
 1 

An Intelligent Fuzzy Agent Approach for 
Realising Ambient Intelligence in Intelligent 

Inhabited Environments 
 

Faiyaz Doctor, Hani Hagras, Victor Callaghan 

Department of Computer Science, University of Essex, Wivenhoe Park, 
Colchester, CO4 3SQ, UK 

 
Email: fdocto@essex.ac.uk  

 
Abstract---In this paper we describe a novel life long learning approach for intelligent agents that are 

embedded in intelligent environments. The agents aim to realise the vision of Ambient Intelligence in 

Intelligent Inhabited Environments (IIE) by providing ‘ubiquitous computing intelligence in the 

environment supporting the activities of the user. An unsupervised, data-driven, fuzzy, technique is 

proposed for extracting fuzzy membership functions and rules that represent the user’s particularised 

behaviours in the environment. The user’s learnt behaviours can then be adapted online in a life long 

mode to satisfy the different user and system objectives. We have performed unique experiments in 

which the intelligent agent has learnt and adapted to the user’s behaviour, during a stay of five 

consecutive days in the intelligent Dormitory (iDorm) which is a real ubiquitous computing 

environment test bed. Both offline and online experimental results are presented comparing the 

performance of our technique with other approaches. The results show that our proposed system has 

outperformed the other systems while operating online in a life long mode to realise the ambient 

intelligence vision.  

Index terms--- Fuzzy Systems, Learning, Ambient Intelligence, Intelligent Inhabited 
Environments, Agents, Ubiquitous computing environments. 

 

1. Introduction 

The envisaged widespread proliferation of networked embedded computer products into 

people’s everyday lives is driving research into how such technology could be deployed 
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without incurring prohibitive cognitive loading on the users to create ubiquitous computing 

environments [13]. Ubiquitous computing, alternatively referred to as pervasive computing, is 

a paradigm in which computing technology becomes virtually invisible by being embedded in 

our environments.  

    As embedded computers get smaller and become integrated into non-computing artefacts, 

they effectively can physically disappear. With the addition of communication capability to 

these artefacts and the use of pervasive networking, such artefacts can be associated together 

and remotely accessed in both familiar and novel arrangements to make highly personalised 

systems. The challenge however is how to manage, program or direct such systems, a task that 

could quickly become prohibitive and an obstacle to the achievement of the pervasive 

computing. The vision of ambient intelligence can help to address this challenge [9, 19].  

    Ambient Intelligence is a new information paradigm where people are empowered through a 

digital environment that is “aware” of their presence and context, and is sensitive, adaptive and 

responsive to their needs [9]. Ambient intelligence improves the quality of life through creating 

desired environmental conditions and functionality via intelligent, personalised interconnected 

systems and services [9]. An environment with ambient intelligence can be characterised by its 

ubiquity, transparency and intelligence [9]. It is ubiquitous because the user is surrounded by a 

multitude of inter-connected embedded systems which form a pervasive infrastructure. Its 

transparency is due to the invisible nature of the computing based artefacts being seamlessly 

integrated into the surrounding environment. Its intelligence spawns from the fact that the 

technology is able to recognise the users and program itself to their needs by learning from 

their behaviour. In addition, environments constructed in such a way would be adaptive to 

changing conditions and user preferences. 

    As was suggested above for the vision of ambient intelligence to be realised people have to 

be able to use and configure the computer-based artefacts and systems present in their 

ubiquitous environments in a seamless, unobtrusive and non-intrusive way; without being 
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cognitively overloaded by having to program each device and workout how to connect them 

together to achieve the desired functionality [9]. One approach to achieve this vision of 

ambient intelligence is to embed intelligent agents in the user environments so that they can 

control them according to the needs and preferences of the user. Embedded intelligence is the 

inclusion of some capacity for reasoning, planning and learning in an artefact. Embedded-

computers that contain this kind of intelligent capacity are normally referred to as “embedded-

agents” [6]. Each embedded agent is an autonomous entity, and as was mentioned earlier, in a 

pervasive computing environment it is common for such embedded-agents (as intrinsic parts of 

intelligent artefacts”) to have network connections allowing them to communicate and 

cooperate with other embedded agents, as part of a multi embedded agent system [6].  

    In this paper, we will present a novel fuzzy learning and adaptation technique for agents that 

can be embedded in ubiquitous computing environments. This we hope will be a step towards 

the realisation of the vision of ambient intelligence [9]. Each agent is connected to sensors and 

effectors comprising a ubiquitous computing environment. The intelligent learning mechanism 

used would learn and predict the needs of the user and automatically adjust the agent controller 

based on a wide set of parameters [5] in a non-intrusive and invisible way, satisfying one of the 

main requirements for ambient intelligent systems [9]. Due to the fact that these agents need to 

be located on small embedded computers with limited processor and memory capacities, our 

learning and adaptation system is a one pass method which does not require heavy computation. 

    Most automation systems that have minimal intelligence utilise mechanisms that generalise 

actions across a population e.g. set temperature or loudness that is an averaged compromise of 

the needs of a group of individuals. However in achieving the vision of ambient intelligence, 

we argue that any type of intelligence applied to personal artefacts and spaces needs to 

particularise to the individual [6]. Furthermore it is essential that any agent serving a person, 

should always and immediately carry out any requested actions, i.e. people are always in 

control, subject to overriding safety considerations, to achieve the responsive property implied 

In IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, Vol.35, No.1, pp.55-65, January 2005.



 4 

in the ambient intelligence vision [9]. So our intelligent agent will seek to provide an online, 

life-long, personalised learning of anticipatory adaptive control supporting the vision of 

ambient intelligence in Intelligent Inhabited Environments (IIE).  

    We have performed unique experiments in which our intelligent agent has learnt and adapted 

to the behaviour of a user who spend five consecutive days in the Essex intelligent Dormitory 

(iDorm) which is a real ubiquitous computing environment test bed.  

    The rest of this paper is organised as follows: In Section (2), we will introduce Intelligent 

Inhabited Environments. In section (3) we describe our test bed for ubiquitous environments; 

the iDorm. In section (4) a detailed description of the proposed life-long learning technique is 

presented. Section (5) presents results on offline comparison of the proposed technique with 

three other soft-computing approaches, and results obtained from the online performance of the 

agent in the iDorm. Section (6) provides some concluding remarks and future research 

directions. 

2. Intelligent Inhabited Environments 

Intelligent Inhabited Environments (IIE) are enclosed living spaces (such as a car, shopping 

mall, home or even our own body) equipped with embedded intelligent technology that would 

allow the environment to respond “thoughtfully” to the users’ needs. These environments could 

consist of a multitude of possibly disconnected active spaces supporting ambient intelligence 

and providing ubiquitous access to system resources according to the current situation of the 

user. These intelligent environments will personalise themselves in responses to our presence 

and behaviour. Precursors to such environments can be found now in Intelligent Buildings (IBs) 

[6]. The heterogeneity, dynamism and context-awareness in a building make it useful for 

exploring the design challenges concerned with ubiquitous systems. One view of an IB is a 

computer-based system, gathering information from a variety of sensors (and other computers), 

and using intelligent mechanisms to determine the appropriate control actions of various 
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devices [6, 11, 10]. In controlling such systems one is faced with several challenges as there 

are a large number of information sources within such environments which these systems must 

monitor and use to learn and adapt to the needs of the user. In addition, the sensors themselves 

may be imprecise due to noise or the quality of the sensor, and the system must be able to 

compensate for these inaccuracies. Moreover, there is a lack of adequate models for many of 

the processes present in such systems. Also, these systems have to contend with the dynamic 

non-deterministic aspects of human behaviour.  

    Currently there have been several research projects concerned with applying intelligent 

agents to IIE. In Sweden Davidsson [4] utilised multi-agent principles to control building 

services. In Colorado Mozer [18] used a soft computing approach based on neural networks 

which was focused on the intelligent control of lighting within a building. Work at MIT in the 

HAL project [8] concentrated on making a room responsive to the occupant by adding 

intelligent sensors to the user interfaces. Context Aware systems are the focus of the Aware 

Home work at Georgia Tech [1]. These projects represent a large body of current research 

effort; however they are mostly concerned with time independent context rather than temporal 

history, learning or adaptation which is central to our requirements for agents supporting the 

vision of ambient intelligence [9]. There are other high profile intelligent environments 

projects such as the Microsoft Smart House, BT’s Tele-care and Cisco’s Internet Home [20]. 

However most of these industrial projects including home automation technologies, like 

Lonworks and X10 are geared toward using networks and remote access with some 

autonomous control. In general, this is mostly simple automaton with sparse use of Artificial 

Intelligence (AI) and little emphasis on learning and adaptation to the user’s behaviour. In our 

previous work we developed an Incremental Synchronous Learning technique for an embedded 

agent [12]; however, it learnt only the user rules and not all the parameters of the embedded 

agent controller. 
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As mentioned earlier, we will use the Essex intelligent Dormitory (iDorm) as a test-bed for IIE 

and ubiquitous computing environments and thus we describe this environment in the 

following section. 

3. The Essex intelligent Dormitory (iDorm) 

The iDorm shown in Fig 1 is test bed for ubiquitous and pervasive computing environments. It 

looks like any other room and it comprises of a large number of embedded sensors, actuators, 

processors and a heterogeneous network [13].  

 

Fig. 1. The iDorm. 

    The iDorm is multi-user space containing areas for different activities such as sleeping, 

working and entertaining. It contains the normal mix of furniture, found in a typical student 

study/bedroom environment, including a bed, work desk and a wardrobe. There is a standard 

multi-media PC that combines a flat screen monitor and a multi-media video projector which 

can be used for both working and entertainment as shown in Fig 2. Any networked computer 

that can run a standard Java process can access and control the iDorm directly, thus this PC can 

also act as an interface to control the devices in the room as shown in Fig 3a. Equally the 

interface to the devices could be operated from physically portable computational artefacts that 

can monitor and control the iDorm wirelessly. The handheld PDA (Compaq iPAQ) shown in 

Fig 3b contains a standard Java process that can access and control the iDorm directly. Because 

the iPAQ supports Bluetooth wireless networking, it was possible to adjust the environment 
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from anywhere inside and nearby outside the room, this forms a type of “remote control” 

interface that would be particularly suitable to elderly and disabled users.  

 

Fig. 2. Video Projector and Multi-Media PC in the iDorm. 

 
    It is also possible to interact with the iDorm through mobile phones as shown in Fig 3c using 

a WAP interface which is a simple extension of a web interface. There is also an internet 

Fridge in the iDorm provided by LG consumer electronics that incorporates an intelligent user 

friendly server with touch screen capability, which can also be used to control the devices in 

the room, see Fig 3d.  

    Our agent learning mechanism and interface currently operates from the standard multi-

media PC in the iDorm. It is possible however for our agent to be embedded into any part of 

the environment. In terms of software the cross platform versatility of the Java programming 

language which the agent was written with, could allow it to be embedded onto internet devices. 

By embedding agents into such devices and integrating wireless communications (including 

wireless based interfaces, such as PDAs), this will lead to the kind of pervasive transparent 

infrastructure characteristic of an ambient intelligent system.  

    The iDorm is fitted with a liberal placement of sensors which include the following: internal 

light level sensor, external light level sensor, internal temperature sensor, external temperature 

sensor, humidity sensor, chair Pressure sensor, bed pressure sensor, occupancy sensor, 

telephone status sensor. 
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         a)                           b)                                      c)                         d) 

Fig. 3.  a) PC based interface.  b) Portable iPAQ interface.  c) Mobile phone interface.  d) 

iFridge interface. 

      
    The effectors one can control in the room consist of the following: heater, cooler fan, four 

dimmable spot lights, window blinds, desk lamp, bedside lamp, PC based Word processing 

application, PC based Media playing application. 

    The sensors and actuators in the room are concealed (e.g. buried in walls) with the intention 

that the user should be completely unaware of the intelligent infrastructure of the room which 

is required by the ambient intelligence vision [9].  

    The iDorm is based around three networks, Lonworks, 1-wire (TINI) and IP which provide a 

diverse infrastructure allowing the development of network independent solutions. Lontalk is 

Echelon’s proprietary network protocol and forms a standard for building automation networks. 

There are many commercially available sensors and actuators for this system. The physical 

network installed in the iDorm is the Lonworks TP/FP10 network running Lontalk protocol. 

The gateway to the IP network is provided by Echelon’s iLON 1000. This allows the states and 

values of sensors and actuators to be read or altered via Echelon’s proprietary LNS server. The 

majority of the sensors and effectors inside the iDorm are connected via a Lonworks network. 

The 1-Wire network, developed by Dallas semiconductor was designed for simple devices to 

be connected over short distances. It offers a wide range of commercial devices including small 

temperature sensors, weather stations, ID buttons and switches. The 1-Wire network is 
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connected to a host of Tiny Internet Interface boards (TINI board), which run an embedded 

web server serving the status of the networked devices using a Java servlet. The servlet collects 

data from the devices on the network and responds to HTTP requests. The IP network forms a 

backbone to interconnect all networks and other devices like the multi-media PC.  

 

Fig. 4. The iDorm logical network infrastructure. 

    A common interface to the iDorm and its devices is implemented through Universal Plug & 

Play (UP&P) which is an event-based communication middleware for allowing devices to be 

plug & play enabling automatic discovery and configuration. A gateway server is used to run 

the UP&P software devices that interface the hardware devices on their respective networks. 

The agent implementing our learning and adaptation mechanism was built on top of the low 

level UP&P control architecture enabling it to communicate with the UP&P devices in the 

iDorm and thus allowing it to monitor and control these devices. Fig 4 shows the logical 

network infrastructure of the iDorm. 
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4. Proposed Architecture  

The task of designing an intelligent agent to effectively fulfil the needs of the user in IIE is akin 

to finding a solution to a highly challenging control problem. The environment within which 

the agent must operate can be viewed as a very complex control system, in which the user 

controlling it forms an essential part. The environment facing the human controller is so 

complicated that any mathematical model, if it exists, is strongly non-linear. In addition, the 

human controller, in their own right, is largely non-deterministic and a highly individual part of 

this system. The task here is to design an intelligent control system to realise the ambient 

intelligence vision [9] and control the environment on behalf of the human user [21].  

    Fuzzy logic offers a framework for representing the imprecise and uncertain knowledge of 

the real world. It has similarities with the way people make decisions as it uses a model of 

approximate reasoning that allows it to deal with vague and incomplete information. Fuzzy 

controllers also exhibit robustness with regard to noise and variations of the system parameters. 

Fuzzy Logic Controllers (FLCs) are widely used in engineering and control application. A FLC 

is a model free approach which converts linguistic control information into mathematical 

control information and can represent a non-linear mapping of inputs to outputs. FLCs also 

provide transparent and flexible representations which can be easily adapted due to the ability 

of fuzzy rules to approximate independent local models for mapping a set of inputs to a set of 

outputs. 

    Our proposed technique is an unsupervised data-driven one-pass approach for extracting 

fuzzy rules and membership functions from data to learn a fuzzy controller that will model the 

user’s behaviours. The data is collected by monitoring the user in the environment over a 

period of time. The learnt FLC provides an inference mechanism that will produce output 

control responses based on the current state of the inputs. Our adaptive FLC will therefore 

control the environment on behalf of the user and will also allow the rules to be adapted online 
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as the user’s behaviour drifts over time. Our proposed approach aims to realise the vision of 

Ambient Intelligence in the following ways: 

� The agent is responsive to the particular needs and preferences of the user. 

� The user is always in control and can override the agent at any time. 

� The agent learns and controls its environment in a non-intrusive way (although the user 

may be aware of the high-tech interface, he is unaware of the agent’s presence).  

� The agent uses a simple one pass learning mechanism for learning the user’s behaviours, 

and thus it is not computationally expensive. 

� The agent’s learnt behaviours can be adapted online as a result of changes in the 

occupant’s behaviour. 

� Learning is life-long in that agent behaviours can be adapted and extended over a long 

period of time as a result of changes in the environment. 

These features fulfil many of the requirements for the ambient intelligence vision defined by 

the Information Society Technologies Advisory Group (ISTAG) to the European Commission 

[9]. For the reminder of this paper the proposed approach will be referred to as an Adaptive 

Online Fuzzy Inference System (AOFIS). 

    AOFIS comprises of five phases: Monitoring the user’s interactions and capturing 

input/output data associated with their actions, extraction of the fuzzy membership functions 

from the data, extraction of the fuzzy rules from the recorded data, the agent control and the 

life long learning and adaptation mechanism. The last two phases are control loops that once 

initiated receive inputs as either: monitored sensor changes that produce appropriate output 

control responses based on the set of learnt rules; or user action requests that cause the learnt 

rules to be adapted before an appropriate output control response is produced. Fig 5 illustrates a 

flow chart of these five phases. 
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Fig. 5. Flow diagram showing five phases of AOFIS. 

4.1 Capturing input/output data 

The agent initially monitors the user’s actions in the environment. Whenever the user changes 

actuator settings, the agent records a ‘snapshot’ of the current inputs (sensor states) and the 

outputs (actuator states with the new altered values of whichever actuators were adjusted by the 

user). These ‘snapshots’ are accumulated over a period of time (three days the in case of our 

experiments) so that the agent observes as much of the user’s interactions within the 

environment as possible. AOFIS learns a descriptive model of the user’s behaviours from the 

data accumulated by the agent. Therefore given a set of multi-input multi-output data pairs: 

),;( )()( tt yx   Nt ,...,2,1�                                     (1) 

where N is the number of data instances, nt Rx �)(  and  kt Ry �)( . AOFIS extracts rules which 

describe how the k output variables ),...,( 1 kyyy �  are influenced by the n input variables 

nT
n Rxxx �� ),...,( 1  based on the sampled data. In our experiments in the iDorm we used 7 

sensors for our inputs and 10 actuators for our outputs. The fuzzy rules which are extracted 

represent local models that map a set of inputs to the set of outputs without the need for 

formulating any mathematical model. Individual rules can therefore be adapted online 

influencing only specific parts of the descriptive model learnt by the agent. 
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4.2 Fuzzy membership function extraction 

It is necessary to be able to categorise the accumulated user input/output data into a set of 

fuzzy membership functions which quantify the raw crisp values of the sensors and actuators 

into linguistic labels such as normal, cold or hot. AOFIS is based on learning the particularised 

behaviours of the user and therefore requires these membership functions be defined from the 

user’s input/output data recorded by the agent. A Double Clustering approach [7] combining 

Fuzzy-C-Means (FCM) and hierarchical clustering, is used for extracting fuzzy membership 

functions from the user data. This is simple and effective approach to fuzzy information 

granulation [22, 16] where the objective is to build models at a certain level of information 

granulation that can be quantified in terms of fuzzy sets. 

4.2.1 The FCM algorithm 

The FCM [3] is a fuzzy partitioning prototype-based clustering algorithm. It takes a dataset of 

instances represented by r attributes that have been arbitrarily classified on a pre-determined 

number of clusters reflecting a p partitioning of the dataset. The algorithm then calculates the 

centres for each cluster from the arbitrarily classified instances. Using these centres, the 

distances of each instance from each cluster centre is calculated and used to assign each 

instance with a degree of membership to each cluster. In this way the partitioning of the dataset 

becomes fuzzified. The algorithm aims to iteratively adapt the partitioning of the dataset so as 

to minimise a dissimilarity function of a weighted sum of squared errors between data points 

and cluster centres in the feature space. FCM uses features in the r-dimensional Euclidean 

space to determine the geometric closeness of data points by grouping them into clusters and 

then determining the distance between those clusters [3]. FCM allows operations on fuzzy data 

in which a data point may have a degree of fuzzy membership to more than one cluster at any 

given time. In our case the number of dimensions r was 17 corresponding to number of input 

and output parameters (7 input sensors and 10 output actuators) that were used in the iDorm. 

In IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, Vol.35, No.1, pp.55-65, January 2005.



 14 

4.2.2 Double clustering  

The Double clustering technique uses a combination of FCM and Hierarchical clustering for 

extracting a predefined number of membership functions for the input and output parameters 

from the sampled user data. An initial clustering of the dataset is performed using the FCM 

algorithm that defines a set of p clustered regions over the sampled data. Hence there are p 

centres r
pccc R�,...,, 21  defined for these clustered regions. The number of clusters p is 

predefined and in our case was set to 90. Each centre is an r-dimensional vector 

),...,,( 21 iriii cccc �  and there are therefore p one-dimensional centroid values for each input 

and output parameter of the user data. The centroid values for each separate input and output 

dimension are then iteratively clustered again to form a new set of centres which  represent the 

rough centres of the membership functions that will be extracted for each input and output 

parameter. Specifically let ijc  be the j-th component of the i-th cluster centre. For each 

dimension ,,...,2,1 rj �  we perform clustering on the set of one-dimensional centroid 

values � �picC ijj ,...,2,1: �� . The approach used for this secondary clustering is an 

agglomerative hierarchical clustering approach [14]. Here the elements in jC  are sequentially 

clustered together reducing the number of elements at each step by merging together the two 

most similar consecutive elements. This is repeated until the number of elements corresponds 

to the number of membership functions we want to extract for each input and output parameter. 

The similarity between two elements is measured based on the closeness between their values. 

The number of membership functions to be defined for each input and output parameter is 

predefined in advance. 

4.2.3 Agglomerative hierarchical clustering approach 

The agglomerative hierarchical clustering algorithm used in AOFIS can be formally described 

as follows: Let jK   ),...,2,1( rj �  represents the required number of centres and the 
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corresponding number of membership functions to be derived from each set jC  ),...,2,1( rj � , 

where Kj is fixed for each input and output dimension r. The elements of jC  are initially sorted 

such that jiji ccii
2121 �	
 . Hence the initial set of elements in jC  is defined as: 

� � � �pjjjp cccprprprpr ,...,,:,...,,: 21
)0()0(

2
)0(

1
)0( ��                                      (2) 

For jKpv �� ,...,2,1  find the two nearest consecutive elements in ,)1( �vpr  denoted by 

)1(
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pr and 

)1(
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pr . 
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Until: � �
j

j

K
Kp prprprpr ,...,,: 21

)( �
�

  

    Therefore at each step of the algorithm the two nearest consecutive elements are merged into 

a single cluster where the new centre of the cluster is the average of the two merged elements. 

After the hierarchical clustering is completed on each set jC  ),,...,1( rj �  we have derived jK  

new centres for each input and output dimension of the dataset. We represent the set of these 

centres by � �jK
Kp

prprprprpr j ,..,:: 21
)( ��

�

 which correspond to the rough centres for the fuzzy 

membership functions that AOFIS will extract for each input and output parameter. 

4.2.4 Quantification of fuzzy membership functions 

The Kj cluster centres defined on each dimension rj ,...,2,1�  are then converted to fuzzy 

membership functions, which involves the quantification of the centres in terms of 

interpretable fuzzy sets [7]. As mentioned the value of Kj defines the number of fuzzy 

membership functions which are to be extracted for each input and output parameter. Gaussian 
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membership functions are used to describe the fuzzy sets j
zA , (where jKz ,...,2,1� ) the 

mathematical definition of which is 

��
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�
�

��

�
�
�

�
�
�

�
�
�
�
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��

2
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1
exp)(

j
z

j
z

A
wx

xj
z �

�                                             (4) 

where the value of the centre j
zw  and the spread j

z�  for each gaussian membership function z, 

for the j-th input/output parameter is derived as follows 

    The sampled data is defined as a hyper-interval � �jj

r

j
MmX ,:

1�
��  where jm and jM  are the 

minimum and maximum values respectively, of the j-th input/output dimension of the sampled 

dataset. The set of cuts jT  is defined as � �j
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The centre j
zw  and spread j

z�  of each membership function j
zA  for all jKz ,...,2,1� is derived 

from the set jT  as follows:      

�  2/: 1
j

z
j

z
j

z ttw �� �                                                       (6) 

�� ln22/)(: 1 ��� �

j
z

j
z

j
z tt                                               (7) 

where�  is the maximum overlap between two adjacent fuzzy sets. 

     We therefore obtain the centres and spreads for a set of Kj fuzzy membership functions 

defined for each input and output parameter of the user data that was sampled. These 

membership functions are distributed over the range of values of each parameter. The 

membership functions at the boundaries are modified such that they are extended indefinitely 

beyond their respective centres with a membership value of 1. A semantic meaning can be 
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associated with each of the resulting fuzzy sets. Specifically depending on the value of index z, 

a meaningful symbolic label can be given to j
zA . 

4.3 Fuzzy Rule Extraction 

The defined set of membership functions are combined with the existing user input/output data 

to extract the rules defining the user’s behaviours. The fuzzy rule extraction approach used by 

AOFIS is based on an Enhanced version of the Mendel Wang (MW) method [21] developed by 

L.X. Wang. This is a one pass technique for extracting fuzzy rules from the sampled data. The 

fuzzy sets for the antecedents and consequents of the rules divides the input and output space 

into fuzzy regions.  

    AOFIS extracts multi-input multi-output rules which describe the relationship between 

),...,( 1 kyyy �  and T
nxxx ),...,( 1� , and take the following form: 

IF 1x is )(
1

lA and … and nx  is ,)(l
nA THEN 1y  is )(

1
lB   and … and  ky  is )(l

kB         (8) 

Ml ,...,2,1� , where M is the number of rules and l is the index of the rules. There are V  fuzzy 

sets ,,...,1, VqAq
s �  defined for each input sx . There are W fuzzy sets ,,...,1, WhBh

c �  defined 

for each output cy . AOFIS now extracts rules in the form of Equation (8) from the data.  

4.3.1 Process of extracting fuzzy rules from data 

To simplify the following notation, the method for rules with a single output is shown, as the 

approach is quite easily expanded to rules with multiple outputs. In the following steps we will 

show the different steps involved in rule extraction: 

 
Step 1: For a fixed input-output pair );( )()( tt yx  in the dataset (1) ( Nt ,...,2,1� ), compute the 

membership values )( )( t
sA

xq
s

�  for each membership function Vq ,...,1� , and for each input 

variable s ),,...,1( ns � find },...,1{* Vq � , such that  
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)()( )()(
*

t
sA

t
s

A
xx q

sq
s

��                                               (9) 

for all Vq ,...,1� . 

Let the following rule be called the rule generated by :);( )()( tt yx  

IF tx1 is 
*

1
qA and … and t

nx  is ,
*q

nA THEN y  is centred at )(ty             (10) 

For each input variable sx  there are V  fuzzy sets VqAq
s ,...,1, � , to characterise it; so that the 

maximum number of possible rules that can be generated is Vn. However given the dataset only 

those rules among the Vn possibilities whose dominant region contains at least one data point 

will be generated. In step 1 one rule is generated for each input –output data pair, where for 

each input the fuzzy set that achieves the maximum membership value at the data point is 

selected as the one in the IF part of the rule, as explained in Equations (9),(10).  

    This however is not the final rule which will be calculated in the next step. The weight of the 

rule is computed as 

!
�

�
n

s
sA

t txw q
s

1

)( ))((�
                                             (11) 

The weight of a rule )(tw  is a measure of the strength of the points )(tx  belonging to the fuzzy 

region covered by the rule.  

 
Step 2: Step 1 is repeated for all the t data points from 1 to N to obtain N data generated rules 

in the form of Equation (10). Due to the fact that the number of data points is quite large, many 

rules are generated in step 1, that all share the same IF part and are conflicting, i.e. rules with 

the same antecedent membership functions and different consequent values. In this step rules 

with the same IF part are combined into a single rule.  

    The N rules are therefore divided into groups, with rules in each group sharing the same IF 

part. If we assume that there is M such groups. Let group l have lN  rules in the following form: 
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IF 1x is 
)(

1

lq
A and … and nx  is ,)( lq

nA THEN y  is centred at 
)( l

uty          (12) 

Where lNu ,...1�  and l
ut  is the index for the data points in group l. The weighted average of all 

the rules in the conflict group is then computed as 

"
"

�

��
l l

u

l
l
u

l
u

N

u

t

N

u

tt
l

w

wy
av

1

)(

1

)()(
)(

                                              (13) 

We now combine these lN  rules into a single rule of the following form: 

IF 1x is 
)(

1
lA and … and nx  is ,)(l

nA THEN y  is 
)(lB                       (14) 

Where the output fuzzy set lB  is chosen based on the following. Among the W  output fuzzy 

sets WBB ,...,1  find the *hB such that 

)()( )()(
*

l

B

l

B
avav hh ��                                                      (15) 

for ,,...,2,1 Wh � B is chosen as .*hB  

    As mentioned above AOFIS deals with input-output data pairs with multiple outputs. Step 1 

is independent of the number of outputs for each rule. Step 2 is simply expanded to allow rules 

to have multiple outputs where the calculations in Equations (13) and (15) are repeated for 

each output value. 

4.4 Agent controller 

Once the agent has extracted the membership functions and the set of rules from the user 

input/output data, it has then learnt the FLC that captures the human behaviour. The agent FLC 

can start controlling the environment on behalf of the human according to his desires. The 

agent starts to monitor the state of the environment and affect actuators based on its learnt FLC 

that approximate the particularised preferences of the user. Fig 6 shows a block diagram of the 

FLC which consists of a fuzzifier, rule base, fuzzy inference engine and defuzzifier. 
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Fig. 6. Block Diagram of the FLC. 

    In our agent we will use singleton fuzzification, max-product composition, product 

implication, and height defuzzification [17]. This formula that maps a crisp input vector x into 

a crisp output )(xfy �  can be written as follows [17]: 

  " !
!"

� �

��

�� M

l

n

i iF

n

i iF

M

l

l

s
x

xy
fy

l
i

l
i

1 1
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)(
)()(

�

�
xx                                   (16) 

Where M is the total number of rules in the rule base, ly  is the point having the maximum 

membership in the lth rule output fuzzy set lB ,! �

n

i iF xl
i1

)(�  is the product of the membership 

functions of each rule’s inputs and n is the number of inputs.  

    Equation (16) encapsulates the process of following the signal x through the fuzzifier, where 

it is converted to the input fuzzy sets and then into the inference block where it is converted to 

the output fuzzy sets and finally into the defuzzifier where it is converted to a crisp output 

y= )(xf . For multiple outputs the Equation in (16) is repeated for each output parameter. 

    The fuzzy sets used for the antecedent and consequent parameters are gaussian membership 

functions which can be calculated as in Equation (4) and have been learnt in subsection (4.2) 

and can be written as follows :  
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where ni ,...,1� and Ml ,...,1� , l
iFm  is the centre of the fuzzy set and l

iF�  is the spread of this 

fuzzy set.  

4.5. Online adaptation and life long learning 

In the previous subsections we have shown how our agent can learn an FLC that approximates 

the user’s behaviour. However, the user may need to make adjustments to tune the system or 

their behaviour might change as the user requirements change over time. So our agent needs to 

adapt to the user’s behavioural changes in a non intrusive manner and in a short time interval.  

    In realising the non-intrusive aspect of ambient intelligence [9] whenever the user is not 

happy with the agent’s actions, he can always override the agent’s control responses by simply 

altering the manual control of the system. When this occurs the agent will adapt its rules online 

or add new rules based on the new user preferences. This process could also incorporate what 

we term as ‘learning inertia’ where the agent would delay adapting its learnt rules until the user 

preference for changing a particular set of actuator values has reoccurred several times. This 

would prevent the agent adapting its rules in response to ‘one off’ user actions that don’t reflect 

a marked change in the user’s habitual behaviour. As the rules are adapted it would be 

necessary to preserve the old rules so they can be recalled by the agent in the future.  

    Whenever the user overrides the agent’s control responses and actuates any of the controlled 

output devices, a snapshot of the state of the environment is recorded and passed to the rule 

adaptation routine. Each input parameter in the input vector x is compared to each of the 

antecedent sets )( l
sA  of a given rule in the rule base to determine its membership value. The 

weight of the rule is then calculated to determine if the product of the input membership 

function (degree of firing of the rule) in Equation (11) 0)( �lw , meaning that the rule fired, and 

would therefore have contributed to the overall control response generated by the agent’s FLC. 
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The consequent membership functions that give the highest membership values to the user 

defined actuator values are selected to replace the consequent sets of all fired rules in the rule 

base.  

)()(* cBcB
yy h

c
h

c
��                                                  (18) 

for .,...,2,1 Wh �  The cB is chosen as 
*h

cB . Where c=1,2..,k. 

    The fired rules are therefore adapted to better reflect the user’s updated actuator preferences 

given the current state of the environment.  

    If none of the existing rules fired, new rules are added based on forming rules from the input 

fuzzy sets. For each input parameter sx  the fuzzy sets that give a membership value where 

)( )’(t
sA

xq
s

� 0�  are identified. This leads to a grid of identified fuzzy set(s) for each input 

parameter. From this grid new rules are constructed based on each unique combination of 

consecutive input fuzzy sets. The consequent fuzzy sets for each of the new rules are 

determined using Equation (18). This allows new rules to be gradually added to the rule base. 

The agent will also add new rules when the currently monitored environmental state is 

undefined by the existing rules in the rule base; i.e. none of the existing rules fired. In this case 

the agent will create new rules where the antecedent sets reflect the current input states of the 

environment and the consequent fuzzy sets are based on the current state of the actuators.  

    The agent adopts life long learning where it adapts its rules as the state of the environment 

and the preferences of the user change over a significantly long period of time. Due to the 

flexibility of AOFIS the initially learnt FLC can be easily extended to change both existing 

rules as well as add new rules. The fuzzy nature of the rules permits them to capture a wide 

range values for each input and output parameter. This allows the rules to continue to operate 

even if there is a gradual change in the environment. If however there is a significant change in 

the environment or the user’s activity which is no longer captured by the existing rules, then as 
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mentioned previously the agent will automatically create new rules that satisfy the current 

conditions. The agent will therefore unobtrusively and incrementally extend its behaviours 

which can then be adapted to satisfy the user.  

5. Experimental Results 

We have performed unique experiments in which a user (shown in Fig 7) lived in the iDorm 

for a period of five consecutive days. During the monitoring phase which lasted for three 

consecutive days the agent recorded the user interactions with the environment. On each day 

the user’s activity in the room was recorded. Seven input sensors were monitored which are: 

internal light level, external light level, internal temperature, external temperature, chair 

pressure, bed pressure and time measured as a continuous input on an hourly scale. Ten output 

actuators were controlled consisting of the four variable intensity spot lights, the desk and bed 

side lamps, window blinds, the heater and the two PC based applications comprising of a word 

processing program and a media playing program. The outputs thus covered the spectrum of 

physical devices and computer based applications found in a typical study bedroom 

environment. 

 

Fig. 7. User in the iDorm. 

    The data from the iDorm that was captured during the monitoring phase was used to 

compare the offline performance of our approach with three other soft-computing based 

techniques which are Genetic Programming (GP), the Adaptive-Neuro Fuzzy Inference System  
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(ANFIS) [15] and the Multi-Layer Perceptron Neural Network.  

    The dataset obtained from the iDorm during the monitoring phase comprised of 408 

instances and was randomised into six samples. Each sample was then split into a training and 

test set consisting of 272 and 136 instances respectively. The performance error for each 

technique was obtained on the test instances as the Root Mean Squared Error which was also 

scaled to account for the different ranges of the output parameters.  

    The GP used a population of 200 individuals evolving them over 200 generations. The GP 

evolved both the rules and the fuzzy sets. Each individual was represented as a tree composed 

of ‘and’ and ‘or’ operators as the internal nodes and triangular and trapezoidal membership 

functions as terminal nodes. The parameters of the membership functions were also evolved in 

parallel with the structure. The search started with a randomly generated set of rules and 

parameters, which were then optimised by means of genetic operators.  The GP based approach 

for optimising an FLC was tested with different numbers of fuzzy sets.  

    In ANFIS subtractive clustering is used to generate an initial TSK-type fuzzy inference 

system. Back propagation is used to learn the premise parameters while least square estimation 

is used to determine the consequent parameters. An iteration of the learning procedure consists 

of two parts where the first part propagates the input patterns and estimates optimal consequent 

parameters through an iterative least squares procedure. The second part uses back propagation 

to modify the antecedent membership functions [2]. We tested ANFIS with a range of different 

cluster radii values.             

    The Multi-Layer Perceptron (MLP) back-propagation Neural Network was tested with 

different numbers of hidden nodes in a single hidden layer.  

    We tested our AOFIS with different number of fuzzy sets and the membership function 

overlap threshold was set to 0.5 as this gave both a sufficient degree of overlap while allowing 

the system to distinguish between the ranges covered by each fuzzy set. This value was also 

used for evaluating the double clustering approach presented in [7]. Tables 1 and 2 illustrate 
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the scaled Root Mean Squared Error (RMSE) and scaled Standard Deviation (STD) for each 

technique averaged over the six randomised samples, and corresponding to the values of the 

variable parameter tested for each approach. 

Table I 

Average Scaled RMSE For AOFIS, GA, ANFIS & MLP 

 

 
Table II 

Average Scaled STD For AOFIS, GA, ANFIS & MLP 

 

    The results above show that the optimum number of fuzzy sets for AOFIS is 7 and on 

average AOFIS generated 186 rules. The GP in comparison gives a marginally lower error for 
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7 fuzzy sets. Both ANFIS and the MLP on average give a higher error than AOFIS. The 

ANFIS only learns a Multi-Input Single Output (MISO) FLC and had to be run repeatedly for 

each output parameter. The FLC produced is therefore only representative of a MISO system. 

Another restriction with ANFIS is that it generates TSK FLCs [2] where the consequent 

parameters are represented as either linear or constant values, rather than linguistic variables as 

is the case with Mamdani FLCs [17], these linguistic variables are very important to 

understanding the human behaviour. Our AOFIS generates Multi-Input, Multi-Output (MIMO) 

Mamdani FLCs that represent the rules in a more descriptive human readable form required for 

an ambient intelligent system.  

    The iterative nature of the GP makes it highly computationally intensive and this also 

applies to both ANFIS and the MLP which are also iterative based approaches. AOFIS is far 

less computationally intensive due to the one-pass procedure it employs, and is therefore more 

favourable for an embedded agent. Both ANFIS and the GP based approach cannot easily be 

adapted online as this would require their internal structures to be re-learnt if either new rules 

were to be added or existing rules were adapted. So our method is unique in that it can learn a 

good model of the user’s behaviour which can then be adapted online in a life long mode in a 

non intrusive manner, unlike other methods which need to repeat a time consuming learning 

cycle to adapt the user’s behaviour.  

    The online performance of the agent was evaluated on how well AOFIS could capture the 

monitored state of the environment and the user’s behaviours in the iDorm, over a period of 

time. The data from the user’s interactions in the iDorm acquired over the initial period of three 

days was used by AOFIS to learn an initial FLC. A fuzzy membership function overlap 

threshold of 0.5 was used and the number of fuzzy sets representing the input and output 

parameters was set to 7 as this was found to be the optimum number from the offline 
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experiments as shown in Table 1,2. Fig 8 show the membership functions which AOFIS 

produced for one of the input parameters, namely the external light level.  

 

       
Fig. 8. Membership functions for external light level.  

 

    The agent was then run online for a further two days during which it monitored the 

environment and user’s activities, and it produced the appropriate control responses based on 

its learnt rules. During this time the user was allowed to override and adapt the agent’s learnt 

control responses, if it was necessary to modify and tune them further. As mentioned 

previously, one of the characteristics of the agent is that the user is always in control and he 

can override the agent at any time and his instructions are executed immediately, to achieve the 

responsive property implied in the ambient intelligence vision unless safety is compromised. 

Thus whenever changes to controls were made by the user, the agent received the request, 

generated new rules or adjusted previously learnt rules and allowed the action through. The 

agent would autonomously continue to monitor the environment and generate new rules when 

the state of the environment was not captured by its existing rule base.  

    The performance of the agent could be gauged on the number of occasions when the user 

had to override the agent’s control responses and adapt the rules over time, as this can reflect 
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how satisfied the user is with the agent control actions. The success of the agent could be 

measured by monitoring how well it adjusted the environment to the user’s preferences such 

that the user intervention was reduced over time. Fig 9 shows a graph plotting the number of 

online rule adaptations against time measured in minutes. 

 

Fig. 9. Number of online rule adaptations. 

 

    The agent initially learnt 186 rules and that over the course of the two days 120 new rules 

were added. Fig 9 shows the number of user induced rule adaptations that occurred over the 

course of the two days. This can be seen to stabilise by early afternoon on the second day. One 

of the concerns of using our one pass approach was its potential to generate too many rules. 

However given the theoretical maximum number of rules that the agent could generate, the 

total of 306 rules produced after the online execution of the agent was well below this number. 

The agent was able to learn in a non intrusive way most of the user’s preferences for various 

weather and environmental conditions over the duration of the two days, including specific 

behaviours associated with user activity such as lying on the bed and listening to music or 

sitting at the desk to word process a document. An example of the types of rules that the agent 

produced are shown in Fig 10. 
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From the experiments we can deduce that the agent has tried to realise the vision of ambient 

intelligence as it was intelligent and it learnt the user particularised behaviour and adapted it 

online to any changes in a life long learning mode in a non intrusive way. The agent was also 

responsive to the user commands. In addition, the intelligent environment in the iDorm was 

transparent and ubiquitous in that the pervasive interconnected embedded systems were 

seamlessly integrated into it. The user was therefore unaware of the invisible intelligently 

responsive infrastructure of the environment. 

 

Fig. 10. Typical rule produced by AOFIS. 

6. Conclusion 

In this paper we presented a novel fuzzy learning and adaptation technique for agents that can 

be embedded in ubiquitous computing environments. This we hope will be a step towards the 

realisation of the vision of ambient intelligence.  

    Our agent learnt a FLC that modelled the user’s particularised behaviour and it was adaptive 

as it allowed the learnt behaviours to be modified and extended online and in a life-long 

learning mode as the user’s activity and environmental conditions changed over time. The 

intelligent learning and adaptation occurred in a non intrusive manner while the user carried 

out his normal activities in the environment. The agent was always responsive to the user’s 

commands. The iDorm environment was also transparent and ubiquitous in that the pervasive 
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infrastructure of the interconnected embedded systems was seamlessly integrated into it. The 

user was therefore surrounded by an invisible though intelligently responsive ambience.  

    Our technique was a simple one-pass method and thus it is not computationally expensive 

and could be incorporated in many embedded devices within intelligent environments.  

     We carried out unique experiments in which a user stayed in the iDorm for five consecutive 

days. The proposed AOFIS technique was compared with other soft-computing based 

approaches; namely a GP, ANFIS and an MLP; using data acquired from the iDorm. The 

results showed that the optimum performance of AOFIS produced on average a lower error 

than both ANFIS and the MLP, and was computationally less intensive and better suited to 

online learning than the other approaches compared. The online operation of the agent showed 

that AOFIS was effective at both learning the behaviours of a user and adapting and tuning its 

rules online to meet the user’s preferences, without incurring any kind of cognitive loading on 

the user. 

     In our future work we intend to perform more experiments with multiple users and multiple 

occupancy and we also intend to extend the current system which is based on a type-1 FLC 

into a type-2 FLC [17]. 
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