Autonomous agent managed smart
spaces are able to adjust the environment based on the user’s

preferences, in a proactive fashion, with minimal user
intervention.
 The overlap between pervasive (or ubiquitous) computing
and intelligent agents has spawned the emerging area of
Ambient Intelligence (AmI), a new multidisciplinary
paradigm, which includes architecture, electronics, robotics,
machine learning, etc [30] which has given rise to numerous
new challenges.
Pervasive computing has opened the opportunity to extend
the use of the internet and other emerging technologies to
control everyday environments. For example it can assist
elderly people, monitoring their activities and provide them
with reminders, reports and control of devices [20] and
minimise home energy consumption thereby helping to
counter the problem of climate change [8].

 In rule-based multi-agent systems, it is possible to have
unwanted outcomes, due to the rules of behaviour of the
agents. The set of agents could be defined in such way that
the agents cyclically repeat their state, showing an oscillatory
behaviour. In that case, we say that the system is instable (see
section 3)

The problem of instability in intelligent environments is
very challenging, not only due to the complexity of the rules
of the interconnected devices and non-deterministic user
interaction, but also because of temporal delays (network
latency, speed of processing, etc) which, for example, is
exasperated by the use of nomadic, devices. These temporal
delays could contribute to unstable cyclic behaviour. We have
seen this phenomenon in our own systems (EU eGadgets
Project [5]) and it is being observed increasingly in pervasive
computing system as the architectures move from centralized
to distributed control [17].

Other domains, such as complex and dynamic systems,
have addressed the dynamics of massively interconnected
systems. In that work it has been shown that it is not possible
to determine what they term attractors (an infinite loop in the
state space) and the basin of attraction (the set of
configurations which converge toward an attractor), for an
arbitrary Boolean network [36]. This problem has a direct
relationship to interconnection topologies we are addressing
in our pervasive computing environment. Additionally, the
arbitrary rules given by the user (defining the topology of the

© Essex University 2008 1

In the International Transactions on Systems Science and Applications (special issue on "Agent based
System Challenges for Ubiquitous and Pervasive Computing"), Vol 4, No. 1, 2008

system) and the perturbations to the system (when the user
interacts with the environment) add significant complexity to
the dynamics or the system. However, it is possible to detect
and prevent cyclic instability and we have developed and
tested such a strategy, based on algorithms for finding loops
in an Interaction Network and locking devices with the least
functional impact on the performance of the system.

1.1 Related Work

Instability can be present in a number of different domains,
from home automation [3], to context-aware systems where
the user is part of the control loop; this is the case of the Anti-
locking Braking System ABS, which is a context-aware
system where the driver is playing a fundamental part in the
process of preventing an accident [11]. If the driver uses the
traditional method of pumping the brakes with a car equipped
with ABS, a conflict can arise causing the breaking distance
to be increase, due to the problem of failing to reach a stable
state. In home automation cyclic instability was observed in
the EU Project, CUSTODIAN (Conceptualisation for User
involvement in Specification and Tools Offering the Delivery
of system Integration Around home Networks) which used
boolean functions (logical condition that must be TRUE for
the device to be activated). In this system a single module
was responsible for the propagation of any changes in the
devices, with every smart device changing its status as
appropriate. They observed that on occasions the network
didn’t stabilize requiring them to terminate the process so that
the network could be debugged [26].

 Software agents, such as those employed in ecommerce.
may be involved in loops with other agents. A simple, but
well known example occurs in email lists, where users have
configured auto-replays that answer each other [27].

 In telephony, there is a well-reported issue referred to as
‘the feature interaction problem [3], which occurs when a
customer or customers have several active features (such as
call-forwarding, extension dialling, call-waiting, etc) which
together interfere with or otherwise influence each other’s
functionalities or behaviours [4]. For example consider two
features: Calling Number Delivery (CND), which delivers the
calling party’s directory number to the called party and
Unlisted Number (UN) that prevents a subscriber’s user
number from being released. Suppose a subscriber A with UN
places a call to another subscriber B with CND. If the
network allows A’s number to be delivered to B, then A loses
privacy; if it does not, then B gets no information. Either
way, one feature does not work desirably [9]. In home
automation this manifests itself in various ways. For example
a burglar alarm might be activated when fire breaks out
which in-turn could close all the doors whilst the fire alarm
service would try opens all doors. Thus both services might
try to control the doors in conflicting ways, interfering with
one another, causing unexpected behaviour. In a similar way,
other services, independently developed, could be available
(security, entertainment, climate control, etc) which could

cause conflicts and undesirable outcomes. Another example
concerns concurrent heating and air conditioning services
where, on reaching a certain temperature, the air conditioning
is turned on, causing the temperature to drop below a certain
level and triggering the heating service resulting in periodic
behaviour [24], [38], [37].
 In computer hardware and system design there are well
known instability problems, such as race hazards and
metastability, which can lead the system to display unwanted
behaviour. Race hazards are caused by logic signals taking
differing paths, with differing delays, through digital circuits
which displace them in time causing unexpected
combinations of states with consequent generation of
spurious momentary logic states. Metastabilty is caused by
violation of set-and hold times in asynchronous systems
which can have various outcomes ranging from spurious
states, undefined states or oscillations [25] [34]. This work
has shown that whilst, in general, there are solutions for
synchronous systems, instability intrinsic to asynchronous
design and cannot, in general, be entirely eliminated [34], of
which the pervasive computing problems we are addressing
relate to.

 In distributed computing systems there is a similar problem,
related to the assignment of resources to different users,
known as deadlock. A deadlock occurs when two or more
processes are waiting indefinitely for an event that can only
be completed by one of the waiting processes, or based on
circularity of definitions [21]. When using a WAITFOR or
bipartite graph this problem can be found when a directed
cycle is detected and a transaction could be selected to break
the cycle [14]. Deadlock can be seen as the opposite problem
to the one we are addressing; in the case of a deadlock every
device in the loop is static, but in our problem every device or
agent in the loop is working indefinitely.

 Planning deadlock problems occur in multirobot systems,
when a robot enters into a waiting cycle, where it should wait
for a response or for calculations performed by a set of robots
that it is part of. This can be detected if in the planning
dependency graph, a cycle is found, anticipating and avoiding
a deadlock during the execution phase where backtracks are
not always possible. A simple example of this is when two
robots have the goal to move to the initial condition of the
other one [29]

 Another notable example occurs in amorphous computing
and small worlds [35][1]. Both are examples of nano scale
computing systems which are massively connected
asynchronous systems in which their topologies have a
probability of connection between ordered and random.

 Social networks such as the interaction between people and
organisations are another area where inter-agent instability
can occur. For example, in the world of business instability
has been observed between share-traders or even between
global economies as people seek to monitor each others
behaviour with the intention of modify their own behaviour

© Essex University 2008 2

In the International Transactions on Systems Science and Applications (special issue on "Agent based
System Challenges for Ubiquitous and Pervasive Computing"), Vol 4, No. 1, 2008

to give them an advantage [2] Likewise fashion can be seen
as an example of this phenomena with fashions oscillating
over long periods of time. In a wider sense all living entities
can be seen as systems of coordinating agents varying from
bacteria to people [35]. Thus, in principle, the issues address
by this work (Interaction Networks) is applicable to such
systems, but more research would need to be done before the
viability of this possibility could be established.

2. Task Representation in Pervasive Computing
Space

In order to visualize and reason about the task being
performed by the devices in an intelligent environment, we
have developed a Multi-Dimensional Model (MDM). With
this model we are able to represent, in a graphical way, the
binary state of the devices, and their evolution over time
thereby providing valuable information about the dynamics
of the system.

 As it will be seen, this model includes complex devices
(which can perform more than one task), showing the
temporal evolution of the system. This framework takes into
account the mobility of the user and the possibility to provide
the same set of coordinated services in a new environment,
allowing the user to be presented with different views of the
task spaces [40].

2.1 A Multi-Dimensional Model (MDM) of Pervasive
Computing Space

We have developed a model of Pervasive Computing space
taking into account the following characteristics:

a) Simple devices vs. complex devices. A simple
device can only perform one type of task, and can
only perform one task at a time. Complex devices
can perform several kinds of tasks at a time.

b) Temporal tasks vs. non-temporal tasks. A temporal
task depends on time (eg are valid for a specific
period). Non-temporal tasks do not depend on time.

c) Coupled tasks vs. uncoupled tasks. Coupled tasks
have a mutual interdependency (eg are logically
linked). Uncoupled task have no mutual
dependency).

d) Static vs. dynamic environment. In a static
environment, apart from system failure, devices do
not move in time or space. In a dynamic
environment devices come and go from the network.

 In the next section we will formalize the problem, defining
an allocation, a community, and an equivalent community.
We will then extend these representations to include time.

2.2 Formalising the MDM Model – Allocations and
Communities

An allocation is a duple ()Td , where d is a device and T is

a not empty set of k tasks, i.e. { }kttttT ,,,, 321 = , with

1≥k . If 1=k we have a simple device, that is able to
handle only one kind of task. This is the case of an audio-
speaker, or a microphone. If 1>k then d is a complex

device, which is composed by other sub-devices, therefore d
can handle more than one task. This could be the case for a
TV, composed by a device that can handle two different kinds
of signals: audio and video.
 When the user configures a new set of virtual appliances,
he defines a new community. A community, denoted byC ,
is a finite non-empty collection of n allocations, i.e.

 () () () (){ }nn TdTdTdTdC ,,,,,,,, 332211 = (1)
 If the user goes to a new environment, the agent should

create an equivalent community eqC . In order to create this

equivalent community, for each allocation () CTd ∈, the

agent should find an equivalent allocation ()eqeq Td , in the

new environment. As we mentioned before, we have two
cases: 1=k and 1>k .

i) If 1=k then d is a simple device and { }1tT = . The agent

should find a new allocation { }()1, td eq such that the device

eqd is able to perform the only task 1t .

ii) If 1>k then d is a complex device, and

{ }kttttT ,,,, 321 = . The agent should find, in the worst

case, k allocations { }() { }()k
k
eqeq tdtd ,,,, 1

1  , where every device
i
eqd is able to perform the task it , with ki ≤≤1 .

2.3 Formalising the MDM Model – Temporal
Communities

We can extend this framework in order to include time. A

temporal allocation is a tuple ()fi ttTd ,,, where d is a

simple device, T is a (simple) task, it is the initial time and

ft is the final time. In other words, the device d will be

performing the task T during if tt − units of time, beginning

on the instant it .

So, a temporal community, denoted by tC is a non-empty set

of temporal allocations:

 (){ }
k

j
jfjijjt ttTdC

1

,,,
=

= (2)

2.4 Applying the MDM Model to practical environments

In Fig. 1 we can see the graphical representation of a system
with the following devices: chair-sensor, bed-sensor, window

© Essex University 2008 3

In the International Transactions on Systems Science and Applications (special issue on "Agent based
System Challenges for Ubiquitous and Pervasive Computing"), Vol 4, No. 1, 2008

blinds, bed-light, desk-light, heater, word and mp3 player. All
of them can be on a binary state on/off. The time runs from 0
to 100.

 As we mentioned before, some devices (with their tasks)
could be coupled, in the sense that there is a logical link or
causal dependency between them.

 The MDM model enables us view the status of each device,
and its evolution over time. If the MDM is representing a
rule-based system, it is possible to visualise different
configurations depending on the rules given by the user.
Under some circumstances, it is possible to visualise the
formation of clusters of devices, due to the logical
interdependencies between them. This model allows a
simplified visualisation and understanding of the task spaces;
for example if the MDM is projected to the Agent-State
plane, states not visited (and visited) by the agents can be
easily identified. With this it is possible to process and
reason about intuitive information such as device-task,
device-time, or even just single information such as a device
or task. This representation simplifies the difficulties related
to dealing with the complexity of the devices, temporality of
tasks and dynamics of the environment, and opens up a way
to reason about multiple tasks and their interaction.

Fig. 1.MDM showing the evolution of a system with 8 binary
devices.

The MDM Model will be applied in section 3.

3. Interaction Networks

In recent years, the importance of modelling relationships
and, in particular, relationships of dependencies in pervasive
computing has grown. A significant reason for this growth is
that, without this information, it has been shown that
decisions made by context-aware applications can be
inappropriate or even lead the system to instability [22],[31].

To capture relationships of functional dependencies between
the rules of behaviour of the agents, based on a graphical
representation, we developed a methodology we refer to as an
Interaction Network which is based on directed graph theory.

 In this a directed graph G consists of a finite set V of
vertices or nodes, and a binary relation E onV . The graph

G is denoted as ()EV , . The relation is called the adjacency

relation. If w is relative of v (ie, () Ewv ∈,) then w is
adjacent to v [18]. An agent A is an autonomous device

with a binary state { }1,0∈s , where 0 means that the agent

is off, and 1 means that the agent is on. If we have n

autonomous devices agents nAAA ,, 21 the state of the

system is ()nsssS 21= . Each agent iA has two rules: i) if

iφ then 1=is ii) If iψ then 0=is where ψφ and are

boolean functions that depend on the states of the agents.
 An Interaction Network (IN) is a directed graph ()EV , in

which the vertex Vv ∈ is a pervasive autonomous agent A
and () Evv ji ∈, if the Boolean functions jφ or jψ of the

pervasive autonomous agent jA depends on the binary state

is of the agent iA . Let SU ⊆ be a subset of S . Because of

the dynamics of the system, the system will produce a

sequence of states pUUU ,, 21 . If this sequence of states

is periodic then the subsystem U is said to be periodic.

 The functionality of a node is defined as the number of
descendants in the Interaction Network. This characteristic of
a node is very important, as it shows the impact of a device in
the system, in terms of the number of devices whose rules
could be triggered. Fig. 4 provides an example of an
Interaction Network, showing the dependencies of 5 devices
or services: Sofa Sensor, Light Sensor, MP3 Player, Light,
and Word.

3.1 Adding Delays to the system: A Theorem involving 2
agents

It is possible to make a refinement in order to include delays
in the communication between the agents in the previous

model. For this, for each edge () Evv ji ∈, we are going to

define a delay +∈ Zwij which means that if the state of agent

iA is updated, the agent jA is going to evaluate their rules

after ijw units of time.

 As we have mentioned before, delays in the
communication between agents, because of network related
delays (eg different paths, network component processing,
etc.) could cause some instabilities. We have investigated this
with a small system involving 2 agents, with very simple
rules of interaction [41]. The rationale is that this model is
easier to understand and reason on, but that the findings are

© Essex University 2008 4

In the International Transactions on Systems Science and Applications (special issue on "Agent based
System Challenges for Ubiquitous and Pervasive Computing"), Vol 4, No. 1, 2008

scalable to more realistic topologies. This is summarized in
the following theorem:

Theorem 1. Let 1A and 2A be two agents as defined

before, with rules defined by the boolean functions 21 s=φ ,

21 s=ψ , 12 s=φ ,
12 s=ψ , and delays nw =12 and

mw =21 , with 2, ≥mn (see Fig. 2). Originally the state

of the system is ()0,0=S . If at 0=t the state is

()0,1=S then the system is periodic, with period

mnT += .

Proof. At 0=t the system is in state ()0,1=S , and

because of the delays, 1A and 2A should process, according

to their rules, the first element of the string

mb 000 211 = and nnb 1000 1212 −=  respectively.

With this, 2A will be processing the state 11 =s after n units

of time. At 1=t the system will be in state ()0,0=S ,

and 01 =s and 02 =s will be added at the ends of the

strings 2b and 1b respectively (new information should be

processed after a delay, according to each agent), ie.

121 000 += mmb  and 1122 0100 +−= nnnb  . Let’s

suppose, without any lose of generality that mn < . Because
the next states to be processed by the agents are all 0's, all the

following states will be ()0,0=S . At 1−= nt 1A will be

processing the first element of

111 0000 −++= nmmnnb  and 2A the first element of

1212 0001 −+= nmnnb  and then at nt = the system

will be in state ()1,0=S , with

nmnmmnb +−++= 1000 111  and

nnmnb 21212 0000 −+=  . Because the next states to be

processed by the agents are all 0's, all the following states

will be ()0,0=S . At 1−+= nmt the state of the

system will be ()0,0=S with 1211 001 −++++= nmnmnmb 

and 1212 000 −++++= nmnmnmb  . Therefore, at nmt +=

the system will be in state ()0,1=S and

nmnmnmb +−+++= 21211 000  and

nmnmnmb 21212 100 +−+++=  which is the same situation as

at 0=t . All the process will continue exactly in the same
way, and therefore the system is periodic.

Figure 2. illustrates the evolution of the system. It can be
seen that if n or m m are 1, the evolution of the system

would lose a chain of states ()0,0 . If we have 1== mn ,

the system will be oscillating between the states ()0,1 and

()1,0 .

Fig. 2. Evolution of the periodic system.
In each node, the first element is the state of the agent

1A
and the second element is the state of agent

2A . The

systems has a period of .mnT +=

4. Instability Prevention System (INPRES) and
Intelligent Locking

In pervasive environments, rule-based devices could interact
according to the rules programmed independently by several
users. These complex rules, together with the state of the
system and the temporal delays could lead the system into
unwanted instable states (oscillations). As we have
commented previously, it is not possible, in general, to
predict if a set of rules will produce such instabilities, as in
any dynamic system, the behaviour of the system will depend
not only on the rules, but also on the initial conditions.
Besides that, the user could interact with the environment,
generating perturbations to the system. However, by finding
loops in the associated Interaction Network it is possible to
identify where potential instability and cyclic oscillations
reside so that action can be taken to avoid unwanted
behaviour. Our strategy1 to prevent this unwanted behaviour
is based on the algorithm shown in Fig. 3.

Cycles C = findCycles(Graph g) ;
for each cycle c in C :

find node n in c which minimizes
functionality(g, n, c);

lock n;
od;

Cycles findCycles(Graph g):
Construct an empty vector of cycles C;
Construct an empty vector of nodes N;
for each node n in g do:

N = descendants(g,n);
if N.lastElement() == n then:

C.add(N);
fi;

od;
return C.removeRepeteadCycles();

1 Patent No: GB 0624827.2.

© Essex University 2008 5

In the International Transactions on Systems Science and Applications (special issue on "Agent based
System Challenges for Ubiquitous and Pervasive Computing"), Vol 4, No. 1, 2008

int functionality(Graph g, node n, cycle
c):

Construct a graph’ deleting the nodes
in c and adding the node n, g’= g - nodes
in c + n;
 return numDescendants(g’,n);

Fig. 3. Intelligent Locking (High-level algorithm). The
function findCycles() returns the cycles in the graph, and

the function functionality() computes the number of
descendents of a node.

This algorithm was programmed in Java. The function
called functionality(), calculates the impact of a node
(measured as the number of descendants) on the entire
network; in each loop, the node which minimises this
function is the one that will be locked. The function called
findCycles() maintains a list of descendants for each node n
of the graph; if the same node n is detected as part of the
descendants, a loops has been found. This algorithm can be
extended to address the case of more complex graphs. At the
moment the algorithm has a policy for automatically locking
the nodes, and we are working on an approach to capture the
user’s preferences in the locking mechanism.

Fig. 4. Interaction Network showing the dependencies
between five devices. A loop is shown in dashed lines.

5. Experimental Results

The proposed solution was evaluated in two ways, first with
computer simulations and secondly using a real UPnP
(Universal Plug and Play) implementation based around the
Siemens Java SDK for UPnP technologies [33].

5.1 Simulations

The simulator was programmed using Mathematica ™ 5.1
[39], a programming language with powerful tools for quick
and sound implementation. In particular, it includes the
package Combinatorica, supporting graph theory, graphics,
and combinatorics [28]. The simulation had the advantage
over the real implementation (see next section) that it was
able to mimic larger numbers of devices and support a more
flexible experimental structure (eg arbitrary devices and rules
could quickly be created).

Using Mathematica™, a number of parameters can be
controlled, for example the number of agents involved, the
number of iterations, the probability of perturbations, the
probability of interconnection between two agents. In order to
test the general approach, we generated random topologies of
differing densities (controlling the probability of connection
between agents). It is well known that the gates AND and OR
(in conjunction with the negation) are able to reproduce any
Boolean function. Using this principle, we assigned a random
(and fixed) number of boolean function to each device, as a
rule of behaviour; thus the rules assigned to each agent could
be represented as a binary string, where a 0 and 1 mean an
OR and AND gate respectively. As mentioned before, besides
the rules of interaction, one of the key factors involved is the
initial state of the system (in this case, we always begin with
a random initial state) which is then perturbed by user
actions.

One of the important parts of the algorithm, besides
finding loops, is the process of choosing which agent (or
node) to lock. For each loop we would normally need to
calculate the functionality of each node. However, in our
experiment, the functionality of all the members of a loop is
the same and so we excluded the descendant members of the
loop from the calculations. We tested our approach
successfully with different and randomly produced topologies
and rules of interaction, together with random perturbations.

In Fig. 5 we show an Interaction Network with 5 agents,
and no cycles. The rules of interaction are coded as
{0,1,1,0,1}, where 0 represents an OR function, and 1
represents an AND function. No cycles or loops are present in
the IN, and as we can see from Fig. 6, the system is stable,
and locking is not needed.

Fig. 5. Interaction Network without any cycle.

© Essex University 2008 6

In the International Transactions on Systems Science and Applications (special issue on "Agent based
System Challenges for Ubiquitous and Pervasive Computing"), Vol 4, No. 1, 2008

Fig. 6. Evolution of the system with 5 agents and no
cycles, showing a stable system.

The MDM of the system can be seen in Fig.7, illustrating
the state of each agent from iteration 0 to 20. Initially, some
agents are turned off, but after some iterations all the agents
are on, which is consistent with the representation on Fig. 6.

Fig. 7. MDM of the system with 5 agents showing an
stable evolution.

Fig. 8 illustrates a system with 7 nodes. This topology has
one loop {6,4,6}. The rules of interaction are coded as
{0,0,0,1,0,1,0}.

Fig. 8. Interaction Network with only one cycle {6,4,6}.
Detail of the cycle in dashed lines.

 Node 6 has 1 descendant, and node 4 has no descendants
(as we do not include members of the loop). Node 4 has
the minimum functionality and, as a result, the locking
vector is {1,1,1,0,1,1,1}. Fig. 9 shows the response of the
system without any locking, showing cyclic instability;
this instability can be removed effectively using the
locking mechanism (see Fig. 10).

Fig. 9. Evolution of the system with 7 agents and one
cycle {6,4,6}.

Fig. 10. Evolution of the system with 7 agents, one
isolated cycle {6,4,6}, where the node 4 has been locked,

and the oscillations have been removed.

(a) (b)

© Essex University 2008 7

In the International Transactions on Systems Science and Applications (special issue on "Agent based
System Challenges for Ubiquitous and Pervasive Computing"), Vol 4, No. 1, 2008

Fig. 11. Evolution of the system with 7 agents between
iteration 0 and 20. In (a) there is a periodic pattern. This is
consistent with the perturbation shown in Fig. 9. In (b) the

instabilities have been removed. A perturbation can be
seen after 10, which is consistent with Fig. 10.

 As it can be seen, the MDM permits the visualisation of
unstable patterns involving a subset of the devices present in
the environment.

 In Fig 12 we have a system with 10 nodes and two cycles
{{8,5,6,7,8},{4,2,3,5,4}}, that share the node 5. The rules of
interaction are coded as {0,0,0,0,1,1,1,1,1,0}. Before the
locking mechanism was activated, the system displayed
instabilities (see Fig. 13). For our graphical representation we
use the decimal equivalence of the binary representation of
the global state of the system. The list of parent-descendants
for the loops are {{4,1},{2,1},{3,2},{5,4}} and {{8,0},{5,6},
{6,1},{7,0}}. In the first loop the two nodes 4 and 2 both
have the minimum number of descendants (1) and 4 is taken.
In the second case 8 and 7 minimizes the functionality
function, and 8 is taken. With these results the locking vector
for the system is {1,1,1,0,1,1,1,0,1,1}. We ran the simulation
several times, and our strategy removed the oscillations, as
can be seen in Fig. 14.

Fig. 12. Interaction Network with 10 nodes and two
coupled cycles. The dashed lines depict two loops, sharing

node 5.

Fig. 13. Behaviour of the system with 10 agents.
Oscillation can be seen, together with some perturbations.
In this case the locking mechanism had not been applied.

Fig. 14. Behaviour of the system with 10 agents. The
instabilities have been removed by the locking mechanism.

(a) (b)

Fig. 15 . Evolution of the system in (a) instable conditions
and (b) with locking.

 As it can be seen from the MDM in Fig. 15 (a) the system
is unstable, with some perturbations, which is consistent with
Fig 13. In Fig 15 (b), the system is stable, with agent 8 being
on most of the time; this can be represented as
(0,0,0,0,0,0,0,1,0,0) –or 4 in decimal representation- which is
consistent with Fig. 14.

 In Fig. 16 an Interaction Network with 9 agents is shown.
The topology is defined as {{1, 2}, {2, 3}, {2, 4}, {3, 1}, {3,
9}, {4, 5}, {5, 4}, {6, 7}, { 7, 8}, {8, 9}, {9, 6}}. There are 3
cycles {{8, 9, 6, 7, 8}, {5, 4, 5}, {3, 1, 2, 3}}, and the rules
are {0, 0, 1, 1, 1, 0, 1, 1, 1}. For each cycle the fathers-
descendant list is {{8, 0}, {9, 0}, {6, 0}, {7, 0}}, {{5, 0}, {4,
0}} and {{3, 4}, {1, 0}, {2, 2}} respectively, and therefore
the locking vector is {0, 1, 1, 1, 0, 1, 1, 0, 1}, locking nodes
8, 5 and 1. The system shows cyclic behaviour without
locking (see Fig. 17). In Fig. 18 the behaviour of the system,
with the locking, is shown.

© Essex University 2008 8

In the International Transactions on Systems Science and Applications (special issue on "Agent based
System Challenges for Ubiquitous and Pervasive Computing"), Vol 4, No. 1, 2008

Fig. 16. Interaction Network with 9 nodes and three
cycles.

Fig. 17. Behaviour of the system with 9 agents. The
system is oscillating.

Fig. 18. Behaviour of the system with 9 agents. The
instabilities have been removed by the locking mechanism.

 The MDM representation can be seen in Fig. 19. (a) shows
the instabilities, with 2 periodic patterns. (b) shows a static
system.

(a) (b)

Fig. 19 . Evolution of the system showing (a) instable
conditions and (b) with locking.

5.2 Testing with Emulated Devices

We implemented the locking method with a UPnP (Universal
Plug and Play) system using the Siemens Java SDK for UPnP
technologies [33]. An important difference to the simulated
experiments is that this network included both delays (eg
propagation, stack handling etc) and user interaction (eg
turning lights on off) that provides a more accurate refection
of a real environment. Thus, every device (lights in this case)
has a user interface which allows the user to turn it on and
off.

5.2. 1 UPnP Testbed

The iDorm is a multipurpose space, taking the form of a
domestic apartment, with areas for varied activities such as
sleeping, working and entertaining. It is populated with
numerous networked embedded sensors (temperature,
occupancy, humidity, light level) thereby making it possible
to create and control systems such as those for entertainment,
security, energy efficiency, care and work by orchestrating
the coordination of the networked devices. It is based around
three wired networks, Lonworks, 1-wire (TINI) and IP plus
two wireless networks; WiFi & Bluetooth [23]. Universal
Plug and Play (UPnP) is used as the common interface
(middleware) to the iDorm, enabling automatic discovery and
configuration. Our system was built on top of the low level
UPnP control architecture, enabling it to communicate with
the UPnP devices and orchestrate their action in the iDorm
(in our tests we used a real network and emulated devices).

In order to test this approach, we used 3 scenarios:

Scenario I: The topology is coded as {{1,2},{2,3},{3,2},
{4,3}} (see Fig. 20). This shows, there is one cycle involving
agents 3 and 2. The rules of interaction are {0,1,1,0}, where
1 is an AND gate, and 0 is an OR gate. In Fig. 21 there is a
screenshot of the system running with 4 devices.

© Essex University 2008 9

In the International Transactions on Systems Science and Applications (special issue on "Agent based
System Challenges for Ubiquitous and Pervasive Computing"), Vol 4, No. 1, 2008

Fig. 20. Interaction Network (IN) for scenario I.

Fig. 21. Screenshot of the system running 4 devices (lights
in this case). The graphics mirror how the lights change

according to the rules, and the states (ie on/off).

Fig. 22 shows the system behaviour in which the oscillations
are dependent both on the rules and the initial state.

Fig. 22. Evolution of the system with 4 agents.

 When locking is enabled, the oscillations are clearly
prevented, leading the system to a stable state (unless the user
alters the system), as is shown in Fig. 23.

Fig. 23. The evolution of the system when subject to
locking and perturbations from the user.

Fig. 24 The MDM showing the evolution of the system
from iteration 0 to 20. When the locking is applied, agents
3 and 4 remain on.

(a) (b)

Fig. 24 . Evolution of the system in (a) instable conditions
and (b) with locking.

Scenario II: Here there are 5 agents with an Interaction
Network topology {{1,2},{2,3},{3,4},{4,2},{5,4}} (see Fig.
24). In this case there is a cycle involving 3 agents (2, 4 and
3). The rules of interaction are (1,0,1,0,1). These rules can
lead the system to an instable state, as illustrated in Fig. 26.
Instability was prevented successfully via locking (see Fig.
27).

© Essex University 2008 10

In the International Transactions on Systems Science and Applications (special issue on "Agent based
System Challenges for Ubiquitous and Pervasive Computing"), Vol 4, No. 1, 2008

Fig. 25. Topology of the Interaction Network for 5 agents.
In dashed lines a cycle involving agents 2, 3 and 4 can be

seen.

Fig. 26. Evolution of the system with 5 agents.

Fig. 27. Response of the system with 5 agents. The
instabilities have been prevented.

(a) (b)

Fig. 28. MDM of the system with 5 agents showing (a)
instable conditions and (b) with locking.

Scenario III: This tested the system for 7 agents. The
topology of the Interaction Network is {{1,2}, {2,3}, {3,4},
{4,6}, {5,4}, {6,2}, {7,6}} (see Fig. 29). There is one loop
involving agents 2, 3, 4 and 6. The rules of interaction are
{1,0,0,1,1,1,1}. With these rules, instability can be present.
However, when the locking mechanism is on, oscillations are
prevented (see Fig. 30).

Fig. 29. The Interaction Network showing the
dependencies of 7 agents. The dashed lines depict a cycle.

© Essex University 2008 11

In the International Transactions on Systems Science and Applications (special issue on "Agent based
System Challenges for Ubiquitous and Pervasive Computing"), Vol 4, No. 1, 2008

Fig. 30. Response of the system with 7 agents. When the
locking mechanism is on, the oscillations are prevented.

(a) (b)

Fig. 31. MDM of the system with 7 agents. showing (a)
the system in an instable condition and (b) in a stable

condition (with locking).

5.3 Results Discussion

We have implemented and tested our strategy for finding and
eliminating instability both using computer simulations and
emulations based on a UPnP implementation that used a
Siemens Java SDK. In the first case there were three
interaction networks, with 5, 7 and 10 nodes respectively (see
Figs. 5, 8 and Fig. 12) and randomly generated rules of
interaction, together with random perturbations emulating the
user interaction with the system. The IN with no loops didn’t
show any periodic behaviour. The systems with one and two
loops in the IN associated showed instability (see Fig. 9 and
Fig. 13); however, when the locking mechanism is
implemented (in the first case locking node 4, and in the
second case locking nodes 4 and 8 (all of them minimizing
the impact on the network), the instability is removed (see
Fig. 10 and Fig. 14).

 In the UPnP implementation, we utilised 3 scenarios, with
4, 5 and 7 agents, using Boolean rules of interaction (AND
and OR). In all the cases a closed loop was present. The user
was able to interact with the system (turning on and off the
lights). Without the node locking, cyclic instability can be
observed (see Fig. 22 and Fig. 26). However, with locking the
cyclic behaviour was prevented (see Figs 23, 27 and 30).
These results are encouraging, even with the preliminary
UPnP implementation, as the computer simulations have
shown the locking to be effective on much larger and
complex topologies, such as the one shown in Fig. 12, with
two overlapping loops (sharing node 5).

 The Multi-Dimensional Model MDM, representing the
agent, its state and the evolution over time (in this case,
iteration) was used in all the cases. The MDM has proven to
provide a very useful representation, consistent with the
decimal representation of the binary state of the system. The
MDM can show, not only periodic and stable behaviour, but
it is possible to visualize, at great detail, the behaviour or
state of every single device present in the environment.

6. Interaction Networks and its Applications in
Other Domains

Multiagent systems try to mimic capabilities such as
reasoning, planning and learning [6] as seen in nature and
society, being a general metaphor of the living world.

 Distributed systems, with complex interrelationships such
as companies, countries, economies, society, automatic
trading systems and culture are susceptible to be modelled
using multi-agents with complex and time dependant rules
and dynamic interconnections [13]. Thus multiagent systems
provide a useful tool to analyse and represent our world as a
complex socio-technical system [10], [15], [16]. Work in this
direction has been done, trying to analyze and destabilize
terrorist networks removing leaders in the groups [10]. In this
domain, the presence of loops in the network could suggest
redundant leadership; our approach offers a way to analyze
and reason about this problem, exposing redundant leaders in
a given organization.

 Economic behaviour of international companies in complex
global markets, try to reason and learn not only from
themselves but from their competitors. They receive feedback
from their customers and suppliers, and coordinate their
actions and strategies to achieve common goals, using very
well defined rules and mimicking (or modifying) the
behaviour of other participants [2], and under proper
conditions could show instable behaviour. In share trading,
business strategy and global enterprises (including
governments) the behaviour of others is a key factor, and our
work offers a tool to explain analyze and suppress –when
appropriate –cyclic behaviour.

 In this paper we have argued that, capturing relationships of
dependency is very important for pervasive computing, in
order to prevent unwanted outputs or even unstable cycles.

 Knowledge networks (who-knows-what), information
networks (what ideas are related to what), assignment
networks (who is doing what) and social networks will gain
more presence and importance in our complex world [10],
[15],[16]. Interaction Networks are useful tool to represent
complex interrelations between rule-based autonomous and
coordinating agents (or equivalent entities), exposing loops in
the interrelationships between the participants that could lead
the system to cyclic instabilities.

© Essex University 2008 12

In the International Transactions on Systems Science and Applications (special issue on "Agent based
System Challenges for Ubiquitous and Pervasive Computing"), Vol 4, No. 1, 2008

 In this section we have make an analogy between synthetic
agents and social and organizational systems. Our next step
will be to apply our Interaction Network Theory in order to
reproduce some of the well-known cyclic behaviour in social
and organization based systems

7. Conclusions and Future Work

In this paper we have described a challenge to achieving the
vision for ambient intelligence; how to overcome cyclic
instability in coordinating multi agent systems. As pervasive
computing paradigms, such as ambient intelligence, utilise
systems of interdependent agents, we contend that such
behaviour represents a significant obstacle to the commercial
exploitation of this technology.

Fig. 32. iDorm of the University of Essex.

In a bid to address this challenge we have devised a
method of defeating instability in networks of coordinating
pervasive computing devices that we call INPRES (Instability
Prevention System). At the heart of this are three algorithms,
one to define the process of eliminating instability, a second
to identify closed loops and a third to select the nodes to be
locked (both based on a measure of value and the users
preferences). As part of this work we have created a formal
framework for describing and reasoning about the problem
(Interaction Networks), a visualisation model (Multi-
Dimensional Model - MDM) and have proposed a
methodology for overcoming the problem (Intelligent
Locking). We have used both simulation and real devices to
show the effectiveness of our methods. Simulation provide
great flexibility, allowing experiments with arbitrary
structures and sizes of networks (eg showing that the
approach is scalable) whilst the experiments with actual
devices has allowed us to see the effects of network and
processing delays, together with user interaction. User
interaction plays a fundamental role, which was not easy to
see in computer simulations. For example, when the system
has reached a stable state and the user interacts with one
agent, it is possible to see the updates of the states in the
neighbourhood, and when the locking mechanism is
activated, how these changes are stopped, as the device that is
locked prevents the propagation of the changes. On the other
hand, the inclusion of sensors (light, movement, pressure,
temperature, etc) will increase the complexity of the topology
of the Interaction Network (but not the dynamic properties of

the system!), as they cannot be part of a loop (they could only
be fathers in the digraph), because its state depends on
environmental conditions or user behaviour. Using these
approaches we have shown that the locking mechanism is
effective in the elimination of the unwanted cyclic behaviour,
although the cost on the overall system is some temporary
loss of functionality.

 We have presented a theorem involving 2 agents, with
arbitrary (but static) delays in the communication between
them. We have shown that this system can have instabilities,
with a period that depends on the delays. This delays are
equivalent to multiple perturbations, preventing the system
from evolving according to the rules; in our example, the
system oscillated between (1,0) and (0,1) with a number of
states (0,0) in the middle, depending on the delays suffered
by each agent. As we have shown, our strategy prevented
oscillations even in the presence of noise.

The Multidimensional Model represents graphically the set
of agents, their states and time (or iteration), and has been
shown to be a very valuable tool. It illustrates the devices
involved in cyclic behaviour and the periods concerned. This
model permits analysis and classification of different kind of
perturbations. Some perturbations are weak and do not
significantly destabilise the system whereas other
perturbations are strong, changing dramatically the behaviour
of the system. With this, we have developed a set of
complimentary tools to analyse rule-based multi-agent
systems: the MDM showing the evolution of the device-state
plane in a very detailed way, the IN showing the functional
dependencies of the agents, where a closed loop detection
warns of possible instabilities, and the mapping from boolean
to decimal state, showing the behaviour of the system and its
evolution over time in a macroscopical way. Two
representations: micro and macro evolution (MDM), plus a
formal functional representation (IN) form the core of our
contribution to the understanding and preventing instabilities
in this complex pervasive computing environment.

As a future work we are planning to test our strategy with
larger more complex topologies (in particular with multiple
coupled loops) and with more complex rules. Also, as locking
a node will impair, temporarily, some functionality of the
system, the choice of what to lock and how long to lock
(where there are options) is of some significance to the user.
Thus a next step in our work is to experiment with a user
based “locking preference” system. We will investigate both
user specified preferences together with autonomous agent
learning of preferences. For this we will run experiments in
our test bed (iDorm2 -a full size apartment that is fitted with
pervasive computing technology and agents; see Fig. 16) in
order to provide additional evidence of the strategy, and to
refine the locking mechanism with information of the user’s
preferences.

Finally, we are planning to extend our interaction network
model to include other domains where instability can be

2 http://iieg.essex.ac.uk/idorm

© Essex University 2008 13

In the International Transactions on Systems Science and Applications (special issue on "Agent based
System Challenges for Ubiquitous and Pervasive Computing"), Vol 4, No. 1, 2008

present, as it could provide useful tools and mechanisms to
understand and remove cyclic behaviour in these areas.
Although this is a challenging direction to our research, our
results are encouraging and we look forward to reporting on
our progress in future papers.

Acknowledgements: Victor Zamudio would like to
acknowledge the support of the Mexican National Council
for Science and Technology (CONACyT).

References

[1] H Abelson, D Allen, D Coore, C Hanson, E Rauch, G J
Sussman and R Weiss. Amorphous Computing,
Communications of the ACM, May 2000. Vol 43 No. 5.

[2] R L Axtell, Effects of Interaction Topology and
Activation Regime in Several Multi-Agent Systems.
Brooking Working paper,
http://brook.edu/ES/dynamics/papers/interaction.

[3] S Baik, H Lee, S Lim and J Huh. Managing mechanism
for service compatibility and interaction issues in
context-aware ubiquitous home. International Conference
on Consumer Electronics, ICCE. 8-12 Jan. 2005 page(s):
369 - 370.

[4] L R Brothers, E J Cameron Y J Lin and M E Nilson
Elenita Silverstein. Feature Interaction Detection. IEEE
International Conference on Communications, 1993. ICC
93. Geneva. Technical Program, Conference Record,
Volume 3, Issue , 23-26 May 1993 Page(s):1553 – 1557.

[5] V Callaghan, M Colley, G Clarke and H Hagras, The
Cognitive Disappearance of the Computer: Intelligent
Artifacts and Embedded Agents, Proceedings of the i3
2001, workshop WS4 on Cognitive Versus Physical
Disappearance, Porto, Portugal, April 2001.

[6] V Callaghan, M Colley, G Clarke and H Hagras, A Soft-
Computing based Distributed Artificial Intelligence
Architecture for Intelligent Buildings, In the book
entitled “Soft Computing agents: New Trends for
Designing Autonomous Systems”, in the International
Series "Studies in Fuzziness and Soft Computing“, (Eds:
V. Loia, S.Sessa), Springer Verlag, Volume 75, pp. 117-
145, 2002

[7] V Callaghan, M Colley, H Hagras, J Chin, F Doctor and
G Clarke, Programming iSpaces: A Tale of Two
Paradigms, in iSpaces. Springer Verlag, 2005, Chapter
24.

[8] V Callaghan V, J Woods, S Fitz, T Dennis, H Hagras, M
Colley and I Henning I, The Essex iDorm: A Testbed for
Exploring Intelligent Energy Usage Technologies in the
Home, Proceeding of the 3rd International Conference
on Intelligent Green and Energy Efficient Building &
New Technologies, International Convention Centre,
Beijing China, 26th-28th March 2007.

[9] E J Cameron, N Griffeth, Y J Lin, M E Nilson, W K
Schnure and H Velthuijsen. A Feature-Interaction
Benchmark for IN and Beyond. Communications

Magazine IEEE Vol 31, Issue 3, March 1993 Page(s) 64-
69.

[10]K M Carley, J S Lee and D Krackhardt, Destabilizing
Networks. Connections 24(3);79-92. 2002.

[11] K Cheverst, N Davies, K Mitchell and C Efstratiou,
Using Context as a Crystal Ball: Rewards and Pitfalls.
Personal and Ubiquitous Computing, Vol 5, Issue 1. Feb.
2001, pp 8-11.

[12]J S Chin, V Callaghan and G Clarke, An End-User
Programming Paradigm for Pervasive Computing
Applications, The IEEE International Conference on
Pervasive Services, Lyon, France, June 26-29, 2006
Page(s):325 – 328.

[13]G Clarke and V Callaghan, Ubiquitous Computing,
Informatization, Urban Structures and Density, Built
Environment Journal, Vol. 33, No 2 2007

[14] G Coulouris, J Dollimore and T Kindberg,
Distributed Systems, Concepts and Design. 4th Ed.
Addison Wesley. 2005.

[15]J E Doran, Simulating Societies using Distributed
Artificial Intelligence. In Social Science Microsimulation
(eds. Troitzsch K G, Mueller U, Gilbert G N and Doran J
E). Springer: Berlin. October 1996. pp. 381-393.

[16]J E Doran, Iruba: An Agent-Based Model of the Guerrilla
War Process. Presented at ESSA 2005 Conference, held
in Koblenz, September 2005, and published in Pre-
Proceedings.

[17]D Estrin, D Culler, K Pister and G Sukhatme,
Connecting the physical world with pervasive networks.
IEEE on Pervasive Computing, Jan-March 2002,
Volume: 1, Issue: 1, pages: 59-69

[18]G Haggard, J Schlipf and S Whitesides, Discrete
Mathematics for Computer Science. Thomson 2006

[19]H Hagras, V Callaghan, M Colley, G Clarke, A Pounds-
Cornish and H Duman, Creating an ambient-intelligence
environment using embedded agents. IEEE on Intelligent
Systems, Volume 19, Issue 6, Nov-Dec 2004 Page(s):12
– 20

[20]K Z Haig, K L Kiff, J Myers, V Guralnik, C W Geib, J
Phelps, and T Wagner, The Independent LifeStyle
Assistant (ILSA): AI Lessons Learned. In the Sixteenth
Innovative Applications of Artificial Intelligence
Conference (IAAI-04), July 25-29, 2004. San Jose CA.
pp 852, 857.

[21]J Y Halpern and R Fagin, A formal model of knowledge,
action, and communication in distributed systems:
preliminary report. In Proceedings of the Fourth Annual
ACM Symposium on Principles of Distributed
Computing (Minaki, Ontario, Canada). PODC '85. ACM
Press, New York, NY, 224-236.

[22]K Henricksen, J Indulska and A Rakotonirainy. Modeling
Context Information in Pervasive Computing Systems.
Pervasive Computing: Proceedings of the First
International Conference Pervasive 2002, Zurich,
Switzerland, pp. 167-180. August 26-28 2002.

[23]A Holmes, H Duman and A Pounds-Cornish. The iDorm:
Gateway to Heterogeneous Networking Environments.

© Essex University 2008 14

In the International Transactions on Systems Science and Applications (special issue on "Agent based
System Challenges for Ubiquitous and Pervasive Computing"), Vol 4, No. 1, 2008

Proc. Int’l Test and Evaluation Association (ITEA)
Workshop Virtual Home Environments, ITEA Press,
2002, pp. 30-37.

[24]M Kolberg, E Magill, D Marples and S Tsang, Feature
interactions in services for Internet personal appliances.
IEEE International Conference on Communications,
2002. ICC 2002. Volume 4, 28 April-2 May 2002
Page(s):2613 – 2618

[25] D Lewin, Logical Design of Switching Circuits. 2nd

Ed. Nelson. 1980.
[26]J M Martins Ferreira, T Amaral, D Santos, A Agiannidis

and M Edge, The Custodian Tool: Simple Design of
Home Automation Systems for People with Special
Needs. Presented at the EIB Scientific Conference.
Munich, October 2000.

[27] M Mowbray and M Williamson, Resilience for
Autonomous Agents. Technical Report HPL-2003-210.
Internet Systems and Storage Laboratory, HP
Laboratories Bristol. October 17th 2003.

[28]S Pemmaraju and S Skiena, Computational Discrete
Mathematics: Combinatorics and Graph Theory with
Mathematica™. Cambridge University Press 2003.

[29] S Qutub, R Alami and F Ingrand, How to solve
deadlock situations within the plan-merging paradigm for
multi-robot cooperation. Proceedings of the 1997
IEEE/RSJ International Conference on Intelligent Robots
and Systems, IROS'97., Volume 3, Grenoble, France 7-11
Sep 1997 Page(s):1610 – 1615

[30]P Ramagnino and G L Foresti, Ambient Intelligence: A
New Multidisciplinary Paradigm. Systems, Man and
Cybernetics, Part A, IEEE Transaction on. Jan. 2005.
Volume 35, Issue 1.

[31]M A Razzaque, S Dobson and P Nixon, Categorisation
and modelling of quality in context information. In
Proceedings of the IJCAI 2005 Workshop on AI and
Autonomic Communications. Roy Sterrit, Simon Dobson
and Mikhail Smirnov (ed). 2005.

[32] M Satyanarayanan, Pervasive Computing: Vision
and Challenges. IEEE Personal Communications, Vol: 8
Issue: 4, August 2001, Pages, 10-17.

[33] UPnP Forum: http://www.upnp.org/
[34] S H Unger, Hazards, critical races and metastability.

IEEE Transaction on Computers, Vol. 44, Issue 6. June
1995, pp 754-768.

[35] D J Watts and S H Strogatz, Collective Dynamics of
Small-World Networks. Nature, Vol 393. June 4 1998.

[36]G Weisbuch, Complex Systems. Lecture Notes Volume
II. Santa Fe Institute Studies in the Sciences of
Complexity. 1991.

[37] M Wilson and E Magill, A Model for Service
Interaction Avoidance in Home Networks. In Proc. Of the
5th Annual Postgraduate Symposium on the Converge of
Telecommunications, Networking and Broadcasting.
Liverpool. June 2005.

[38]M Wilson, E Magill and M Colberg, An Online
Approach for the Service Interaction Problem in Home

Automation. Consumer Communications and
Networking Conference 2005 CCNC Second IEEE, 3-6,
Jan. 2005, pp. 251-256.

[39]S Wolfram, The Mathematica Book, 5th ed. Wolfram
Media, 2003

[40]V Zamudio, V Callaghan and J Chin, A Multi-
Dimensional Model for Task Representation and
Allocation in Intelligent Environments Proceedings of
The Second International Symposium on Ubiquitious
Intelligence and Smart Worlds (UISW2005). Nagasaki,
Japan. December 6-7, 2005.

[41] V Zamudio and V Callaghan. Unwanted Periodic
Behaviour in Pervasive Computing Environments, The
IEEE International Conference on Pervasive Services
ICPS06, Lyon, France, 26-29 June 2006

Author Bios

Victor Zamudio holds a MSc. in Computer Science from
Monterrey Tech (Mexico) and a B.Sc. in Physics. He has a
strong interest in pervasive computing, multi-agent systems
and ambient intelligence.

Vic Callaghan holds a Ph.D in Computing and B.Eng in
Electronic Engineering from the University of Sheffield. He
is Professor of Computer Science at Essex University. He has
contributed to over 100 papers journals, conferences and
books and currently, he leads the Inhabited Intelligent
Environments Group (IIEG) and is director of the Digital
Lifestyles Centre.

© Essex University 2008 15

