
In the 2nd International Conference on Life System Modelling and

Simulation (LSMS'07) Shanghai, China, September 14-17 2007

© Essex University 2007 1

Modelling Pervasive Environments Using Bespoke &

Commercial Game-Based Simulators

Marc Davies
1
, Vic Callaghan

1
 & Liping Shen

2

1
Digital Lifestyles Centre, Essex University, UK

2
eLearning Lab, Shanghai Jiao Tong University, China

midavi@essex.ac.uk, vic@essex.ac.uk, lpshen@sjtu.edu.cn

Abstract. This paper details an ongoing investigation, linking intelligent

buildings and computer game technology. Intelligent buildings are containers

for life-sized organisms (people, pets etc), sustaining ecologies that evolve and

interact in a symbiotic way with the technological infrastructure, which

includes intelligent agents. This work explores how computer games software

can be used to create a simulation tool for the development of new ubiquitous

agent programs and environments. We report on our experiences of adapting a

retail package, (Electronic Arts’ Sims) and building our own bespoke simulator.

We use a table to compare and summarise the strengths and weaknesses of each

approach; the general conclusion being that there are significant benefits to be

gained from adapting commercial games packages for use as professional

simulation tools. Finally, we conclude the paper by describing our plans to

apply this work to the development of a mixed-reality eLearning application.

1 Introduction

1.1 Why Use a Simulator over a Real-World Test-bed?

Technology is assuming an ever increasing role within the environments in which we

live and work [4]. Developing intelligent embedded-agents and pervasive computing

environments can be a costly process. When testing agents in a real-world

environment, researchers can only perform experiments in real-time (e.g. with each

iteration taking days) and often have little control over natural elements, (e.g.

sunlight). The reasons for this are that agents model and learn behaviours by

monitoring people, as they go about their everyday activities [1]. This makes it

practically impossible to repeat tests under identical conditions. When developing a

new pervasive agent, current researchers inevitably need a physical device, and/or

environment to test their program.

Building a simulator from scratch is a formidable task, requiring a considerable

programming effort to create realistic graphical environments and user-behaviours

(especially interactive behaviours). We hypothesized that a Pervasive Environment

Simulator, (PES) based on computer game technology, could take advantage of the

existing high-detail graphics physics and some artificial intelligence techniques used

in modern games, to provide a high-quality model of a real-world test-bed.

Additionally we hypothesized that creating a PES by modifying a computer game

would be easier and produce a higher quality simulation than a bespoke system.

In the 2nd International Conference on Life System Modelling and

Simulation (LSMS'07) Shanghai, China, September 14-17 2007

© Essex University 2007 2

1.2 Existing Projects

Computer games and related technologies are already being used for researching non-

entertainment applications by various private and public organizations around the

world. The Entertainment Technology Center at Carnegie Mellon University has run

a project using their ‘Alice’ graphics engine, to teach artists how to program virtual

worlds [11]; In another example, the U.S. ‘Darwars’ training program uses a

simulated environment based on the Unreal Tournament game engine, to produce

foreign landscapes where soldiers can interact with virtual inhabitants allowing them

to acquire language skills [18]. Computer Science skills are taught by allowing

participants to design their own computer games, matching the expectations of

younger generations, who are unimpressed by simple visualizations [13].

Bespoke simulators are already being used to model household environments. The

‘MavHome’ Project [5] consisted of an intelligent living environment, with certain

components, (e.g. window blinds) controllable from by a simulator created for the

project [5]. Simulators are also being used to augment telemetry from sensors in real-

world locations, improving the reliability of readings and allowing other operations

that would otherwise be impossible. For example a security system that augments a

camera-feed to allow an observer to ‘see-through’ solid objects, by rendering the

hidden space in the simulator [14]. Additionally, simulators can provide training

tools for complex tools and vehicles, e.g. flying aircraft, manoeuvring underwater

robots etc [3]. Aircraft simulators have been converted into several popular computer

game titles, most notably the ‘Microsoft Flight Simulator’ series, useful to

prospective pilots learning to fly [12] and of high entertainment value to gamers

around the world. This provides encouragement for this project. As a simulator can

be converted into a commercial game, the process should be reversible, with games

modified into simulators for research and development applications?

1.3 Bespoke Vs. Game-Based Simulators

As part of our research two simulators were developed; a) A completely bespoke

system, written using the Java programming language. b) A simulator created by

modifying an off-the-shelf copy of a popular computer game. Both programs

modelled the iDorm2, at the University of Essex. A full sized two-bedroom

apartment, constructed to be a pervasive computing test-bed, featuring hollow walls

and ceilings fitted with a myriad of embedded-computer based technology [2] [8].

In the 2nd International Conference on Life System Modelling and

Simulation (LSMS'07) Shanghai, China, September 14-17 2007

© Essex University 2007 3

Figs. 1-4. Views of the University of Essex iDorm test-bed

2 Simulator Design

2.1 Bespoke PES

Design Rationale. A two-dimensional PES, (2D-PES), aimed to provide a

benchmark, for comparison with the game-based PES. Additionally by creating a

bespoke system we were able to further our understanding of the program

architecture required. This knowledge was used when implementing the game-based

3D-PES, letting us identify the components of the original program requiring

modification. It was important to identify how pervasive devices and features could

be simulated, later assess which could be incorporated into a game-based PES.

Simulator Architecture. In more technical terms the 2D-PES consisted of four Java

programs, linked by socket communication; a) Two-programs operating the actual

simulator. b) A central server program. c) A third-party agent program, also written

using Java. Threads were used to handle time-delays and loops in program code.

Fig. 5. Bespoke 2D-PES Architecture

The central server regulated the exchange of all data between the simulator and the

third-party agent program. Readings for sensors in the environment were transmitted

from the simulator to the agent program on each thread cycle. A list of settings was

also received by the simulator, from the agent program, containing states pervasive

objects needed setting to by the simulator. The agent determined settings by analysing

sensor data sent on the previous thread cycle.

Thread Cycle Thread Cycle Thread Cycle

Simulator,

Controllers &

Rendering
Components

Simulator
Human Interface

Server

Program

3rd Party

Agent Program

In the 2nd International Conference on Life System Modelling and

Simulation (LSMS'07) Shanghai, China, September 14-17 2007

© Essex University 2007 4

Fig. 6. The Bespoke 2D-PES Fig. 7. Avatar A.I. architecture FSM

Table 8. 2D-PES Avatar AI states

State Actor Action

A
All needs outside thresholds. No action required from the A.I. Actor

continues using current device or following user instructions.

B
Hunger need > 70%. Actor moves to a randomly selected device which

can be used to reduce hunger, (refrigerator, oven).

C
Tiredness need > 70%. Actor moves to a randomly selected device

which can be used to reduce tiredness, (sofa, chair, bed).

D
Boredom need > 70%. Actor moves to a randomly selected device

which can be used to reduce boredom, (phone, television).

E
Hygiene need < 30%. Actor moves to a randomly selected device

which can be used to raise its hygiene level, (shower, washing machine).

Simulation Environment. The simulated iDorm environment, (Fig. 6) contained an

avatar inhabitant, (represented by a magenta circle), and numerous static, (grey

rectangles) and pervasive objects, (orange/green rectangles). As the avatar interacted

with an object, the device changed colour showing the state of an attached sensor,

(interaction amounted to switching appliances on/off). If an object was green the

attached sensor equalled 1 (high). If orange, the sensor equalled 0 (low). The avatar

interacted with objects in response to the level of four ‘needs’ attributes, (hunger,

tiredness, boredom, hygiene), which influenced activities performed (Fig. 7, Table 8).

2.2 Commercial Game-Based PES

Design Rationale. A three-dimensional PES, (3D-PES), created by modifying an

off-the-shelf copy of the Sims computer game, (Maxis/EA Games, 2000). Apart from

the 3D graphics and supporting tools, a particularly attractive feature in the Sims was

the fairly realistic behaviour of inhabitants. Simulating the behaviour of people is a

considerable challenge, the game avatar artificial intelligence, (AI) uses a “competing

weighted behaviour” approach. One possible variation of this technique used for the

avatar AI in the 2D-PES, is shown in Fig. 7 above. Using a series of weights to

create an artificial bias in decision making, an artificial personality representative of a

E A C

D

B

Hunger

> 70%

Hunger =

1%

Tiredness
> 70%

Tiredness
= 1%

Boredom
= 1%

Boredom
> 70%

Hygiene
< 30%

Hygiene

= 100%

Going to

selected room

/ device

Going to

selected room /
device

Going to
selected room

/ device

Going to

selected room /
device

In the 2nd International Conference on Life System Modelling and

Simulation (LSMS'07) Shanghai, China, September 14-17 2007

© Essex University 2007 5

person of any gender or age can be created for an avatar, and with additional research

characteristics such as psychological/mental illness, could also be modelled. A PES

could create a safety barrier, allowing agents/environments to be tested on a target

audience, without placing real people at risk. Possibilities also include social research

applications, (e.g. observing people with conflicting personalities living together).

Simulator Architecture. In more technical terms this system consisted of a five

room environment, again modelled on the iDorm2. Each object and person contained

in the environment was controlled by at least one thread, placed on a stack and run in

sequence by the game. Object threads were used to regulate the animation displayed

by the game virtual machine [6]. Most objects could only access their own threads,

so for example a television couldn’t access information contained in a thread for a

lamp. To create a Sims-based PES, the original program code had to be modified so

objects could access threads for other devices and information contained within. For

this stage of the project, the most efficient way to achieve this was to program a

single Sims object to act as a ‘remote-control’ for other pervasive devices. The

‘Dumbold Voting Machine’ [7] an add-on device available online, was modified to

act as a remote-interface, and once re-programmed stored the current state of each

pervasive object in the environment to memory. Agent code ran from the voting

machine thread prompting state changes to other objects as required. Agents

determined when to make changes using sensor values, updated on each thread cycle.

Menus from the voting machine were re-programmed providing a manual interface to

force actions performed by a Sims avatar, (Fig. 10).

Figs. 9-10. The Sims-Based 3D-PES & A Modified Sims Object Interface

Simulation Environment. The Sims game is a simulated domestic environment,

designed to model one or several people living their daily lives. The original program

allows a player to design, build and furnish a house to their own specifications, using

numerous pre-programmed materials and objects available in the game libraries.

Using a game to create a PES introduced several advanced features that add greater

realism to the environment, but were too minor to allocate resources for programming

into a bespoke system; including, avatars who randomly visit the virtual home.

3 PES Comparison

Creating two different simulators allowed a comparative study. The results intending

to expose issues involved in modifying games, and relative advantages/disadvantages

In the 2nd International Conference on Life System Modelling and

Simulation (LSMS'07) Shanghai, China, September 14-17 2007

© Essex University 2007 6

compared to a bespoke system. We discussed the performance of the simulators

under four criteria we regarded as important for pervasive computing applications;

• Environment Representation. This criterion covered how realistic the

simulator graphics used, made the environment and its objects appear to be.

• Avatar Representation. How life-like were the movements and behaviours

of the avatar inhabiting the virtual environment? How advanced was the AI

used? Where actions purely reactive or could the avatar make decisions?

• Agent Representation. Perhaps the most important feature of a PES,

allowing observation of environment changes, to evaluate how test-agents

perform. How was influence of agents operating in the environment shown?

• Programmability. How easy was it to program? Did the platform used

contain restrictions, which caused problems during simulator development?

3.1 Comparison Results Table

Table 11. The strengths and weaknesses for both simulators under the chosen criteria

Bespoke PES Game-Based PES

Environment Representation
 The speed-of-time could be changed.

 The simulator could be paused.

 Dawn and dusk are represented with

natural-style changes to light levels.

 Two-dimensional Java graphics made

some features difficult to identify.

 Added/changing objects in the

environment required modifying code.

 Lights, radiators and windows affected

the environment evenly rather than

having weaker influence in proportion

to the distance from the source object.

 Realistic 3D Sims graphics and animations.

 The speed-of-time could be changed.

 The simulator could be paused.

 Objects were added / changed in the environment

quickly using the Sims game features.

 Lights and windows both illuminated rooms

naturally, with stronger illumination in areas

closer to the light source.

 While dawn and dusk were represented with

changes to light levels in the environment, the

transitions occurred too quickly to appear natural

and sometimes caused sensors to miss events.

Avatar Representation
 Four A.I. ‘needs’ variables were used.

 Avatars interacted with objects by

standing next to or sitting on them.

 No visitors were available.

 Avatars didn’t show any emotion.

 Inhabitants couldn’t leave the

environment.

 Avatars didn’t perform event chains for

tasks, instead only using a single object.

 Eight A.I ‘needs’ variables plus social values.

 Thought bubbles showed an avatar’s desires.

 Animations show avatar interaction with objects.

 Avatars can visit and/or leave the environment.

 Avatars performed event chains, (e.g. to eat they

walked to the fridge, cooked a meal at the stove,

then ate at the table).

 Avatars were messy, leaving rubbish around in

unnatural locations and ignoring rotting food.

Agent Representation
 Colour changes to objects made state

changes easily visible.

 Agent activities were recorded to file.

 Agents were loaded from a 3rd party

Java program file, with the server

blocking any direct simulator contact.

 Only on/off states were possible.

 Sensors were invisible in the simulator.

 The time required for messages from

the simulator and the agent program to

be passed across the server created a

short lag-time, before the environment

 Animations make state changes easily visible.

 Multiple states were available for some objects.

 Agents could make modifications to the

environment faster than for the bespoke system,

since the code was part of the simulator program.

 Objects could randomly breakdown.

 A ‘control’ object in the Sims-PES allowed

agents to be tested by forced avatar interaction.

 SimAntics agent code had to be programmed

directly into the simulator. Special sections were

created during re-programming to facilitate this.

 It was not possible to create output files.

In the 2nd International Conference on Life System Modelling and

Simulation (LSMS'07) Shanghai, China, September 14-17 2007

© Essex University 2007 7

reacted to any required changes. Sensors couldn’t be seen in the simulator.

Programmability
 No restricted code.

 Java is a multi-purpose OO language

with many libraries and facilities.

 A popular programming language with

programming guides and IDE tools.

 Since everything had to be written from

scratch programming took a long time.

 Changes to object code could be made quickly

by re-structuring behaviour trees.

 Edits occur in real-time with the game running.

 Little code other than Sims objects was editable.

 SimAntics is a visual programming language

designed for the Sims game, so is very specific in

which operations could be performed.

3.2 Comparison

Environment Representation. The game-based simulator was created by modifying

an existing infrastructure, adding and removing code-fragments where necessary. By

using the Sims as a template the game-based PES objects looked realistic and could

randomly breakdown where appropriate. Avatars had the appearance of real-people,

interacting with the environment using realistic motions. The bespoke Java simulator

visualized the same objects, but the devices were only shown as rectangles. This

could cause confusion in complex demonstrations, if an observer had no knowledge

of the layout in the iDorm environment. The 3D simulation of the Sims-PES also

included features lost in the bespoke 2D-PES; For example objects mounted on walls.

Avatar Representation. Both simulators used ‘needs’ attributes to create an

artificial intelligence for avatars inhabiting the environment. The bespoke system

was simpler using just four variables to produce a reactive A.I, whilst the Sims game

used eight ‘needs’ attributes, plus additional variables allowing some deliberation by

avatars in social situations. Small thought-bubbles appear above the head of a Sims

avatar showing that character’s mood and/or desires. In a PES this feature can be

used to observe how an agent/environment design affects the emotional state of

avatars, possibly revealing areas requiring improvement.

Agent Representation. The Sims uses pre-programmed animations for many of its

objects, to visually display any state changes, (e.g. switching a television on/off).

Most of these animations were still present in the 3D-PES, although some were

modified or removed for operational purposes. As explained earlier, the bespoke

simulator also used animation on a much simpler scale, limited to two animations

representing the on/off states of pervasive objects. By re-programming some of the

original SimAntics code, some 3D-PES objects could visualise several new states and

give different responses from normal to certain scenarios, allowing agents to remotely

control devices. The 2D-PES system created output files recording the activities of

the avatar and agents interacting with objects in the environment during testing. It

was not possible to include this feature in the 3D-PES due to the restrictions and

limitations of the Sims code. The simulator could use a feature of the Sims game,

which saved/re-loaded the current environment, but no data was recorded to file.

Programmability. Sims object code was programmed using the visual language

SimAntics, running from the Edith Virtual Machine [6] [16]. A new piece of code

was added to the original game, where SimAntics agent programs could be attached

directly to the simulator. Components were added to the bespoke 2D-PES ensuring

In the 2nd International Conference on Life System Modelling and

Simulation (LSMS'07) Shanghai, China, September 14-17 2007

© Essex University 2007 8

agent programs could be loaded into the simulator from an external Java file, written

by a developer. The Sims game required re-programming before objects could be

controlled by an agent. This wasn’t a problem for the bespoke PES.

3.3 Comparison Summary

Criteria such as ‘Computational Performance’ were intentionally omitted from this

evaluation. The aim was to accurately simulate a real-world environment; therefore

at this stage of the research we were not concerned with simulator efficiency.

Features such as ambient light changes representing dawn and dusk and the needs

attributes for the avatar AI were programmed into the bespoke simulator, while the

Sims-based simulator had many of these minor-features included as part of the

original game. The Sims uses a more advanced AI system for avatars than the

bespoke PES. A single inhabitant was used to test both PES environments, partly to

reduce the programming requirements for the bespoke system, but mostly to allow

each program to be tested using the same set of rules, allowing a more accurate

comparison. Neither PES actually displayed sensors in their simulation. This was a

decision made during the development stage to reduce the complexity of the

simulated environments for this stage of the project. A next-generation PES will

include sensors in the simulation, allowing several to be attached to a single object.

4 The Next Step

Our immediate aims are to extend the work to simulate the smart-classrooms (see

Figs.12-13) used in the Open eLearning Platform in Shanghai, which supports more

than 15000 learners. The platform delivers fully interactive lectures to PCs, laptops,

PDA, IPTV and mobile phones from high-tech teaching rooms known as smart

classrooms. The Essex iDorm includes a study-room, which is typical of the

domestic space where remote learning from Shanghai can be delivered. Using the

modified simulator, we aim to investigate how a virtual classroom might be best

created to give teachers and distributed learners a sense of sharing the same space.

Figs. 12-13. The SJTU Smart Classroom & the Remote Classroom

With the simulator, and emotion sensing developed in another project [9], we will

also investigate how learner’s emotion evolves and affects the activities in the

classroom [15]. This is part of a broader research strategy seeking to link a next-

generation game-based PES with a real-world test-bed, creating a mixed-reality

environment. Some advantages of this set-up would be allowing virtual avatars to

In the 2nd International Conference on Life System Modelling and

Simulation (LSMS'07) Shanghai, China, September 14-17 2007

© Essex University 2007 9

interact with real-world objects and vice-versa. Additionally, using virtual sensors to

augment real-world counterparts should allow; a) more complex environments to be

simulated; b) innovative devices and functions to be evaluated ahead of realisation,

(particularly speculative devices that may not physically exist); c) the experience of

playing games made more exciting by connecting it to the physical environment. We

are also looking at how PES might be situated in globally distributed simulations such

as Second Life [10] and Project Darkstar [17].

5. Conclusions

In this paper we described the first stage of an ongoing investigation into modelling

pervasive environments with computer game technology. Primarily this stage focused

on whether it was possible to take advantage of high quality graphics, and pseudo-

realistic avatar behaviours, provided by computer games, to create a pervasive

environment simulator, (PES). We discovered a PES had numerous advantages over a

real-world test-bed, most notably; a) the speed-of-time was variable, allowing testing

to be performed faster; b) event and sensor readings within the environment could be

recorded, allowing experiments to be replayed in full or partially; c) environmental

parameters in the virtual home could be specified, allowing agent programs to be

tested under identical conditions; d) it has proven to be less expensive, in terms of

cost, floor-space and maintenance requirements than using a real environment. We

also noted that: a) several researchers could simultaneously use their own copy of a

PES, customized to their experimental requirements; b) a PES would be easily

portable and presentable, unlike a full-scale real-world environment; and c) a PES

eliminates the problem for computer scientists who develop pervasive agents but lack

skills required to build real-world devices to test the code.

To test our hypotheses we assessed whether modifying a computer game, had greater

benefits than creating a bespoke PES or using a real-world environment to test

pervasive agent programs. On comparison, (Table 11) for all but one of four criteria,

a game-based PES would be more beneficial for pervasive computing research, than a

bespoke counterpart. Our hypotheses were proven after modifying a retail-copy of

the Sims computer game. A PES boasting high-level graphics and artificial

intelligence was created in the same timeframe as a bespoke Java-based simulator,

using simple two-dimensional visualisations and more basic A.I. Since the original

game code was written by a team of developers with their own ideas, a single person

could modify it into a PES but still maintain the ideals of the original programmers,

preventing any personal bias from being introduced into the new simulator. In more

scientific terms, the more natural behaviours of the Sims avatar and devices are a

significant advantage to environments incorporating learning agents. Game A.I. can

also be programmed with weights to let an avatar mimic a person of any age or

gender. Such features are reflective of the real-world, so must be included in a

simulated test-bed useful for developing pervasive agents and environments.

Finally, our immediate aims are to extend this simulation work to the creation of

mixed reality distributed shared spaces, involving a richer combination of simulated

people and appliance based agents. Initially, we plan to create a virtual classroom,

based on our well proven Open eLearning and iDorm platforms. Our longer terms

In the 2nd International Conference on Life System Modelling and

Simulation (LSMS'07) Shanghai, China, September 14-17 2007

© Essex University 2007 10

aims are to extend this simulation so that it can be used, not only to develop

intelligent environments but to study the symbiotic relationships that evolve in such

spaces. We hope that this paper will have shown that game technology offers a

means to provide an environment that has the potential to support such exciting

research.

Acknowledgements

We are pleased to acknowledge the support of Electronics Arts who supplied the Edith editor

for the Sims. Thanks are also due to Bernard Horan, Sun Microsystems, Michael Gardner,

Chimera Socio-Technical Research Institute and Ruimin Shen, Shanghai Jiaotong University,

who have greatly motivated this work by describing longer term visions, which we hope to

address in future phases.

References

1. Callaghan V., Clark G., Colley M., Hagras H., Chin J.S.Y., Doctor F. “Intelligent

Inhabited Environments”, BT Technology Journal, Vol.22, No.3 . Klywer Academic

Publishers, Dordrecht, Netherlands, July 2004.

2. Callaghan V., Woods J., Fitz S., Dennis T., Hagras H., Colley M., Henning I., "The Essex

iDorm: A Testbed for Exploring Intelligent Energy Usage Technologies in the

Home", Proceeding of the 3rd International Conference on Intelligent Green and Energy

Efficient Building & New Technologies, International Convention Centre, Beijing

China, 26th-28th March 2007.

3. Chernett,P., Callaghan,V, Colley,M.J., Duffy,N.D., Edwards,I., Herd,J.T., Hunter,J.,

Lane,D.M., Penrose,J., Randall,G.W., Smith,D., Smith,J., Standeven,J., Whittaker,G.A.,

Wood,A., 'Mixing Simulated and Real Subsystems for Subsea Robot Development', IEEE

International Conference Oceans 98, Nice, France, 1998.

4. Clarke G., Callaghan V., “Ubiquitous Computing Informatization, Urban Structures and

Density”, Built Environment Journal, Vol. 33, No. 2, 2007.

5. Cook, Diane J., Youngblood, Michael, Heierman III, Edwin O., Gopalratnam, Karthik.,

Rao, Sira., Litvin, Andrey., and Khawaja, Farhan. “MavHome: An Agent-Based Smart

Home.” In Pervasive computing: first international conference, Pervasive 2002. Ed.

Friedemann Mattern, Mahmoud Naghshineh. Zurich, Switzerland, August 26-28, 2002.

Berlin: Springer, 2002. p521 – 524.

6. Forbus, Kenneth D., Wright, Will. “Some notes on programming objects in The Sims™.”

Northwestern University, 31 May 2001.

7. Hopkins D., Dumbold Voting Machine, http://www.donhopkins.com/drupal, Retrieved:

19
th

 June 06.

8. IIEG, iDorm2, http://iieg.essex.ac.uk/idorm2/index.htm, Retrieved: 18
th

 March 2007.

9. Leon E., Clarke G., Callaghan V., Sepulveda F., "A user-independent real-time emotion

recognition system for software agents in domestic environments", Engineering

Applications of Artificial Intelligence, Volume 20, Issue 3, Pages 337-345, 2007.

10. Linden Lab., Second Life, http://www.secondlife.com, Retrieved: 5
th

 April 2007.

11. Marinelli D., Pausch R., LaForce J., “Entertainment Technology Center,” IEEE

Multimedia, Multimedia At Work, Eds. Catarci T., Little Thomas D. C., Vol. 7, Issue 4,

p78 – 81, Oct–Dec 2000.

12. Microsoft Game Studios, “Microsoft Flight Simulator 2004: A Century of Flight,” CD.

13. Overmars M., “Teaching Computer Science through Game Design,” IEEE Computer,

Volume 37, Issue 4, IEEE, pages 81 – 83, April 2004.

In the 2nd International Conference on Life System Modelling and

Simulation (LSMS'07) Shanghai, China, September 14-17 2007

© Essex University 2007 11

14. Ou Shichao, Karuppiah Deepak R., Fagg Andrew H., Riseman Edward, An Augmented

Virtual Reality Interface for Monitoring of Smart Spaces, Second Annual Conference on

Pervasive Computing and Communications, Orlando, Florida, 14-17th March 2004.

15. Shen L, Leon E, Callaghan V, Shen R “Exploratory Research on an Affective eLearning

Model”, International Workshop on Blended Learning 2007 (WBL 07) 15-17 August

2007, University of Edinburgh, Scotland.

16. Sims Zone, The, Interview: Patrick J. Barrett III,

http://www.thesimszone.co.uk/interviews/index.php?ID=1, Retrieved: 15
th

 March 2007.

17. Sun Microsystems, Project Darkstar, https://games-darkstar.dev.java.net, Retrieved 20
th

April 2007.

18. Voth, Danna. “Gaming technology helps troops learn language.” IEEE Intelligent

Systems. Vol. 19, Issue 5, Sept-Oct 2004. p4 – 6.

