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ABSTRACT 

 
Ubiquitous computing applications propose new and 

creative solutions to every day needs. This paper 

addresses the issue of recognition of every day activities 

inside pervasive domestic environments in order to 

identify patterns of behaviour that can be later used to 

support care systems by detecting changes to those 

patterns. Our system uses a temporal neural-network-

driven embedded agent able to work with online, real-

time data from unobtrusive low-level sensors and 

actuators. We present experimental results that show our 

agent is able to detect temporal patterns along with 

spatial similarity associations found in human 

behaviours and activities, in everyday living 

environments. 
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1. INTRODUCTION 
 

 
New information paradigms such as pervasive 

computing and ambient intelligence propose innovative 

and creative solutions to every day needs. 

Intelligent environments are closely related with the 

term ubiquitous or pervasive computing.  This term was 

originated by Mark Weiser (1), who had the vision of 

“people and environments augmented with 

computational resources that provide information and 

services when and where desired”. An intelligent 

environment has been defined by Zita and Yanco (17) 

as (e.g. a room, a house, an office, etc) as a place that 

“has sensors and actuators that monitor the occupants, 

communicates with each other, and intelligently 

supports the occupants in their daily activities”.  These 

environments can simply be automated systems or more 

complex adaptive systems that use some sort of learning, 

reasoning or planning to adapt themselves to the 

inhabitant’s behaviour. 

The potential of these environments has been 

demonstrated in various domains such as offices, 

classrooms, energy saving/management, consumer 

satisfaction, supportive environments, etc. One of the 

more important and useful metrics used to study human 

behaviours inside a domestic environment are those by 

Mihailidis et al. (9), Munguia et al (12), Mynatt and 

Rogers (13), Philipose et al (14), Wilson and Atkenson 

(16) and, Zita and Yanco (17) which track the Activities 

of Daily Living (ADLs) and the Instrumental Activities 

of Daily Living (IADLs).  

The research presented in this work addresses the issue 

of recognition of every day activities inside pervasive 

domestic environments in order to identify patterns of 

behaviour that can be later used to support care systems 

by detecting alterations to those patterns. 

The recognition of human activities poses several 

challenges due to the diverse number of ways people 

perform those activities, the configuration of the sensory 

system inside the environment, and the architecture used 

to detect and classify the activities. 

One area that has received much attention is the sensory 

system used for the activity detection. It has been 

recognized that monitoring techniques that are relatively 

automated and unobtrusive are much more likely to be 

successful.  The consequence of those techniques 

according to Holly et al (6) is that the acquired data is 

going to be noisier and requires more sophisticated 

algorithms for inferring the current state, but the data 

will be more continuous and not dependent on people 

adherence for success. 

Beaudin et al (2) mention that some desirable 

characteristics for the sensor set are that it should be 

unobtrusive and that no modifications, or only minor 

modifications, to the environment should be needed in 

order to deploy them.  The sensors also need to be 

reliable, require no maintenance and ideally be cheap, 

so they can be deployed in large quantities. 

The use of very simple on/off sensors such as motion 

detectors, pressure sensors, and switches has proved 

well suited to infer high-level behaviours from low-

level sensory data.  Some systems such as the ones 

developed by  Munguia et al (12) and  Wilson & 

Atkenson (16) have used this approach obtaining good 

results using cheap sensors that can be deployed at low 

cost inside a home environment. 

For our system, we have chosen the use of a temporal 

neural-network based embedded agent able to work 

with online, real-time data from unobtrusive low-level 

sensors and actuators.   

The structure of this paper is as follows. In section 2, a 

brief introduction of the experimental testbed is 

presented, followed by the system’s general architecture 

and the agent internal learning mechanisms.  Section 3 

addresses the experiments conducted and describes the 

results obtained from the system.  Finally, the last 

section provides a brief summary of the work and 

outlines our future lines of research. 
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2. THE ACTIVITY RECOGNITION 

SYSTEM 

 

 
2.1 Experimental Environments 

 

 
Two different experimental environments have been 

built at the University of Essex.  The first one is called 

the intelligent dormitory (iDorm1 – shown in Figure 1). 

This is a real pervasive computing testbed comprising  a 

large number of embedded sensors, actuators, 

processors and networks in the form of a small self-

contained room containing areas for different activities 

such as sleeping, communicating (writing or video 

conferencing with remote family and friends) and 

entertaining (watching TV, listening to music etc).   

These networked devices enable the intelligent agents 

to monitor and make changes to the room's 

environmental conditions. The sensor network includes 

devices such as: temperature sensors (both inside and 

outside the room); humidity sensors; a small matrix of 

light sensors across the room; an active entrance lock 

system which provides access based on an individual's 

identity; an infrared sensor to detect movement. 

Effectors include: air circulators; fan heaters; a door 

lock actuator; motorised vertical blinds; automated 

window openers and a light dimmer. 

 

FIGURE 1 - The iDorm1 

 

 

With the success of the iDorm1, a more realistic test-

bed for exploring care applications of ambient 

intelligence in the home has been constructed. The new 

facility takes the form of a domestic apartment and has 

been called the iDorm2.  

The new intelligent dormitory 2 (iDorm2) shown in 

figure 2, is a full-size two bedroom apartment. This 

apartment is built from the ground up to support 

experimental work and features specially constructed 

cavity walls and ceilings that house sensors, effectors, 

processors, networks and power systems, all hidden 

from view and fully configurable by the researchers. All 

the basic services are electrically controlled (e.g. 

heating, water, doors etc). 

Thus, the iDorm2 offers the possibility for examining 

the deployment of embedded agents and sophisticated 

user interfaces within the intelligent environments of 

tomorrow. 

 

FIGURE 2 – The iDorm2 

 

 
 

 

2.2 Agent description 

 

 
The iDorm devices are interconnected to the agent using 

the Universal Plug&Play (UPnP) architecture which 

provides a component based API, service discovery and 

the communication of actions (events) inside the iDorm.  

The system is programmed using the Java language 

which brings advantages such as flexibility, modularity, 

reusability and portability.  

The agent is able to run on a SNAP board which is a 

network-ready, Java-powered plug & play platform 

developed by Imsys (18). 

The main purpose of running an agent on a SNAP board 

was to show that the agent could run on a real 

embedded-internet device which has, typically, an order 

of magnitude less memory and processing speed.   

One of the major concerns related to care environments 

is the lack of proper agent architectures (both the 

internal & external agent structures and mechanisms) 

able to cope with the challenges of more demanding 

scenarios. Our work addresses this issue by exploring 

the use of a neural-network based agent in order to 

detect, recognize and classify human activities and 

behaviours inside an environment    In order to use a 

neural network for this purpose, the network must be 

able to identify recurrent patterns of behaviour, yet 

flexible enough to adapt itself to continuous changes in 

the environment. 

Our approach comprises the use of an Adaptive Neural 

Architecture derived from the ECoS paradigm proposed 

by Kasabov (7).  This kind of network can grow 

dynamically, adapting its hidden layer to accommodate 

new information by adding nodes (rule nodes) whenever 

an example is not found to fit the existing structure.  It 

is even able to “grow” new input or output nodes to 



In the Proceedings of the 2nd IET International Conference on Intelligent Environments (IE06), pp 

51 - 59, Athens, Greece, July 2006, ISBN: 978-0-86341-663-7 

© Essex University 2006 3

accommodate, for example, new sensor inputs or new 

activities.   

Many of the abnormalities in behaviours that can be 

detected are not only related to the appearance of new 

activities but also to the temporal order in which they 

take place.  With the addition of memory structures, the 

learnt temporal associations can be used to support the 

activation of the rule nodes based on temporal patterns, 

along with the existing spatial-similarity associations 

found in activities and human behaviours. 

A complete description of the construction algorithm 

used by the network to update its internal weights can 

be found in previous work by Rivera-Illingworth et al 

(15).  The following paragraphs will focus on the 

description of the memory layer and the changes made 

to the network in order to accommodate this layer. 

 

2.2.1 TEMPORAL COMPONENTS OF THE 

NETWORK. The vast majority of the artificial neural 

networks only deal with problems whose nature is 

“static”, however time is a key component of human 

behaviours.  Usually, a neural network is presented with 

an input pattern and after some processing (using feed-

forward networks, perceptrons, etc.) an output is 

generated.  These networks associate each one of the 

input patterns to a single output pattern. 

Conventional neural architectures are not well suited 

time varient patterns, that is, for temporal pattern 

recognition that involves processing of patterns that 

evolve over time.  According to Mozer (10), for this 

kind of pattern recognition, the appropriate response at a 

particular point in time depends not only on the current 

input, but potentially all previous inputs. 

A popular way to recognize patterns that vary across 

time has been to use a recurrent network.  Chappelier et 

al (3), regard recurrent neural networks (RNN) as a 

major family of temporal connectionist models.  A RNN 

can be defined in the most general manner as a neural 

network containing at least one neuron whose state 

depends either directly or indirectly on at least one of its 

anterior states.  According to Kremer (8), this 

characteristic provides a short-term memory which 

allows these networks to deal with input and output 

patterns that vary across time .    

In a RNN, the connections are mainly feed-forward, but 

include a carefully chosen set of feedback connections.  

The recurrence allows the network to remember cues 

from the recent past, but does not complicate the 

training.   If the feedback connections are fixed and not 

trainable, back-propagation may be easily used for 

training.  The updating is synchronous, with one update 

for all units at each time step (5).   

The RNN architecture proposed by Elman (4), is a 

recurrent network based on the MLP architecture.  It 

consists of adding recurrent links from the hidden layer 

of the network to the input layer.   At the time t – 1 the 

hidden layer is copied into the input layer as a 

complement to the “real” input vector at time t. When 

computing the new output, the information goes 

downstream, as in a classical MLP, from the input to the 

output layer (3).  

More specifically, the network uses the previous state 

(also called context) together with the current sensory 

input as the input to the neural network and produces a 

new state as output. The short term memory is stored in 

a set of hidden units whose activations are computed 

based on the activations in a layer of input units, a layer 

of context units and on the weights from these to layers 

to the state units. 

By convention, the activations of all the context units 

are initially set to 0.5 and subsequently set to the 

activation values of the hidden units at the previous time 

step (the number of context and hidden units must be 

equal).   Specifically, the hidden unit activation values 

are copied to the context units at each time step.  Thus, 

at any given time, the hidden units’ activations represent 

the current state, whilst the context unit activations 

represent the previous state (8). 

In this kind of architecture, the memory uses states 

based on the previous state vector and input vector.  

This implies that the state vector for this type of 

memory can contain information not found in recent 

input and output vectors. 

An adaptation of an Elman (a Recurrent Neural 

Network) architecture was chosen because recurrence 

allows the network remember information from the 

recent past and does not appreciably complicate the 

training. The addition of a temporal layer and the 

connection weights allows the network to capture 

temporal dependencies between consecutive data 

examples. 

Figure 3 provides a diagram of the actual structure of 

the adaptive neural network, consisting of four layers:  

the input layer, the evolving hidden layer and the output 

layer, plus a memory layer used to represent temporal 

information. The dashed arrows represent fully 

connected layers whereas the solid line arrow represent 

one-to-one connection between neurons. 

 

 

FIGURE 3 - The network architecture 

 

 
 

According to Elman (4), the memory layer is a structure 

that allows the network to have temporal capabilities. 

The network has feedback connections from the hidden 
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layer of neurons back to the same nodes, and these 

context units simply hold a copy of the activations of 

the hidden units from the previous time step. These 

context units or memory layer allow the network to 

capture temporal dependencies between the presented 

data examples from the data stream. 

The activation function A of each neuron in the hidden 

layer is now dependant of both the spatial and temporal 

components.  The proportion in which these two 

components influence the neuron activation can be 

modified by the spatial and temporal factors (Sf and Tf 

respectively).  The activation function is calculated as 

shown in Equation (1): 

 

       (1) 

 

In this DI,hnode represents the distance function between 

the input and a hidden node whereas Wmhmaxactv,hnode 

represents the memory-to-hidden layer connection 

weight between the maximum activation neuron and the 

hidden node. 

The computation of the input-to-hidden layer 

connection weights Wih and the hidden-to-output layer 

connection weights Who remains the same.  The new 

memory-to-hidden layer connection weights Wmh 

capture the temporal dependencies between consecutive 

data examples. 

These Wmh weights are updated using Equation (2), 

where Ah is the activation of the winning hidden node, 

Am is the activation of the winning memory node and 3 

is the learning rate. 

 

                (2) 

 

Many of the abnormalities that can be detected are not 

just related to the appearance of new activities but also 

to the temporal order in which they take place. With the 

addition of the new memory structures, the learned 

temporal associations can be used to support the 

activation of the rule nodes based on temporal patterns 

together with the existing spatial-similarity associations 

found in the activities and human behaviours. 

 

In the next section the experiments conducted in order 

to test both the ability of the network to find normal 

patterns of behaviour, and the possibility to detect 

deviations in the temporal order of those patters, will be 

presented. 

 

 

3. EXPERIMENTS AND RESULTS  
 
This section explains the type of experiments conducted  

to test the behaviour recognition system.  The aim was 

not just to identify patterns in the sensors’ activation, 

but also to detect high-level behaviours such as eating, 

using a computer, etc.  The data was collected using the 

system described in the previous sections.   The results 

presented show both the ability of the system to detect 

and recognize human behaviours and also the possibility 

to detect deviations from those habitual patterns of 

behaviour. 

 

3.1 Data acquisition 
 
The dataset consisted of the data collected by 18 sensors 

(both environmental and furniture based).  A set of eight 

different activities (Listening to music, Working at 

Computer, Reading, Desk work, Resting-napping, 

Sleeping, Out of room, and ‘Other’) were detected 

inside the environment.  To assist this process, during 

the experiments, the user was asked to describe the 

action he was performing via a simple user interface, 

using an approach similar to the Experience Sampling 

Method (ESM) used in Munguia et al (12). 

In order for the agent to collect the data related to the 

user’s behaviour and activities inside the environment, 

two different approaches were used. In the first 

approach the agent recorded a ‘snapshot’ of the current 

inputs (sensor states) only when the user implicitly 

changed the state of the environment (e.g. turn on/off a 

switch); however, by using this approach, the number of 

instances recorded was limited (about 100 a day).  By 

using this approach one dataset of 471 instances was 

collected over a period of 4 days. 

For the second approach, a new module was added to 

the agent so the state of the environment (and the 

current action being done by the user) could be recorded 

every 30 seconds regardless of the user interaction with 

the system. In this way, more detailed information could 

be obtained; a second dataset consisting of a total of 

1066 instances was recorded using this approach over a 

period of 2 days. 

 

 

 

3.2 Experiments 

 
The experiments were divided into two parts.  The aim 

of the first part was to determine the performance of the 

new temporal network on classifying the activities and 

behaviours. The second part corresponded to 

experiments conducted in order to test the new temporal 

abilities of the network to identify time-based 

abnormalities. 
 

3.2.1 CLASSIFICATION OF ACTIVITIES USING 

TEMPORAL NETWORK ARCHITECTURE. These 

series of experiments were conducted in order to 

compare the performance of the normal network and the 

one with temporal capabilities.  For this experiment, 

both the first and second dataset were used, merging the 

4 days of data of first dataset with the first day of data 

of the second dataset and testing over the second day of 

data of the second dataset.   This was done also to test 

the performance of the network using data acquired in 

two different periods of time.   The results for this test is 

summarized in the table below. 
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TABLE 1 – Comparison of classification 

between the normal and temporal network 

 Not 

temporal 

Temporal 

Training examples 996 996 

Correctly 

classified 

926 915 

Percentage 92.97% 91.86% 

Training 

Created hidden 

nodes 

178 158 

Test examples 541 541 

Correctly 

classified 

492 500 

Testing 

Percentage 90.94% 92.42% 

 

As it can be seen from table 1, the temporal network has 

a performance as good as the normal network, and a 

better one for the testing phase.  Although the temporal 

network created less hidden nodes, it took longer to 

train because the addition of the temporal layer meant 

that it had to train more inter-layer connections.   The 

results also show that combining old and new data 

(acquired at different periods of time) of the same 

individual did not affect the classification results, so the 

network is able to generalize its classification results 

over different periods of time. 

 

3.2.2 TEMPORAL ABNORMALITY DETECTION. Two 

different experiments were performed in order to test 

the ability of the network to identify abnormalities 

related with time.  In the first experiment, the network 

was tested to detect an activity that it has been 

previously trained but, that this time, presented at a 

different hour of the day.  A graphical representation of 

the normal order of the activities (Figure 4) and one 

with the activity taken place at a different hour (Figure 5) 

are shown in the figures below (with the hour in the Y-

axis an the activities on the X-axis). 

 

FIGURE 4 – Normal pattern of activities 

 

 
 

 

 

 

 

FIGURE 5 – Activities taking place at a 

different time 

 

 
 

The network was tested in order to see if it can spot an 

activity taking place at an unusual time according to the 

normal pattern of behaviour. This abnormality consisted 

of the inhabitant taking a nap at a different hour.   The 

results are summarized in table 2. 

 

TABLE 2 – Abnormality detection for activities 

occurring at different time 

 

Novelty sensitivity thr. 0.95 

Detected novelties 31 

True novelties 31 

Testing 

Mislabelled novelties 0 

 

The network found 31 abnormal activities 

corresponding to the 31 instances in which the napping 

activity occurred at a different time, correctly spotting 

100% of the abnormal instances.  To get more 

conclusive results, further experiments need to be 

conducted to test more activities that have been 

previously seen but performed at different times of the 

day. However, from our initial results, the network 

seems to be well suited for this kind of task. 

For the second experiment the network was tested to 

identify abnormalities relating to activities occurring in 

a different order.  Again, the comparison again was 

made using a normal set of activities shown in Figure 4 

and the new order of the activities can be seen better in 

the graphical representation presented in Figure 6. 

 

TABLE 3 – Abnormality detection for activities 

occurring at different order 

Novelty sensitivity thr. 0.98 

Total novelties 182 

Detected novelties 184 

True novelties 122 

Testing 

Mislabelled novelties 62 
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FIGURE 6 – Activities taking place with 

different order 

 
 

As it can be seen in table 3,  the network found 122 true 

abnormalities , corresponding to 67% of the total real 

abnormalities. However, almost all the abnormalities 

that were not found corresponded to the “Working at 

computer” class.  We believe that the reason for that 

was that this activity is sometimes difficult to 

distinguish due to the sensory data being similar to that 

of other activities. 

The results of the two experiments have shown that the 

temporal network is able to find abnormalities in which 

the time plays a significant role.  New sets of data will 

be collected so the network can be fully tested. 

 

 

4. CONCLUSIONS AND FUTURE WORK 

 
Many of the abnormalities that can be detected are not 

only related to the appearance of new activities but also 

to the temporal order in which those take place.  With 

the addition of the new memory structures, the learned 

temporal associations can be used to support the 

activation of the rule nodes based on temporal patterns 

together with the existing spatial-similarity associations 

found in activities and human behaviours. 

The recurrent neural network architecture proved to be a 

simple yet useful approach because it could be 

incorporated to the existing network without major 

modifications in the training algorithm. 

The system is able to learn in an online (one-pass) and 

incremental way, adapting itself to new data as they are 

made available over time and it can be applied to 

environments with changing dynamics.  Our system is 

able to perform as well as more complex systems, 

needing only to be trained for one epoch (the examples 

need to be presented only once to the network in order 

to train it) and uses an abnormality detection method 

that is embedded into the structure of the network which 

proves that the network can be expanded as new 

examples are presented or it can add new classes to 

accommodate the abnormal instances. 

To our knowledge, there aren’t any systems able to 

recognize human behaviours that can be integrated 

wholly within a computationally lean embedded 

processor. Thus, this is an important contribution of this 

work. 

The system presented in this paper, presents an original 

approach to the activity detection and recognition of 

patterns in behaviour using data from unobtrusive and 

relatively simple sensors and the use of an adaptive 

neural network enhanced with temporal capabilities.  

This system is  not only able to recognize high level 

behavioural activities such as “eating”, “sleeping”, 

“listening to music” but also it can recognize patterns on 

those behaviours.  By using those patterns it can identify 

changes in the temporal order of the human activities 

(both in the order and in time of occurrence) that later 

on can be used for care applications. 

The results of the use of the network with a temporal 

layer are encouraging and have shown that the 

abnormality recognition process benefits from the use of 

the temporal components by allowing the network to 

keep an internal memory. The recognition of patterns in 

behaviour also benefited from the use of more 

environmental data.  Further experiments will be 

conducted in order to extend our results and test the 

system in bigger environments. 
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