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Abstract: Multi-agent  systems  underpin  the  vision  for 
ambient  intelligence.  However,  developing  multi-agent 
systems is a complex and challenging process. For example, 
pervasive  computing  has  been  found  susceptible  to 
instability,  due  to  unwanted  behaviour  arising  from 
unplanned  interaction  between  rule  based  agents.  This 
instability is impossible to predict, as it depends on the rules 
of  interaction,  the  initial  state  of  the  system,  the  user 
interaction,  and  in  the  time  delay  of  the  system  (due  to 
network  traffic,  different  speed  of  processing,  etc).  In  this 
paper  we  present  a  theoretical  framework,  an  Interaction 
Network  (IN),  together  with  a  communication  locking 
strategy that we call INPRES (Instability Prevention System) 
that  can be used to identify and eliminate this problem. In 
addition we describe a Multi-Dimensional Model (MDM) to 
represent the agents and the state of each agent over time.  A 
theorem showing the role of delays in an unstable system is 
presented.  We  present  experimental  results  based  on 
simulations  and  a  physical  emulation  that  demonstrate  the 
effectiveness of these methods.
Keywords:  agent  challenges,  pervasive  computing, 
instability, periodic behaviour, multi-agents.

1. Introduction

Multi-agent  systems  underpin  the  vision  for  ambient 
intelligence. At the heart of this vision is the interconnection 
of vast numbers of networked devices such as lights, heaters, 
TVs,  telephones,  etc.,  each  programmed  according  to  a 
certain rules based on the state of the world, including other 
devices  These  interconnections  enable  the  system  to  be 
programmed  with  interdependent  actions  in  a  simple  way, 
whether it be manual or automatic [7], [12], [19].

    Pervasive  computing is  related to  other  fields,  such as 
distributed systems (eg personal computers connected via a 
local  area  network  )  and  mobile  computing  (a  distributed 
system  with  mobile  clients),  but  goes  much  further,  as  it 
could involve more complex characteristics: effective use of 
smart spaces, invisibility, localized scalability  and masking 
uneven conditioning [32]. Autonomous agent managed smart 
spaces are able to adjust the environment based on the user’s 

preferences,  in  a  proactive  fashion,  with  minimal  user 
intervention. 
   The overlap between pervasive (or ubiquitous) computing 
and  intelligent  agents  has  spawned  the  emerging  area  of 
Ambient  Intelligence  (AmI),  a  new  multidisciplinary 
paradigm, which includes architecture, electronics, robotics, 
machine learning, etc [30] which has given rise to numerous 
new challenges.
Pervasive  computing has  opened the  opportunity to  extend 
the use  of  the internet  and other  emerging technologies  to 
control  everyday  environments.  For  example  it  can  assist 
elderly people, monitoring their activities and provide them 
with  reminders,  reports  and  control  of  devices  [20]  and 
minimise  home  energy  consumption  thereby  helping  to 
counter the problem of climate change [8].

   In rule-based multi-agent systems, it  is possible to have 
unwanted  outcomes,  due  to  the  rules  of  behaviour  of  the 
agents. The set of agents could be defined in such way that 
the agents cyclically repeat their state, showing an oscillatory 
behaviour. In that case, we say that the system is instable (see 
section 3)

The problem of instability in intelligent environments is 
very challenging, not only due to the complexity of the rules 
of  the  interconnected  devices  and  non-deterministic  user 
interaction,  but  also  because  of  temporal  delays  (network 
latency,  speed  of  processing,  etc)  which,  for  example,  is 
exasperated by the use of nomadic, devices. These temporal 
delays could contribute to unstable cyclic behaviour. We have 
seen  this  phenomenon  in  our  own  systems  (EU  eGadgets 
Project [5]) and it is being observed increasingly in pervasive 
computing system as the architectures move from centralized 
to distributed control [17].

Other  domains,  such  as  complex  and  dynamic  systems, 
have  addressed  the  dynamics  of  massively  interconnected 
systems. In that work it has been shown that it is not possible 
to determine what they term attractors (an infinite loop in the 
state  space)  and  the  basin  of  attraction  (the  set  of 
configurations which  converge  toward an attractor),  for  an 
arbitrary  Boolean  network [36].  This  problem has  a  direct 
relationship to interconnection topologies we are addressing 
in  our  pervasive  computing  environment.  Additionally,  the 
arbitrary rules given by the user (defining the topology of the 
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system) and the perturbations to the system (when the user 
interacts with the environment) add significant complexity to 
the dynamics or the system. However, it is possible to detect 
and  prevent  cyclic  instability  and  we  have  developed  and 
tested such a strategy, based on algorithms for finding loops 
in an Interaction Network and locking devices with the least 
functional impact on the performance of the system.

1.1 Related Work

Instability can be present in a number of different domains, 
from home automation [3], to context-aware systems where 
the user is part of the control loop; this is the case of the Anti-
locking  Braking  System  ABS,  which  is  a  context-aware 
system where the driver is playing a fundamental part in the 
process of preventing an accident [11]. If the driver uses the 
traditional method of pumping the brakes with a car equipped 
with ABS, a conflict can arise causing the breaking distance 
to be increase, due to the problem of failing to reach a stable 
state. In home automation cyclic instability was observed in 
the  EU Project,  CUSTODIAN (Conceptualisation  for  User 
involvement in Specification and Tools Offering the Delivery 
of  system Integration Around home Networks)  which used 
boolean functions (logical condition that must be TRUE for 
the device to be activated).  In this system a single module 
was responsible for  the  propagation of  any changes in  the 
devices,  with  every  smart  device  changing  its  status  as 
appropriate.  They  observed  that  on  occasions  the  network 
didn’t stabilize requiring them to terminate the process so that 
the network could be debugged [26].

   Software agents, such as those employed in ecommerce. 
may be involved in  loops with other agents.  A simple,  but 
well known example occurs in email  lists, where users have 
configured auto-replays that answer each other [27]. 

   In telephony, there is a well-reported issue referred to as 
‘the  feature  interaction  problem [3],  which  occurs  when a 
customer or customers have several active features (such as 
call-forwarding,  extension dialling, call-waiting,  etc)  which 
together  interfere  with  or  otherwise  influence  each  other’s 
functionalities or behaviours [4]. For example consider two 
features: Calling Number Delivery (CND), which delivers the 
calling  party’s  directory  number  to  the  called  party  and 
Unlisted  Number  (UN)  that  prevents  a  subscriber’s  user 
number from being released. Suppose a subscriber A with UN 
places  a  call  to  another  subscriber  B  with  CND.  If  the 
network allows A’s number to be delivered to B, then A loses 
privacy;  if  it  does  not,  then  B gets  no information.  Either 
way,  one  feature  does  not  work  desirably  [9].  In  home 
automation this manifests itself in various ways. For example 
a  burglar  alarm  might  be  activated  when  fire  breaks  out 
which in-turn could close all the doors whilst the fire alarm 
service would try opens all doors. Thus both services might 
try to control the doors in conflicting ways, interfering with 
one another, causing unexpected behaviour. In a similar way, 
other services, independently developed, could be available 
(security,  entertainment,  climate  control,  etc)  which  could 

cause conflicts and undesirable outcomes. Another example 
concerns  concurrent  heating  and  air  conditioning  services 
where, on reaching a certain temperature, the air conditioning 
is turned on, causing the temperature to drop below a certain 
level and triggering the heating service resulting in periodic 
behaviour [24], [38], [37].
   In computer  hardware and system design there are well 
known  instability  problems,  such  as  race  hazards  and 
metastability, which can lead the system to display unwanted 
behaviour.  Race hazards are caused by logic signals taking 
differing paths, with differing delays, through digital circuits 
which  displace  them  in  time  causing  unexpected 
combinations  of  states  with  consequent  generation  of 
spurious momentary logic states.  Metastabilty is caused by 
violation  of  set-and  hold  times  in  asynchronous  systems 
which  can  have  various  outcomes  ranging  from  spurious 
states, undefined states or oscillations [25] [34].  This work 
has  shown  that  whilst,  in  general,  there  are  solutions  for 
synchronous  systems,  instability  intrinsic  to  asynchronous 
design and cannot, in general, be entirely eliminated [34], of 
which the pervasive computing problems we are addressing 
relate to.

   In distributed computing systems there is a similar problem, 
related  to  the  assignment  of  resources  to  different  users, 
known as  deadlock.  A deadlock occurs  when two or  more 
processes are waiting indefinitely for an event that can only 
be completed by one of the waiting processes, or based on 
circularity of definitions [21].  When using a WAITFOR or 
bipartite graph this problem can be found when a directed 
cycle is detected and a transaction could be selected to break 
the cycle [14]. Deadlock can be seen as the opposite problem 
to the one we are addressing; in the case of a deadlock every 
device in the loop is static, but in our problem every device or 
agent in the loop is working indefinitely. 

   Planning deadlock problems occur in multirobot systems, 
when a robot enters into a waiting cycle, where it should wait 
for a response or for calculations performed by a set of robots 
that  it  is  part  of.  This  can  be  detected  if  in  the  planning 
dependency graph, a cycle is found, anticipating and avoiding 
a deadlock during the execution phase where backtracks are 
not always possible. A simple example of this is when two 
robots have the goal to move to the initial condition of the 
other one [29]

   Another notable example occurs in amorphous computing 
and small  worlds [35][1]. Both are examples of nano scale 
computing  systems  which  are  massively  connected 
asynchronous  systems  in  which  their  topologies  have  a 
probability of connection between ordered and random. 

   Social networks such as the interaction between people and 
organisations  are  another  area  where  inter-agent  instability 
can occur.  For example, in the world of business instability 
has  been  observed  between  share-traders  or  even  between 
global  economies  as  people  seek  to  monitor  each  others 
behaviour with the intention of modify their own behaviour 
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to give them an advantage [2]  Likewise fashion can be seen 
as  an example of  this phenomena with fashions oscillating 
over long periods of time. In a wider sense all living entities 
can be seen as systems of coordinating agents varying from 
bacteria to people [35]. Thus, in principle, the issues address 
by  this  work  (Interaction  Networks)  is  applicable  to  such 
systems, but more research would need to be done before the 
viability of this possibility could be established. 

2. Task Representation in Pervasive Computing 
Space

In  order  to  visualize  and  reason  about  the  task  being 
performed by the devices in an intelligent environment, we 
have  developed a Multi-Dimensional  Model  (MDM). With 
this model we are able to represent, in a graphical way, the 
binary  state  of  the  devices,  and  their  evolution  over  time 
thereby providing valuable information about the dynamics 
of the system.  

   As it  will be seen, this model includes complex devices 
(which  can  perform  more  than  one  task),  showing  the 
temporal evolution of the system. This framework takes into 
account the mobility of the user and the possibility to provide 
the same set of coordinated services in a new environment, 
allowing the user to be presented with different views of the 
task spaces [40].
 
2.1  A  Multi-Dimensional  Model  (MDM)  of  Pervasive 
Computing Space

We have developed a model of Pervasive Computing space 
taking into account the following characteristics: 

a) Simple  devices  vs.  complex  devices.  A  simple 
device can only perform one type of task, and can 
only perform one task at a time. Complex devices 
can perform several kinds of tasks at a time.

b) Temporal tasks vs. non-temporal  tasks. A temporal 
task  depends  on  time  (eg  are  valid  for  a  specific 
period). Non-temporal tasks do not depend on time. 

c) Coupled  tasks  vs.  uncoupled tasks.  Coupled  tasks 
have  a  mutual  interdependency  (eg  are  logically 
linked).  Uncoupled  task  have  no  mutual 
dependency). 

d) Static  vs.  dynamic  environment.  In  a  static 
environment, apart from system failure, devices do 
not  move  in  time  or  space.  In  a  dynamic 
environment devices come and go from the network. 

   In the next section we will formalize the problem, defining 
an  allocation,  a  community,  and  an  equivalent  community. 
We will then extend these representations to include time.  

2.2  Formalising  the  MDM  Model  –  Allocations  and 
Communities

An allocation is a duple ( )Td ,  where d is a device and T is 

a  not  empty  set  of  k tasks,  i.e. { }kttttT ,,,, 321 = ,  with

1≥k .  If  1=k we  have  a  simple  device,  that  is  able  to 
handle only one kind of task. This is the case of an audio- 
speaker,  or  a  microphone.  If  1>k then  d  is  a  complex 

device, which is composed by other sub-devices, therefore d
can handle more than one task. This could be the case for a 
TV, composed by a device that can handle two different kinds 
of signals: audio and video.
   When the user configures a new set of virtual appliances, 
he defines a new community. A community, denoted byC , 
is a finite non-empty collection of n  allocations, i.e.

          ( ) ( ) ( ) ( ){ }nn TdTdTdTdC ,,,,,,,, 332211 =                 (1)
   If the user goes to a new environment, the agent should 

create an  equivalent community eqC . In order to create this 

equivalent  community,  for  each allocation  ( ) CTd ∈,  the 

agent should find an equivalent allocation  ( )eqeq Td ,  in the 

new  environment.  As  we  mentioned  before,  we  have  two 
cases: 1=k  and 1>k .

i) If 1=k then d is a simple device and { }1tT = . The agent 

should find a new allocation  { }( )1, td eq  such that the device 

eqd  is able to perform the only task 1t .

ii) If  1>k then  d is  a  complex  device,  and

{ }kttttT ,,,, 321 = .  The  agent  should  find,  in  the  worst 

case,  k allocations { }( ) { }( )k
k
eqeq tdtd ,,,, 1

1  ,  where  every  device 
i
eqd  is able to perform the task it , with ki ≤≤1 .

2.3  Formalising  the  MDM  Model  –  Temporal 
Communities

We can extend this framework in order to include time. A 

temporal  allocation is  a  tuple  ( )fi ttTd ,,,  where  d is  a 

simple device,  T is a (simple) task,  it is the initial time and 

ft is  the  final  time.  In  other  words,  the  device  d will  be 

performing the task T during if tt − units of time, beginning 

on the instant it .

So, a temporal community, denoted by tC is a non-empty set 

of temporal allocations:

                     ( ){ }
k

j
jfjijjt ttTdC

1

,,,
=

=                                 (2)

2.4 Applying the MDM Model to practical environments

In Fig. 1 we can see the graphical representation of a system 
with the following devices: chair-sensor, bed-sensor, window 
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blinds, bed-light, desk-light, heater, word and mp3 player. All 
of them can be on a binary state on/off. The time runs from 0 
to 100. 

   As we mentioned before, some devices (with their tasks) 
could be coupled, in the sense that there is a logical link or 
causal dependency between them.

   The MDM model enables us view the status of each device, 
and its evolution over time.  If the MDM is representing a 
rule-based  system,  it  is  possible  to  visualise  different 
configurations  depending  on  the  rules  given  by  the  user. 
Under  some  circumstances,  it  is  possible  to  visualise  the 
formation  of  clusters  of  devices,  due  to  the  logical 
interdependencies  between  them.  This  model  allows  a 
simplified visualisation and understanding of the task spaces; 
for  example  if  the  MDM  is  projected  to  the  Agent-State 
plane, states  not visited (and visited) by the agents can be 
easily  identified.   With  this  it  is  possible  to  process  and 
reason  about  intuitive  information  such  as  device-task, 
device-time, or even just single information such as a device 
or task. This representation simplifies the difficulties related 
to dealing with the complexity of the devices, temporality of 
tasks and dynamics of the environment, and opens up a way 
to reason about multiple tasks and their interaction. 

Fig. 1.MDM showing the evolution of a system with 8 binary 
devices. 

The MDM Model will be applied in section 3.

3. Interaction Networks

In  recent  years,  the  importance  of  modelling  relationships 
and, in particular, relationships of dependencies in pervasive 
computing has grown. A significant reason for this growth is 
that,  without  this  information,  it  has  been  shown  that 
decisions  made  by  context-aware  applications  can  be 
inappropriate or even lead the system to instability [22],[31]. 

To capture relationships of functional dependencies between 
the rules  of  behaviour of  the agents,  based on a graphical 
representation, we developed a methodology we refer to as an 
Interaction Network which is based on directed graph theory.

     In this a directed graph G  consists of a finite set  V of 
vertices or nodes, and a binary relation  E onV . The graph 

G is denoted as ( )EV , . The relation is called the adjacency 

relation.  If  w is  relative  of  v (ie, ( ) Ewv ∈, )  then  w is 
adjacent to  v  [18].  An agent  A  is an autonomous device 

with a binary state { }1,0∈s , where 0  means that the agent 

is  off,  and  1  means  that  the  agent  is  on.  If  we  have  n  

autonomous  devices  agents  nAAA ,, 21 the  state  of  the 

system is ( )nsssS 21= . Each agent  iA has two rules: i) if 

iφ  then  1=is  ii) If  iψ  then  0=is  where   ψφ  and  are 

boolean functions that depend on the states of the agents. 
     An Interaction Network (IN) is a directed graph ( )EV ,  in 

which the vertex Vv ∈ is a pervasive autonomous agent A
and  ( ) Evv ji ∈, if  the  Boolean  functions  jφ or  jψ of  the 

pervasive autonomous agent  jA depends on the binary state 

is of the agent iA . Let SU ⊆  be a subset of S . Because of 

the  dynamics  of  the  system,  the  system  will  produce  a 

sequence of states pUUU ,, 21 . If this sequence of states 

is periodic then the subsystem U  is said to be periodic. 
    
     The functionality of a node is defined as the number of 
descendants in the Interaction Network. This characteristic of 
a node is very important, as it shows the impact of a device in 
the system, in terms of the number of devices whose rules 
could  be  triggered.   Fig.  4  provides  an  example  of  an 
Interaction Network, showing the dependencies of 5 devices 
or  services:  Sofa Sensor, Light Sensor, MP3 Player, Light, 
and Word.

3.1 Adding Delays to the system: A Theorem involving 2 
agents

It is possible to make a refinement in order to include delays 
in  the  communication  between  the  agents  in  the  previous 

model. For this, for each edge  ( ) Evv ji ∈, we are going to 

define a delay +∈ Zwij which means that if the state of agent 

iA is updated, the agent  jA is going to evaluate their rules 

after ijw units of time. 

    As  we  have  mentioned  before,  delays  in  the 
communication between agents, because of network related 
delays  (eg  different  paths,  network  component  processing, 
etc.) could cause some instabilities. We have investigated this 
with  a  small  system involving  2  agents,  with  very  simple 
rules of interaction [41]. The rationale is that this model is 
easier to understand and reason on, but that the findings are 
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scalable to more realistic topologies. This is summarized in 
the following theorem: 

Theorem 1.  Let  1A  and  2A  be two agents as defined 

before, with rules defined by the boolean functions  21 s=φ , 

21 s=ψ , 12 s=φ , 
12 s=ψ ,   and  delays  nw =12 and 

mw =21 , with 2, ≥mn   (see Fig. 2). Originally the state 

of  the  system  is  ( )0,0=S  .  If  at   0=t  the  state  is 

( )0,1=S  then  the  system  is  periodic,  with  period 

mnT += .

Proof.  At  0=t   the system is in state  ( )0,1=S ,  and 

because of the delays, 1A  and 2A should process, according 

to  their  rules,  the  first  element  of  the  string 

mb 000 211 = and  nnb 1000 1212 −=   respectively. 

With this, 2A will be processing the state 11 =s after n units 

of time.  At  1=t   the system will be in state  ( )0,0=S  , 

and  01 =s  and  02 =s  will  be added at  the ends of  the 

strings 2b and 1b    respectively (new information should be 

processed  after  a  delay,  according  to  each  agent),  ie. 

121 000 += mmb  and 1122 0100 +−= nnnb  .  Let’s 

suppose, without any lose of generality that mn < . Because 
the next states to be processed by the agents are all 0's, all the 

following states will be ( )0,0=S . At    1−= nt 1A will be 

processing  the  first  element  of 

111 0000 −++= nmmnnb  and  2A  the  first  element  of 

1212 0001 −+= nmnnb   and then at  nt =    the system 

will  be  in  state ( )1,0=S  ,  with 

nmnmmnb +−++= 1000 111   and 

nnmnb 21212 0000 −+=  . Because the next states to be 

processed by the agents are all  0's,  all  the following states 

will  be  ( )0,0=S  .  At  1−+= nmt   the  state  of  the 

system will be ( )0,0=S  with 1211 001 −++++= nmnmnmb   

and 1212 000 −++++= nmnmnmb  . Therefore, at  nmt +=  

the  system  will  be  in  state  ( )0,1=S    and 

nmnmnmb +−+++= 21211 000   and 

nmnmnmb 21212 100 +−+++=   which is the same situation as 

at  0=t . All the process will continue exactly in the same 
way, and therefore the system is periodic.

Figure 2. illustrates the evolution of the system. It can be 
seen  that  if  n or  m m are  1,  the  evolution  of  the  system 

would lose a chain of states ( )0,0 .  If  we have 1== mn , 

the system will  be oscillating between the  states  ( )0,1  and

( )1,0 . 

Fig. 2.  Evolution of the periodic system.
In each node, the first element is the state of the agent 

1A
and the second element is the state of agent

2A . The 

systems has a period of  .mnT +=

4.  Instability Prevention System (INPRES) and 
Intelligent Locking

In pervasive environments, rule-based devices could interact 
according to the rules programmed independently by several 
users.  These  complex  rules,  together  with  the  state  of  the 
system and the temporal  delays could lead the system into 
unwanted  instable  states  (oscillations).  As  we  have 
commented  previously,  it  is  not  possible,  in  general,  to 
predict if a set of rules will produce such instabilities, as in 
any dynamic system, the behaviour of the system will depend 
not  only  on  the  rules,  but  also  on  the  initial  conditions. 
Besides  that,  the user  could interact  with the environment, 
generating perturbations to the system. However, by finding 
loops in the associated Interaction Network it is possible to 
identify  where  potential  instability  and  cyclic  oscillations 
reside  so  that  action  can  be  taken  to  avoid  unwanted 
behaviour. Our strategy1 to prevent this unwanted behaviour 
is based on the algorithm shown in Fig. 3. 

Cycles C = findCycles(Graph g) ;
for each cycle c in C :

find  node  n  in  c  which  minimizes 
functionality(g, n, c);

lock n;
od; 

Cycles findCycles(Graph g):
Construct an empty vector of cycles C;
Construct an empty vector of nodes N;
for each node n in g do:

N = descendants(g,n);
if N.lastElement() == n then:

C.add(N);
fi;

od;
return C.removeRepeteadCycles();

1  Patent No: GB 0624827.2.
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int functionality(Graph g, node n, cycle 
c):

Construct a graph’ deleting the nodes 
in c and adding the node n, g’= g - nodes 
in c + n;
  return numDescendants(g’,n);

Fig. 3. Intelligent Locking (High-level algorithm). The 
function findCycles() returns the cycles in the graph, and 

the function functionality()  computes the number of 
descendents of a node. 

This  algorithm  was  programmed  in  Java.  The  function 
called  functionality(  ), calculates  the  impact  of  a  node 
(measured  as  the  number  of  descendants)  on  the  entire 
network;  in  each  loop,  the  node  which  minimises  this 
function is the one that will be locked. The function called 
findCycles( ) maintains a list of descendants for each node n 
of the graph; if the same node n is detected as part of the 
descendants, a loops has been found. This algorithm can be 
extended to address the case of more complex graphs. At the 
moment the algorithm has a policy for automatically locking 
the nodes, and we are working on an approach to capture the 
user’s preferences in the locking mechanism.

Fig. 4. Interaction Network showing the dependencies 
between five devices. A  loop is shown in dashed lines.

5. Experimental Results

The proposed solution was evaluated in two ways, first with 
computer  simulations  and  secondly  using  a  real  UPnP 
(Universal Plug and Play) implementation based around the 
Siemens Java SDK for UPnP technologies [33].

5.1 Simulations

The simulator  was programmed using Mathematica  ™ 5.1 
[39], a programming language with powerful tools for quick 
and  sound  implementation.  In  particular,  it  includes  the 
package  Combinatorica,  supporting  graph theory, graphics, 
and  combinatorics  [28].  The simulation  had  the  advantage 
over the real  implementation (see next section) that  it  was 
able to mimic larger numbers of devices and support a more 
flexible experimental structure (eg arbitrary devices and rules 
could quickly be created).

Using  Mathematica™,  a  number  of  parameters  can  be 
controlled, for example the number of agents involved, the 
number  of  iterations,  the  probability  of  perturbations,  the 
probability of interconnection between two agents. In order to 
test the general approach, we generated random topologies of 
differing densities (controlling the probability of connection 
between agents). It is well known that the gates AND and OR 
(in conjunction with the negation) are able to reproduce any 
Boolean function. Using this principle, we assigned a random 
(and fixed) number of boolean function to each device, as a 
rule of behaviour; thus the rules assigned to each agent could 
be represented as a binary string, where a 0 and 1 mean an 
OR and AND gate respectively. As mentioned before, besides 
the rules of interaction, one of the key factors involved is the 
initial state of the system (in this case, we always begin with 
a  random  initial  state)  which  is  then  perturbed  by  user 
actions.

One  of  the  important  parts  of  the  algorithm,  besides 
finding  loops,  is  the  process  of  choosing  which  agent  (or 
node) to lock.  For each loop we would normally need to 
calculate  the  functionality  of  each node.   However, in  our 
experiment, the functionality of all the members of a loop is 
the same and so we excluded the descendant members of the 
loop  from  the  calculations.  We  tested  our  approach 
successfully with different and randomly produced topologies 
and rules of interaction, together with random perturbations. 

In Fig. 5 we show an Interaction Network with 5 agents, 
and  no  cycles.  The  rules  of  interaction  are  coded  as 
{0,1,1,0,1},  where  0  represents  an  OR  function,  and  1 
represents an AND function. No cycles or loops are present in 
the IN, and as we can see from Fig. 6, the system is stable, 
and locking is not needed. 

Fig. 5. Interaction Network without any cycle. 
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Fig. 6. Evolution of the system with 5 agents and no 
cycles, showing a stable system. 

The MDM of the system can be seen in Fig.7, illustrating 
the state of each agent from iteration 0 to 20.  Initially, some 
agents are turned off, but after some iterations all the agents 
are on, which is consistent with the representation on Fig. 6.

Fig. 7. MDM of the system with 5 agents showing an 
stable evolution.  

Fig. 8 illustrates a system with 7 nodes. This topology has 
one  loop  {6,4,6}.  The  rules  of  interaction  are  coded  as 
{0,0,0,1,0,1,0}.

Fig. 8. Interaction Network with only one cycle {6,4,6}. 
Detail of the cycle in dashed lines.

   Node 6 has 1 descendant, and node 4 has no descendants 
(as we do not include members of the loop). Node 4 has 
the  minimum functionality  and,  as  a  result,  the  locking 
vector is {1,1,1,0,1,1,1}. Fig. 9 shows the response of the 
system  without  any  locking,  showing  cyclic  instability; 
this  instability  can  be  removed  effectively  using  the 
locking mechanism (see Fig. 10). 

Fig. 9. Evolution of the system with 7 agents and one 
cycle {6,4,6}.

Fig. 10. Evolution of the system with 7 agents, one 
isolated cycle {6,4,6}, where the node 4 has been locked, 

and  the oscillations have been removed.

(a) (b)
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Fig. 11. Evolution of the system with 7 agents between 
iteration 0 and 20. In (a) there is a periodic pattern. This is 
consistent with the perturbation shown in Fig. 9. In (b) the 

instabilities have been removed. A perturbation can be 
seen after 10, which is consistent with Fig. 10.  

   As it can be seen, the MDM permits the visualisation of 
unstable patterns involving a subset of the devices present in 
the environment. 

   In Fig 12 we have a system with 10 nodes and two cycles 
{{8,5,6,7,8},{4,2,3,5,4}}, that share the node 5.  The rules of 
interaction  are  coded  as  {0,0,0,0,1,1,1,1,1,0}.  Before  the 
locking  mechanism  was  activated,  the  system  displayed 
instabilities (see Fig. 13). For our graphical representation we 
use the decimal equivalence of the binary representation of 
the global state of the system. The list of parent-descendants 
for the loops are {{4,1},{2,1},{3,2},{5,4}} and {{8,0},{5,6},
{6,1},{7,0}}. In the first  loop the two nodes 4 and 2 both 
have the minimum number of descendants (1) and 4 is taken. 
In  the  second  case  8  and  7  minimizes  the  functionality 
function, and 8 is taken. With these results the locking vector 
for the system is {1,1,1,0,1,1,1,0,1,1}. We ran the simulation 
several times, and our strategy removed the oscillations, as 
can be seen in Fig. 14.

Fig. 12. Interaction Network with 10 nodes and  two 
coupled cycles. The dashed lines depict two loops, sharing 

node 5.

Fig. 13. Behaviour of the system with 10 agents. 
Oscillation can be seen, together with some perturbations. 
In this case the locking mechanism had not been applied.

Fig. 14. Behaviour of the system with 10 agents. The 
instabilities have been removed by the locking mechanism. 

(a) (b)

Fig. 15 . Evolution of the system in (a) instable conditions 
and (b) with locking.

   As it can be seen from the MDM in Fig. 15 (a) the system 
is unstable, with some perturbations, which is consistent with 
Fig 13. In Fig 15 (b), the system is stable, with agent 8 being 
on  most  of  the  time;  this  can  be  represented  as 
(0,0,0,0,0,0,0,1,0,0) –or 4 in decimal representation- which is 
consistent with Fig. 14.

   In Fig. 16 an Interaction Network with 9 agents is shown. 
The topology is defined as {{1, 2}, {2, 3}, {2, 4}, {3, 1}, {3, 
9}, {4, 5}, {5, 4}, {6, 7}, { 7, 8}, {8, 9}, {9, 6}}. There are 3 
cycles {{8, 9, 6, 7, 8}, {5, 4, 5}, {3, 1, 2, 3}}, and the rules  
are {0, 0,  1,  1,  1,  0,  1,  1,  1}.  For each cycle the fathers-
descendant list is {{8, 0}, {9, 0}, {6, 0}, {7, 0}}, {{5, 0}, {4, 
0}} and {{3, 4}, {1, 0}, {2, 2}} respectively, and therefore 
the locking vector is {0, 1, 1, 1, 0, 1, 1, 0, 1}, locking nodes 
8,   5  and  1.  The  system  shows  cyclic  behaviour  without 
locking (see Fig. 17). In Fig. 18 the behaviour of the system, 
with the locking, is shown. 
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Fig. 16. Interaction Network with 9 nodes and three 
cycles. 

Fig. 17. Behaviour of the system with 9 agents. The 
system is oscillating. 

Fig. 18. Behaviour of the system with 9 agents. The 
instabilities have been removed by the locking mechanism. 

   The MDM representation can be seen in Fig. 19. (a) shows 
the instabilities, with 2 periodic patterns. (b) shows a static 
system. 

(a) (b)

Fig. 19 . Evolution of the system showing (a) instable 
conditions and (b) with locking.

5.2 Testing with Emulated Devices

We implemented the locking method with a UPnP (Universal 
Plug and Play) system using the Siemens Java SDK for UPnP 
technologies [33]. An important  difference to the simulated 
experiments  is  that  this  network  included  both  delays  (eg 
propagation,  stack  handling  etc)  and  user  interaction  (eg 
turning lights on off) that provides a more accurate refection 
of a real environment. Thus, every device (lights in this case) 
has a user interface which allows the user to turn it on and 
off. 

5.2. 1 UPnP Testbed

The  iDorm is  a  multipurpose  space,  taking  the  form of  a 
domestic apartment, with areas for varied activities such as 
sleeping,  working  and  entertaining.  It  is  populated  with 
numerous  networked  embedded  sensors  (temperature, 
occupancy, humidity, light level) thereby making it possible 
to create and control systems such as those for entertainment, 
security,  energy efficiency,  care  and  work by orchestrating 
the coordination of the networked devices. It is based around 
three wired networks, Lonworks, 1-wire (TINI) and IP plus 
two wireless networks; WiFi & Bluetooth [23].   Universal 
Plug  and  Play  (UPnP)  is  used  as  the  common  interface 
(middleware) to the iDorm, enabling automatic discovery and 
configuration. Our system was built on top of the low level 
UPnP control architecture, enabling it to communicate with 
the UPnP devices and orchestrate their action in the iDorm 
(in our tests we used a real network and emulated devices).

In order to test this approach, we used 3 scenarios:

Scenario  I:  The  topology  is  coded  as  {{1,2},{2,3},{3,2},
{4,3}} (see Fig. 20). This shows, there is one cycle involving 
agents 3 and 2.  The rules of interaction are {0,1,1,0}, where 
1 is an AND gate, and 0 is an OR gate. In Fig. 21 there is a 
screenshot of the system running with 4 devices.  
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Fig. 20. Interaction Network (IN) for scenario I. 

Fig. 21. Screenshot of the system running 4 devices (lights 
in this case). The graphics mirror how the lights change 

according to the rules, and the states (ie on/off).

Fig. 22 shows the system behaviour in which the oscillations 
are dependent both on the rules and the initial state.

Fig. 22. Evolution of the system with 4 agents. 

    When  locking  is  enabled,  the  oscillations  are  clearly 
prevented, leading the system to a stable state (unless the user 
alters the system), as is shown in Fig. 23.

Fig. 23. The evolution of the system when subject to 
locking and perturbations from the user.

Fig. 24 The MDM showing  the evolution of the system 
from iteration 0 to 20. When the locking is applied, agents 
3 and 4 remain on.

(a) (b)

Fig. 24 . Evolution of the system in (a) instable conditions 
and (b) with locking. 

Scenario  II:  Here  there  are  5  agents  with  an  Interaction 
Network topology {{1,2},{2,3},{3,4},{4,2},{5,4}} (see Fig. 
24).  In this case there is a cycle involving 3 agents (2, 4 and 
3).  The rules of interaction are (1,0,1,0,1). These rules can 
lead the system to an instable state, as illustrated in Fig. 26. 
Instability was prevented successfully via locking (see Fig. 
27).
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Fig. 25. Topology of the Interaction Network for 5 agents. 
In dashed lines a cycle involving agents 2, 3 and 4 can be 

seen. 

Fig. 26. Evolution of the system with 5 agents. 

Fig. 27.  Response of the system with 5 agents. The 
instabilities have been prevented. 

(a) (b)

Fig. 28. MDM of the  system with 5 agents showing (a) 
instable conditions and (b) with locking.  

Scenario  III: This  tested  the  system  for  7  agents.  The 
topology of the Interaction Network is {{1,2}, {2,3}, {3,4}, 
{4,6}, {5,4}, {6,2}, {7,6}} (see Fig. 29). There is one loop 
involving agents 2, 3, 4 and 6. The rules of interaction are 
{1,0,0,1,1,1,1}. With these rules,  instability can be present. 
However, when the locking mechanism is on, oscillations are 
prevented (see Fig. 30).

Fig. 29.  The Interaction Network showing the 
dependencies of 7 agents. The dashed lines depict a cycle. 
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Fig. 30.  Response of the system with 7 agents. When the 
locking mechanism is on, the oscillations are prevented. 

(a) (b)

Fig. 31.  MDM of the system with 7 agents. showing (a) 
the system in an instable condition and (b) in a stable 

condition (with locking).

5.3 Results Discussion

We have implemented and tested our strategy for finding and 
eliminating instability both using computer simulations and 
emulations  based  on  a  UPnP implementation  that  used  a 
Siemens  Java  SDK.   In  the  first  case  there  were  three 
interaction networks, with 5, 7 and 10 nodes respectively (see 
Figs.  5,  8  and  Fig.  12)  and  randomly  generated  rules  of 
interaction, together with random perturbations emulating the 
user interaction with the system. The IN with no loops didn’t 
show any periodic behaviour. The systems with one and two 
loops in the IN associated showed instability (see Fig. 9 and 
Fig.  13);  however,  when  the  locking  mechanism  is 
implemented  (in  the  first  case  locking  node  4,  and  in  the 
second case locking nodes 4 and 8 (all of them minimizing 
the impact on the network),  the instability is  removed (see 
Fig. 10 and Fig. 14).  

   In the UPnP implementation, we utilised 3 scenarios, with 
4, 5 and 7 agents, using Boolean rules of interaction (AND 
and OR).  In all the cases a closed loop was present. The user 
was able to interact with the system (turning on and off the 
lights).  Without  the  node locking,  cyclic  instability  can be 
observed (see Fig. 22 and Fig. 26). However, with locking the 
cyclic  behaviour  was prevented  (see  Figs  23,  27  and  30). 
These  results  are  encouraging,  even  with  the  preliminary 
UPnP  implementation,  as  the  computer  simulations  have 
shown  the  locking  to  be  effective  on  much  larger  and 
complex topologies, such as the one shown in Fig. 12, with 
two overlapping loops (sharing node 5).

   The  Multi-Dimensional  Model  MDM,  representing  the 
agent,  its  state  and  the  evolution  over  time  (in  this  case, 
iteration) was used in all the cases. The MDM has proven to 
provide  a  very  useful  representation,  consistent  with  the 
decimal representation of the binary state of the system. The 
MDM can show, not only periodic and stable behaviour, but 
it is  possible to visualize, at great detail,  the  behaviour or 
state of every single device present in the environment.

6. Interaction Networks and its Applications in 
Other Domains

Multiagent  systems  try  to  mimic  capabilities  such  as 
reasoning, planning and learning  [6]  as seen in  nature and 
society, being a general metaphor of the living world. 

   Distributed systems, with complex interrelationships such 
as  companies,  countries,  economies,  society,  automatic 
trading systems and culture  are susceptible to be modelled 
using multi-agents  with complex  and time dependant  rules 
and dynamic interconnections [13]. Thus multiagent systems 
provide a useful tool to analyse and represent our world as a 
complex socio-technical system [10], [15], [16]. Work in this 
direction  has  been  done,  trying  to  analyze  and  destabilize 
terrorist networks removing leaders in the groups [10]. In this 
domain, the presence of loops in the network could suggest 
redundant leadership; our approach offers a way to analyze 
and reason about this problem, exposing redundant leaders in 
a given organization. 

   Economic behaviour of international companies in complex 
global  markets,  try  to  reason  and  learn  not  only  from 
themselves but from their competitors. They receive feedback 
from  their  customers  and  suppliers,  and  coordinate  their 
actions and strategies to achieve common goals, using very 
well  defined  rules  and  mimicking  (or  modifying)  the 
behaviour  of  other  participants  [2],  and  under  proper 
conditions could show instable behaviour.  In share trading, 
business  strategy  and  global  enterprises  (including 
governments)  the behaviour of others is a key factor, and our 
work offers  a  tool  to  explain  analyze  and suppress –when 
appropriate –cyclic behaviour.   

   In this paper we have argued that, capturing relationships of 
dependency is  very  important  for  pervasive  computing,  in 
order to prevent unwanted outputs or even unstable cycles. 

   Knowledge  networks  (who-knows-what),  information 
networks  (what  ideas  are  related  to  what),  assignment 
networks (who is doing what) and social networks will gain 
more presence and importance in our complex world [10],
[15],[16].  Interaction Networks are useful  tool  to  represent 
complex  interrelations between rule-based  autonomous  and 
coordinating agents (or equivalent entities), exposing loops in 
the interrelationships between the participants that could lead 
the system to cyclic instabilities. 
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   In this section we have make an analogy between synthetic 
agents and social and organizational systems. Our next step 
will be to apply our Interaction Network Theory in order to 
reproduce some of the well-known cyclic behaviour in social 
and organization based systems

7. Conclusions and Future Work

In this paper we have described a challenge to achieving the 
vision  for  ambient  intelligence;  how  to  overcome  cyclic 
instability in coordinating multi agent systems.  As pervasive 
computing  paradigms,  such  as  ambient  intelligence,  utilise 
systems  of  interdependent  agents,  we  contend  that  such 
behaviour represents a significant obstacle to the commercial 
exploitation of this technology. 

Fig. 32.  iDorm of the University of Essex.
 

In  a  bid  to  address  this  challenge  we  have  devised  a 
method of defeating instability in networks of coordinating 
pervasive computing devices that we call INPRES (Instability 
Prevention System). At the heart of this are three algorithms, 
one to define the process of eliminating instability, a second 
to identify closed loops and a third to select the nodes to be 
locked  (both  based  on  a  measure  of  value  and  the  users 
preferences). As part of this work we have created a formal 
framework for  describing and reasoning about the problem 
(Interaction  Networks),  a  visualisation  model  (Multi-
Dimensional  Model  -  MDM)   and  have  proposed  a 
methodology  for  overcoming  the  problem  (Intelligent 
Locking).  We have used both simulation and real devices to 
show the effectiveness  of  our methods. Simulation provide 
great  flexibility,  allowing  experiments  with  arbitrary 
structures  and  sizes  of  networks  (eg  showing  that  the 
approach  is  scalable)  whilst  the  experiments  with  actual 
devices  has  allowed  us  to  see  the  effects  of  network  and 
processing  delays,  together  with  user  interaction.  User 
interaction plays a fundamental role, which was not easy to 
see in computer simulations.  For example, when the system 
has  reached  a  stable  state  and  the  user  interacts  with  one 
agent,  it  is  possible to  see  the updates of  the states  in  the 
neighbourhood,  and  when  the  locking  mechanism  is 
activated, how these changes are stopped, as the device that is  
locked prevents the propagation of the changes.  On the other 
hand,  the  inclusion  of  sensors  (light,  movement,  pressure, 
temperature, etc) will increase the complexity of the topology 
of the Interaction Network (but not the dynamic properties of 

the system!), as they cannot be part of a loop (they could only 
be  fathers  in  the  digraph),  because  its  state  depends  on 
environmental  conditions  or  user  behaviour.  Using  these 
approaches  we have  shown that  the  locking  mechanism is 
effective in the elimination of the unwanted cyclic behaviour, 
although the cost  on the overall  system is some temporary 
loss of functionality. 

    We have presented a theorem involving 2 agents,  with 
arbitrary  (but  static)  delays in  the  communication between 
them. We have shown that this system can have instabilities, 
with  a  period  that  depends  on  the  delays.  This  delays are 
equivalent  to  multiple  perturbations,  preventing the system 
from evolving  according  to  the  rules;  in  our  example,  the 
system oscillated between (1,0) and  (0,1) with a number of 
states (0,0) in the middle, depending on the delays suffered 
by  each  agent.  As  we have  shown,  our  strategy prevented 
oscillations even in the presence of noise. 

The Multidimensional Model represents graphically the set 
of agents, their states and time (or iteration), and has been 
shown to be a very valuable tool.  It  illustrates the devices 
involved in cyclic behaviour and the periods concerned. This 
model permits analysis and classification of different kind of 
perturbations.  Some  perturbations  are  weak  and  do  not 
significantly  destabilise  the  system  whereas  other 
perturbations are strong, changing dramatically the behaviour 
of  the  system.  With  this,  we  have  developed  a  set  of 
complimentary  tools  to  analyse  rule-based  multi-agent 
systems: the MDM showing the evolution of the device-state 
plane in a very detailed way, the IN showing the functional 
dependencies  of  the agents,  where  a  closed  loop detection 
warns of possible instabilities, and the mapping from boolean 
to decimal state, showing the behaviour of the system and its 
evolution  over  time  in  a  macroscopical  way.  Two 
representations: micro and macro evolution (MDM), plus a 
formal  functional  representation  (IN) form the  core of  our 
contribution to the understanding and preventing instabilities 
in this complex pervasive computing environment. 

As a future work we are planning to test our strategy with 
larger more complex topologies (in particular with multiple 
coupled loops) and with more complex rules. Also, as locking 
a  node  will  impair,  temporarily,  some  functionality  of  the 
system,  the  choice  of  what  to  lock  and  how long to  lock 
(where there are options) is of some significance to the user. 
Thus a next step in our work is to experiment with a user 
based “locking preference” system. We will investigate both 
user  specified  preferences  together  with autonomous  agent 
learning of preferences. For this we will run experiments in 
our test bed (iDorm2  -a full size apartment that is fitted with 
pervasive computing technology and agents; see Fig. 16) in 
order to provide additional evidence of the strategy, and to 
refine the locking mechanism with information of the user’s 
preferences.

Finally, we are planning to extend our interaction network 
model  to  include  other  domains  where  instability  can  be 

2  http://iieg.essex.ac.uk/idorm
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present, as it could provide useful tools and mechanisms to 
understand  and  remove  cyclic  behaviour  in  these  areas. 
Although this is a challenging direction to our research, our 
results are encouraging and we look forward to reporting on 
our progress in future papers. 
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