
Published as part of Advances in Management Information Systems research monographs, ME Sharp, New York, November 2005

© IIEG, Essex University April 05 1

CHAPTER 7
Domestic Pervasive Information Systems:
End-user programming of digital homes

Vic Callaghan, Jeannette Chin, Victor Zamudio, Graham Clarke – Essex University

Anuroop Shahi – Bath University

Michael Gardner - Chimera

Abstract. Today networked appliances and controllers are being incorporated into
domestic environments via standards such as X10, Lonworks and IP. However, the
future promises to revolutionise home technology by introducing distributed computing
systems enabling non-technical home users to create their own virtual appliances and
applications where appliance functionality can be shared. The future of do- it-yourself
(DIY) home decoration may lie more in ‘electronics and computing’ than ‘paint and
wallpaper’. At the heart of this vision is the need for lay home users to be able to
configure, program and command pervasive technology for personal ends. In this
chapter we describe three approaches to this challenge based on Task-Computing,
Pervasive Interactive Programming (PiP) and theoretical work on combining,
formalising and visualising these processes. In addition we report on user evaluations
that demonstrate that non-expert home users find these methods to be simple, enjoyable
and useful.

Keywords: end-user programming, task computing, digital home, smart home, intelligent buildings

7.1 Introduction

In “Towards A New Architecture”, a ground breaking text of the Modern Movement in
Architecture in the 1920's, Le Corbusier famously remarked that, "A house is a machine for living
in" (Corbusier 21). More recently Craig Mundie, one of three chief technology officers at
Microsoft, the world's largest software company was quoted in the Economist as saying “We view
the digital home as critically important” and “the home is much more exciting than the
workplace.” Microsoft are not alone as, for example, Intel, the world's largest semiconductor
maker, was reported in the same article as reorganising itself into new business divisions including
one called the “digital home” (Economist 05). The importance of the home market is reinforced
further by market research such as that by the Diffusion Group (TDG) which reported that in
2005, more than half of US households were interested in some sort of home control system (DTI
05). Modern buildings have strong physical similarities to machines in that they contain a myriad
of sensors, effectors, computer based devices and networks. In terms of domestic homes, the roots
of building automation can be traced to a small Scottish company, PICO, who, in 1975, started the
X10 project which in 1978 resulted in Radio Shack introducing X10 home-automation technology
to the American market. The X10 standard enables a computer, with suitable software, to control
electrical power outlets via propagating signals along the power line. However X10 has its
limitations such as speed (it takes about 600ms to send a single command), collisions
(simultaneous signalling causes the system to fail), signal strength (poor or noisy wiring
environments cause failure) and limited addressing range (256 addressable modules, based on 16
house codes (A - P) and 16 unit codes). As a consequence there are numerous newer standards (eg
LonTalk, BatiBus, CEbus, EIB, EHS, HBS etc) which seek to overcome these constraints and to
expand the explications beyond simple actuator and sensor I/O into areas such as media streaming
and interaction with internal functions of appliances (Wacks 98). The arrival of the Internet in the

Published as part of Advances in Management Information Systems research monographs, ME Sharp, New York, November 2005

© Essex University 2005 2

early nineties and broadband networking for the home at the turn of the millennium has also
impacted the nature of home networks as its pervasiveness and economies of scale have led it to
not just being a WAN gateway for the home, but even a contender for the home control network.
Only time will tell which of the many standards will eventually dominate the domestic market but,
for the time being, the simple and low-cost nature of X10 means it remains one of the most
enduring standards (Adair 05). Home automation standards are essentially descriptions of network
transport mechanisms and communication protocols. By facilitating programmed coordination and
interaction between distributed computer-enabled networked appliances, sensors and actuators the
so-called smart home is created in which homes sense the actions of people responding in
programmed ways. Thus, an essential aspect of a smart or digital home is “programming”.

7.2 The Home of the Future

The main focus of this chapter is on how the digital home of the future can be programmed and
managed by ordinary non-expert home occupants. At one extreme there is the possibility of
employing autonomous intelligent agents that monitor an occupants habitual behaviour, learning
their needs, creating rules (self-programming) so they can pre-emptively set the environment to
what they anticipate the user would like (Callaghan et-al 05). Whilst autonomous agents may
appeal to many people, their acceptance is not universal. Some lay-people distrust autonomous
agents and prefer to exercise direct control over what is being learnt, when it is being learnt and to
whom (or what) any information is communicated. These concerns are particularly acute when
such technology is in the private space of our homes. Often, end-users are given very little, if any,
choice in setting-up systems to their likings, but rather, they are required to “surrender their rights”
and “put-up-with” whatever is provided (Chin et-al 04). Moreover, there are other reasons
advanced in support of a more human driven involvement, such as exploiting the creative talents
of people by providing them with the means to become “designers of their own “pervasive
computing spaces”, whilst at the same time, shielding them from unnecessary technical details. In
this vision, if people are given the means to configure their own ‘electronic spaces’ then personal
expression will be able to extend beyond the current home “do it yourself” (DIY) approach of
“paint and wallpaper” into information and control spaces. To achieve this vision it is necessary to
find ways for non-technical people to program coordinating sets of pervasive computing based
home appliances; a formidable challenge. Current end-user programming systems for the home are
built around extensions of the principles of conventional computer language that involve a
sequence of logical instructions. In an attempt of making the process simpler for non-technical
users, some applications, such as ActiveHome Pro (Asaravala 04), employ a graphical interface
front-end approach which represents text-based program constructs (ie instructions) with graphical
objects for the user to manipulate into program flows or sequences of actions. The disadvantages
of this approach are that it requires users to mentally manipulate programming abstractions and it
is limited to single monolithic processor control rather than the distributed computation afforded
by pervasive computing. The remainder of this chapter will present new research aimed at
enabling non-technical home users to command and program distributed pervasive home
networked devices.

7.2.1 A Illustrative Scenario

The following scenario is offered to crystallise some of the ideas discussed in this chapter. We will
refer back to this scenario later in the paper when discussing different techniques.

1. Background - Tessa is a visiting researcher at the University of Essex. She arrived at University and

moved into her new temporarily accommodation, an intelligent apartment. Like all environments in the
future the ‘radio-sphere’ is awash with services that are available for her use. Many of these services are
local such as lighting, heating whilst others are remote such as video, music, news, email. Monolithic

Published as part of Advances in Management Information Systems research monographs, ME Sharp, New York, November 2005

© Essex University 2005 3

appliances and computer applications have given way to more atomic networked functions such as
switches, video displays, codecs, editors, mp3 files etc.. Tessa interacts with the environment via her
personal ‘wireless assistant’(WA) which also holds descriptions of her preferred world.

2. Virtual Appliances & Applications – The concept of appliances and applications has lingered on as
people still need to utilise functions akin to TVs, telephones, word processors etc. Consequently all
environments had their networked devices / applications pre-formed into familiar default configurations.
(We have called these Meta-Apps (MAps)) Each MAp describes a familiar everyday appliance. Thus, both
physical and information spaces functioned as normal. It is possible for users to purchase new MAps and,
for more creative individuals, to devise their own.

3. Mobility - On entering her apartment, Tessa’s WA started to flash in an unobtrusive manner indicating
she was within a ’smart space’. Her WA contained her ontology based descriptions of her preferred MAps,
discovered what was available in the environment, and then requested as near matches as possible to be
constructed. If devices moved or failed, the system would similarly try to find suitable replacements. Of
course this was not always possible but her WA would indicate what was missing, so she had the option to
borrow, buy or replace any missing devices. One such MAp was her ’communication centre’ (CC). On
moving to other rooms and environments the WA attempted to maintain Tessa’s preferred configuration
for her CC MAp.

4. Programming – The original CC MAp consisted of a telephone service, audio transducer and dialler.
Tessa had modified the MAp to add in a light and associated rules using an end-user programming tool
that was resident in her WA. For example she had re-programmed the CC MAp configuration and rules to,
“on receipt of a call, pause other incoming media streams, divert the call to the audio/video-transducer in
use at the time, and raise the light if it is dark”. While Tessa generally only modified existing MAps there
were numerous hobby clubs and small industries that generated novel and sometimes highly complex
MAps which they then traded.

5. Interaction - Tessa selects the ’News’ menu, which causes the smart space to invoke an interactive display
MAp, connecting it to her preferred RSS News feeds. Whilst reading her news feed, a video-conference
request arrived, and the CC acted like a sophisticated ‘soft-appliance’, activating previously programmed
rules that caused the news feed to be suspended, lights to be raised and the video conference to be patched
through to the current audio and video system. Like any appliance, Tessa could manually override and of
the settings on this “soft- appliance”.

From this scenario it can be inferred that, in order to realise the above vision a number of issues

need to be resolved such as how communities of devices are formed and managed, how
capabilities of devices and communities are described, how lay users can program the community
coordination, how the system deals with mobility of devices and users, how the users interacts with
programmed systems and how the end-user can maintain and debug the system.

7.2.2 De-composition, De-construction, Dis-integration and Dis-aggregation

Whilst traditional stand-alone home appliances provide useful functionality to users, when you

add a network connection a number of significant possibilities arise. For instance, manufactures
would be able to provide access to individual sub-functions within an appliance or application
allowing, for example, the mute function on a TV to be accessed by other networked appliances.
More significantly soft-appliances and applications could be created by establishing logical
connections between the sub-functions, creating replicas of traditional appliances and applications,
or inventing altogether new appliances or applications (Chin 05). In essence this paradigm involves
the deconstruction (alternatively described as decomposition, dis-aggregation or disintegration) of
traditional appliances and applications into their atomic functionalities (physically or logically),
allowing the user to re-construct appliances and applications by reconnecting the basic atomic
functionalities in various ways. Some current examples of this approach include SUN’s Epsilon
Project (Epsilon 05), which is exploring how appliances are decomposed into small independent
devices each having a virtual world proxy which can be “connected” to other proxies to create meta
systems (offering conventional appliance functions, or novel ones created by the user chosen
combinations). A particularly interesting aspect of the Epsilon work is that it explores the notion of
ultra-thin clients where the physical manifestation of the appliance becomes near stateless with
most state and process residing on proxies whose location is almost irrelevant. The work at SUN is
wide ranging and includes studies on supporting middleware (Horan 05). As part of their

Published as part of Advances in Management Information Systems research monographs, ME Sharp, New York, November 2005

© Essex University 2005 4

EasyLiving project Microsoft are also exploring the notion of deconstruction (dis-aggregation in
their terminology) to PCs and services, demonstrating how a disconnected pool of screens,
keyboards and applications can be dynamically re-connected to create a virtual PC for a user in
differing contexts (Easy Living 05). In terms of decomposed applications, Apple’s Unix Mac OS X
(aka "Tiger") provides an 'AppleEvent subsystem' that allows developers to get at the internal
interface descriptions of applications (ie application sub-functions) and combine them in differing
ways (Jobs 04).

7.2.3 Communities and Tasks

The key to creating soft-appliances and applications from deconstructed functions is connecting
them into coordinating communities or collectives, synergistically forming new functions.
Clearly, the richer the pool of (sub-) functions or services, then the greater the possible
permutations for new utilities. How such communities or collectives are created is a central issue
that we address in this chapter. A useful view is to see people as being task driven. For example,
rather than describing user requirements in terms of the physical model of the world “I will
switch on the TV in the corner of the living room, and turn to channel 3”, one might abstract to the
higher level task “I want to watch the news now (where I am)”. Later in this chapter we will show
how such a task based approach can be implemented to provide a user- friendly means of
interacting with home based pervasive information systems.

7.2.4 Making Sense of the World: Ontology and Epistemology

In order for user tools to make sense of the world, it is necessary to have a description of the
properties and capabilities of devices and applications. Ontology formally describes devices and
applications, and provides axioms that constrain the form and interpretation of these terms. An
ontology can therefore help with mobility and failure by finding nearest matches to missing
devices or community functions, or by alerting the user to other possibilities given the particular
context. For user generated communities of coordinating computer based devices, the community
related information can be described and reasoned about using ontology. Ontology also provides a
convenient means for storing rules which embody the autonomous functionality of a community.
Since user defined communities are both personal and subjective descriptions based upon the
limited knowledge of the user their representation is referred to as an epistemology. As the
techniques described in this chapter are user-centric, epistemologies are intrinsic to many of the
approaches we describe and are discussed in greater detail in a later section.

7.3 Task Based Computing (TBC)

Task based computing has been pioneered by Wang and Garlan of CMU (Wang & Garlan 00)

and Fujitsu (Masuoka et-al 03). As explained earlier, it seeks to provide an environment that allows
users to interact with computing spaces in terms of high level tasks. It can be viewed as a method to
allow users discover, combine and execute coordinated contextual actions (tasks) which differs
from the more common usage such as for capturing system requirements and for specifying users
interfaces (O'Neill & Johnson 04). Thus, in our interpretation, tasks are high- level collectives that
are composed of numerous lower- level actions for example the task “Play My MP3 Files” could be
decomposed into a series of smaller steps which need to be combined to carry out this task. In the
Fujitsu work, a GUI tool referred to as STEER (Semantic Task Execution Editor) is used to do this.
The basic unit of task composition is a pair of service inputs and outputs which, when associated,
can be executed on command by the user. Using STEER is possible to create more complex
compositions. This approach can be seen to have similarities to scripting mechanisms (eg
AppleScript) that enable the combination of abilities of multiple applications. For example, Apple’s
“drag & drop” Automator tool allows developers to create lists of actions (workflows) in new and

Published as part of Advances in Management Information Systems research monographs, ME Sharp, New York, November 2005

© Essex University 2005 5

even unexpected ways (Jobs 04). In general terms, TBC provides a simple and quick way for users
to interact with and command such environments since they simply need to select required actions
from a menu of available high- level tasks with a minimal of configuration and interaction.

7.3.1 Task Discovery

Pervasive computing environments, such as smart spaces, contain a range of services; resources
provided to network clients by one or more servers (for example, a room light). In our
implementation, a service keeps no state of itself or of its clients, and does not provide a unique
identity. Task are normally constructed from a set of services and keep state on themselves and
clients. Before interacting with services, some form of service discovery is necessary, which should
be seamless and intuitive.

Figure 1 - Task Definition For Grouping Tasks Available In The IIE Room

With a user orientated task layer, pervasive computing environments are able to discover and

present combinations of services to users as high level tasks, which may be organised according to
contextual information. Figure 1 shows a task definition describing tasks available within the
iDorm. Tasks are grouped according to context-based namespaces, such as ‘IIE Room/Control
Space/Lighting/Switch On’. This namespace indicates that ‘Switch On’ is an atomic task for
controlling lighting in the IIE Room. For this simple case, the low level service (switch on) directly
equates to a task (i.e. one source, one sink). In such simple cases, services will belong to well
defined types, allowing task definitions to be generated by pairing sources and sinks, inferring the
type of task by making use of a service’s low-level interface description, as provided by
conventional service discovery protocols. Where multiple services are combined to form tasks, they
can be organized automatically using available contextual information, without requiring any
human intervention or organised manually by the user. The automated approach is crucially
dependent on the designers being able to pre-specify all combinations of device types and users and
developers adhering rigidly to type constraints. Thus, for more complex collectives involving
numerous sources, sinks, conditional relationships, and/or user created communities, automated task
formation is infeasible. In such cases a method for translating composite sets of services into tasks
is required; Pervasive Interactive Programming (PiP) is one such tool and is described later in this
chapter. In our work, tasks are provided to the user via a smart phone device with Bluetooth; Figure
2 depicts the results of transferring tasks described by Figure 1 to such a phone which a user may
then use to discover and interact with the pervasive information systems environment.

Published as part of Advances in Management Information Systems research monographs, ME Sharp, New York, November 2005

© Essex University 2005 6

Figure 2 – Task Menu on Smart Phone

7.3.2 Task Interaction

Task based computing shields users from knowing esoteric details associated with a service’s

interface definition. This is provided by linking a task definition to a service’s interface definition
(Figure 1). Figure 3 depicts an architecture describing a task based computing environment where a
mobile device, such as a smart phone, is present within a space, and is interacting with a lighting
service provided by the space.

Figure 3 - Task Interaction in a Pervasive Computing Environment

The architecture is divided into a number of components:

• Mobile Device Mediator (MDM): Provides mechanisms for discovering and interacting with any services
available. Interacts with the task model to obtain a task definition (figure 1), which is then translated and
adapted to a form interpretable by the device. When a user invokes a task, such as ‘Lighting On’, the
MDM forwards the request to the event heap.

• Task Model (TM): Stores all task definitions and their mapping to task descriptions. Organizes tasks

according to user-defined notions of space. For example, one may wish to split a room into lots of sub-

Published as part of Advances in Management Information Systems research monographs, ME Sharp, New York, November 2005

© Essex University 2005 7

spaces or tag objects using RF-ID, consider a whole floor using Wi-Fi, or just a room by using Bluetooth.
This will associate tasks with physical spaces within a building.

• Tasks : Abstracts environmental and application services into processes as defined by the OWL-S. Tasks

are embedded with semantics to allow for automated and seamless service composition, invocation and
configuration. Tasks may correspond to both atomic processes or composite processes. For example, in
Figure 1, the task ‘Lighting’/’Switch On’ is mapped to an atomic service identified by
http://essex.ac.uk/idorm#LightOn which, in turn, links to a semantic description that wraps an operation
from a UPnP based lighting service.

• Event Heap and Handlers: All task invocations received from the MDM are forwarded to the event heap,

which then notifies any relevant task handlers registered for a particular task type. The ‘task invocator’
handler processes events by using the task to invoke a relevant service, e.g. a UPnP based lighting service.

Prior to their use, simple tasks are generated from automated parsing, but more complex

collectives need to be explicitly programmed.

7.4 Pervasive Interactive Programming (PiP)

In this section we describe an end-user tool that takes the notion of task computing forward by enabling
the creation non-terminating tasks or soft-appliances from any locally available appliance and
application services. These non-terminating tasks can be programmed or commanded by the user.

4.1 Overview

Pervasive Interactive Programming is based on the vision of putting the end-user at the centre of
the control of the pervasive information system environment by providing a simple means, without
requiring any technical skills, for them to define communities of coordinating pervasive devices and
to program them by physically using the community to produce the required behaviour. Such
coordination creates behaviours above and beyond those available from the individual application
or appliance giving rise to an alternative name for the process MaP (Meta Application-Appliance
Programming). The roots of PiP can be traced to Programming-By-Example (PBE) an
programming paradigm pioneered by Smith in the mid-seventies where functionalities are not
described abstractly but rather demonstrated in concrete examples (Smith 00) (Canfield et-al 00)
(Lieberman 01), Tangible Computing, a way of bringing a physical metaphor to software
abstractions pioneered by Ishii (Ishii et-al 04), Palpable Computing (Andersen et-al 05) an approach
to promote user control and choice through increased visibility of pervasive computing technology,
and Learning-From-the User (LFU), an embedded-agent learning paradigm Essex University has
been developing for many years (Callaghan 05). In addition, PiP utilises ontologies mainly drawn
from research work on the semantic web [Berners-Lee et-al 01]. PiP differs to PBE in that firstly, it
aims at real rather than graphical objects, secondly it is directed at distributed computing rather than
a single processor, thirdly it spawns distributed non-terminating tasks rather than creating macros or
other procedural structures. PiP shares the same motivation as many of the above mentioned
approaches but takes these visions forward by enabling non-technical people to become “designers
& programmers” of their own unique environments . In addition, the motivation for PiP was driven
by the experience with autonomous agent based systems where privacy and trust were voiced
(Callaghan et-al 06) (Basu & Callaghan 05) (Chin et-al 04) (Lyons 05). In the PiP approach, the
system is explicitly put into a learning mode and is taught how to behave by the lay end-user by
demonstrating some actions required. For example, as discussed in the scenario provided earlier,
the TV or sitting room light could be made to react to an incoming call on the telephone, thus the
telephone, TV and light could coordinate their actions to form a new meta-utility (soft-appliance).
In this approach functional sub-units of appliances can be shared while devices interoperate
seamlessly together. For example, the audio amplifier in a TV could be made use of by the HiFi
system, or vice versa. Consequently, ‘Meta Appliances and Applications’ (MAps) could be created

Published as part of Advances in Management Information Systems research monographs, ME Sharp, New York, November 2005

© Essex University 2005 8

by establishing logical connections between the sub-functions of appliances, creating replicas of
traditional appliances, or inventing altogether new appliances. Of course there are also stand-alone
appliances that provide all these functions in an “off- the-shelf” box. Users that do not want to
program new functions are free to use these stand-alone appliances. Additionally, the vision for PiP
includes the notion of pre-fabricated interconnection MAps which are descriptions of previously
made communities, such as a TV. The key to creating such MAps is that of making connections
between networked appliance services to form a community, which can then be programmed via
PiP to provide a given functionality (ie a meta appliance or application). To facilitate this, it is
necessary to have some standard way of describing the functionality of the devices and connections;
thus, for PiP, we utilise ontology Clearly, this concept of ’community‘ relates to any set of
coordinated pervasive entities, whatever their functional or physical level (i.e. ultimately, it could
also rela te to nano-scale or even macro-scale building-to-building environments). In PiP, the
community is, conceptually equivalent to a ‘virtual-appliance’ (sometimes called a soft-appliance)
and computationally related to the notion of a daemon or operating system task which, like a real
appliance, is always ‘alive’ (this differs to script and macro based approaches).

7.4.2 PiP Architecture

As PiP has the notion of working with communities the system supports setting up communities.
By first selecting and defining a community that the user wishes to program, a set of coordinated
actions are then taught to the system. Those members of the community that are going to be the
actuators and those that are going to be the environment for such actuation need to be chosen. An
action causes an appliance to generate an associated event, and this event is then used to generate
appropriate rules based on a “snapshot” of the environment state. More generally, coordinating
actions are performed by a community. A device can be involved in more than one community. The
user interface with PiP is via a PiP editor, shown in Figure 5. This editor provides a means for:

(1) displaying discovered devices,
(2) setting up / amending communities and
(3) managing user’s demonstration sessions.

Figure 4 - The PiP Architecture

Out/in events

Networ
k

IP

Informat
ion space /

dComp

device
ontologies

Comm

unity
description

Engine (module) on Device

PiP
Event ing
handler

Rule
Manager

PiPeditor

Rule
Sets

Environmental
Naming

Data Modelling Manager Community
Manager

User’s
action

HTTP

TCP

JENA

Ontolo
gy
Manager

Published as part of Advances in Management Information Systems research monographs, ME Sharp, New York, November 2005

© Essex University 2005 9

Tasks (eg Meta-Appliance behaviour) can be learnt from either interacting with on-screen
representations of the devices or the real devices themselves. Once created, tasks can be played
back on-demand, either from a user generated event, as in a Task Computing meta-application, or in
response to a environment originated event.

Figure 5 – The MaP Editor With Example Community Set-Up

The PiP architecture, shown in Figure 4, comprises the following modules:

1. PiP Engine – this module is responsible for discovering and subscribing to community events.

This module contains a Rule Manager that is responsible for gathering, generating and
executing rules, together with an Event Handler that manages PiP events.

2. Data Modelling Manager – this module is responsible for maintaining and providing
consistent data.

3. Community Manager— this module manages (sets up and maintains) the communities of
coordinating devices .

4. PiPeditor – this is the interface the user uses to program and interact with the system.
5. RuleManager – this module responsible of compiling and executing rules.
6. OntologyManager – this module manages the translation of ontology

To facilitate the information to be used within and beyond the community, data needs to be
standardised so that it can be understood by all other parties in the network. For this aspect of work,
the semantics in PiP (described in the following section) supports information interoperability
between applications, providing a common machine “understanding” knowledge framework.

4.3 Semantics of Home Devices and dComp Ontology

To enable computers and users to utilise devices it is necessary to provide descriptions of their
capabilities; an ontology provides such a description. PiP leverages ontology semantics as the core
vocabulary for its information space, generating ontology-based rule sets when a user demonstrates
her/his desired tasks to the system.

Published as part of Advances in Management Information Systems research monographs, ME Sharp, New York, November 2005

© Essex University 2005 10

DCOMPService
Class

DCOMP Service
LightsNFittingsService
LightService
SwitchService
TelephoneService
AlarmService
TemperatureService
EntertainmentService
AudioService
VideoService
FollowMeService
SetTopBoxService
StateVariable
TOPService

DCOMPHardwar
e Class

Hardware
CPU
Memory
DisplayOutput
DisplayScreenProperty
AudioOutput
AudioOutputProperty
Tuner
Amplifier

DCOMPCommun

ity Class
SoloCommunity
NotJointCommunity
PersistentCommunity
TransitoryCommunity
CommunityDevice

Rule Class
Rule
FixedRule
PersistentRule
NonPersistentRule
Preceding
Device
 DCOMPpers

on Class
Preference

Class
Preference
SituationalCondition
CommunityPreference

Time Class

Action Class
Action
PermittedAction
ForbiddenAction
Recipient
TargetAction

Policy Class
Policy
Mode

DCOMPDev
ice Class

DCOMPDevice
MobileDevice
StaticDevice
NomadicDevice
Light
Switch
Telephone
Alarm
Blind
Heater
FileRepository
DisplayDevice
AudioDevice
SetTopBox
Characteristic
DeviceInfo

The SOUPA ontology from Ubicomp (Chen et-al 04) is aimed at pervasive computing but lacks
support for crucial PiP mechanisms such as community, decomposed functions and coordinating
actions which are essential to produce higher level meta functionality. In addition, the current
SOUPA standard has only limited support for the UPnP standard (which our research testbed, the
iDorm2, which is described later in this chapter depends on). OWL-S, previously called DAML-S
(OWL 05) is based around the notion of services. It primarily targets the World Wide Web,
enabling agents to evoke services thereby facilitating the automation of web tasks. It provides a
useful abstraction called composite processes which is still under development and, at the time of
writing, does not give a precise specification of what it means to perform a process. Thus, we have
developed our own ontology, dComp (deconstructionist & community programming) that provides
a better match to domestic environments and has a well defined specification of communities (akin
to composite processes on OWL-S). dComp (see Table 1) is based around the OWL language
which is widely used (especially for the semantic Web). There are also numerous supporting tools
such as the Jena (McBride 01), RACER (Haarslev & Moller 01) and F-OWL (Zou et-al 04)
inference engines are widely available. The full dComp specification is available online (dComp
05).

In the current implementation we have defined a few classes in supporting the notion of community
and rules (Chin 05). Wherever possible we have sought to adopt suitable ontology for our other
needs. For example our Person, Policy and Time ontology are adopted from Ubicomp SOUPA
ontology. In dComp, preferences are referred as ‘situated preferences’, which is akin to Vastenburg’s
‘situated profile’ concept where he uses situation as a framework for user profile so that the values of
the profile are relative to situations (Vastenburg 04). By way of an illustration of a virtual appliance
definition, figure 6 shows a partial description of a TV community. In this the community has a label
“JC TV”; with a description of “The first JC testing TV”; was created on the 2004-09-06 time 19:43;
has an owner “Jeannette” and was composed from 3 other devices on the network. These devices are
identified by their unique id numbers were :UUID:PHLCDT17, UUID:PHLAudioMMS223, and
UUID:NetGem442.

Table 1 - dComp ontology (v.1.1)

Published as part of Advances in Management Information Systems research monographs, ME Sharp, New York, November 2005

© Essex University 2005 11

Figure 6 – a partial TV Community Definition

7.5 Agent Services

At the outset of this chapter we described how automated services, such as agents were

deliberately made to be subservient to the end-user programming interface, allowing the user to
choose the level of autonomy given to various parts of the system. Invariably there are some aspects
of any system that need to be automated as users will not be competent to carry out or want to be
involved at the level of complexity or abstraction involved. For example, searching the available
network services and functions, and mapping these to higher level task based user requirements,
would be a complex and tedious process that is better left to automated assistance. This difficulty is
compounded by the highly dynamic nature of users and devices with both users and devices joining
and leaving networks and the variability of devices it not being possible to pre-specify every device
or combination of devices. In the following we provide a formalism that describes how continuity
of function might be supported when people and devices change in ways illustrated in the Home of
the Future scenario earlier in this chapter.

In general terms we could describe this problem as follows: an allocation is a duple ? ?Td , where

d is a device and T is a not empty set of k tasks, i.e. ? ?kttttT ,,,, 321 ?? , with 1?k . If 1?k we
have a simple device, that is able to handle only one kind of task. This is the case of a speaker, or a
microphone. If 1?k then d is a complex device, which is composed by other sub-devices, i.e.
d can handle more than one task. This could be the case of a TV, composed by a device that can
handle two different kinds of signals: audio and video.

When the user configures a new appliance, he defines a new community. A community, denoted
by C , is a finite not empty collection of n allocations, i.e.

? ? ? ? ? ? ? ?? ?nn TdTdTdTdC ,,,,,,,, 332211 ?? , with 1?n .

If the user goes to a new environment, the agent should create an equivalent community eqC . In

order to create this equivalent community, for each allocation ? ? CTd ?, the agent should find an
equivalent allocation ? ?eqeq Td , in the new environment. As we mentioned before, we have two

cases: 1?k and 1?k .

<com:TransitoryCommunity rdf:ID="JCTV">
 <com:communityID>Tran-JCTV</com:communityID>
 <com:communityName>JC TV</com:communityName>
 <com:communityDescription>The first JC testing

TV</com:communityDescription>
 <com:timeStamp rdf:datatype="&xsd;dateTime">2004-09-

06T19:43:08+01:00</com:timeStamp>
 <com:hasOwner>
 <person:Person>
 <person:firstName

rdf:datatype="&xsd;String">Jeannette</person:firstName>
 <person:nickname rdf:datatype="&xsd;String">JC</person:nickname>
 <person:gender rdf:resource="#Female"/>
 </person:Person>
 </com:hasOwner>
<com:hasCommunityDevice>
 <com:CommunityDevice>
 <device:deviceUUID>UUID:PHLCRT17</device:deviceUUID>
 </com:CommunityDevice>
 <com:CommunityDevice>
 <device:deviceUUID>UUID:PHLAudioMMS223</device:deviceUUID>
 </com:CommunityDevice>
 <com:CommunityDevice>
 <device:deviceUUID>UUID:NetGem442</device:deviceUUID>
 </com:CommunityDevice>
</com:hasCommunityDevice>
</com:TransitoryCommunity>

Published as part of Advances in Management Information Systems research monographs, ME Sharp, New York, November 2005

© Essex University 2005 12

i) If 1?k then d is a simple device and ? ?1tT ? . The agent should find a new allocation ? ?? ?1, tdeq

such as the device eqd is able to perform the only task 1t .

ii) If 1?k then d is a complex device, and ? ?kttttT ,,,, 321 ?? . The agent should find, in the

worst case, k allocations ? ?? ? ? ?? ? ? ?? ? ? ?? ?k
k
eqeqeqeq tdtdtdtd ,,,,,,,, 3

3
2

2
1

1 ? , where every device i
eqd is able

to perform the task it , with ki ??1 .

We could extend this framework in order to include time. A temporal allocation is a tuple

? ?fi ttTd ,,, where d is a simple device, T is a (simple) task, it is the initial time and ft is the final

time. In other words, the device d will be performing the task T during if tt ? units of time,

beginning on the instant it . So, a temporal community, denoted by tC is a non-empty set of
temporal allocations:

? ?? ??
k

j
jfjijjt ttTdC

1

,,,
?

?

From this approach other issues arise, such as scheduling and time-dependant sequences of tasks

(Zamudio et-al 05). A temporal community representation in agent service is shown in Figure 7.

Figure 7. Representation of a temporal community

6.0 Evaluation

6.1 Research Platform

For our experimental work we have built a pervasive computing test-bed called the iDorm2 which
takes the form of a two bed roomed apartment see Figure 8. It is a full size domestic apartment
containing the usual rooms for activities such as sleep, work, eating, washing and entertaining. It
comprises numerous networked artefacts such as telephones, MP3 players, lights, beds and chairs.

Connectivity and a common interface to the iDorm2 devices are implemented via IP networking
and Universal Plug & Play (UPnP). UPnP is a distributed middleware that employs event-based
communication, supporting automatic discovery and configuration. Our experimental PiP
architecture is aimed to be independent of any particular middleware although the current version
utilises UPnP as its underlying network communication infrastructure. The PiP user interface can
be accessed via a variety of means ranging from mobile devices such as tablet PCs to an LG
iFridge.

Published as part of Advances in Management Information Systems research monographs, ME Sharp, New York, November 2005

© Essex University 2005 13

Figure 8 – The iDorm2

7.6.2 Procedures and Apparatus

The work described in this chapter was evaluated based on a trial involving eighteen participants
drawn from a diverse set of backgrounds (eg housewives, students, secretaries, teachers etc). Their
genders were 10 females and 8 males with ages ranging from 22 to 65. The participants also formed
a multicultural group including Asians, Europeans, Latin-Americans and Australians. All
participants have some computing experience (ie. they knew how to use a mouse). Whilst 20% of
the participants had a very good knowledge of programming, 60% of them have none at all. For the
evaluation sessions they were given five sets of devices (drawn from a set of lights, a telephone,
smart sofa and an MP3 player). During the evaluation, no specific tasks were set for the participants
but they were encouraged to use their imagination to create their own desired environment based on
the devices available. The evaluation was preceded by a 20 minute training session.

Figure 9: Some participants evaluating MaP

The evaluation methodology was developed with the assistance of Chimera (a socio-technical
research unit based on the BT Research Park at Martlesham Heath in Suffolk, UK) to assess the
participants’ subjective views on the usability of the system (DiDuca and Van Helvert 05). It
consisted of both observations and a questionnaire measuring attitudes over six usability dimensions
shown in Table 2 (a higher rating score on the dimensions shows greater usability). Each of these
dimensions consisted of a series of statements (from 2 to 4) and each statement offering a range of
ratings (from 1 to 5). A higher rating score on the dimensions contributes towards the greater
usability of PIP.

6.3 Results

In this limited space is not possible to present all the evaluation data or results therefore only
highlights will be given to convey the general findings. What is clear that all the dimensions rated
well (scoring above 4) indicating they users were generally well satisfied with the system. At the
outset of the work, one of our contentions was that people would enjoy the experience of
programming and find it relatively easy. Both of these assertions were supported by the evaluation

Published as part of Advances in Management Information Systems research monographs, ME Sharp, New York, November 2005

© Essex University 2005 14

Conceptual

UserControl

CognitiveLoad

InformationRetrieval

AffectiveExperience

FutureThoughts

Dimension

0

30

60

90

120

150

C
ou

nt

qRating
2.00
3.00
4.00
5.00

Bar Chart

as, in terms of enjoying the experience, the mean of the affective dimension was 4.6 (the highest
rating) indicating people greatly enjoyed the experience of PiP programming, whilst the cognitive
load dimensions had an overall average of 4.3 indicating people found the process relatively simple.
In fact, it was found that 88.9% reported that they used the controls with ease and 83% of
participants were able to use the system to create their desired environments with little or no
assistance.

Although not shown in the data presented here, we found no significant variation across culture

but found some minor variation on cognitive loading for age groups, with younger participants
finding it the system slightly easier to use. In general the “Information Presentation” dimension
(how well information was presented to the user) scored the least but was still in excess of 4
indicating that overall people found it usable. Given that this is an early prototype, we were not
surprised to find that the interface could be improved. None of the participants found the principles
difficult to understand. A remark from one participant stated “I thought the basic principles
themselves are very simple and straight forward. I felt I could easily grasp the basic principles”
was typical of many users. This particular comment was from the group with no programming skills
at all (a key target of our work). Overall 83.4% of all participants found the system intuitive to use
and 94.4% of all participants stated they felt it rewarding to use the system. Thus these initial
results support the original thesis of the work that it is possible to produce a system that empowers
non-specialists to be able, and to enjoy, programming coordinated actions of distributed embedded
computer systems that form a digital home.

7.7 Discussion

7.7.1 Summary

In this chapter we have described how domestic pervasive systems of the future might be

composed of potentially hundreds of coordinating deconstructed services and functions. Most of
these will function in the same way as current appliances and applications, although their physical
appearance might be very different to current products. We have described two complementary
approaches to supporting non-technical user of future digital homes; task based computing (TBC)
and Pervasive Interactive Programming (PiP). Both approaches are based on the notion of
constructing atomic computational elements into higher level tasks. In PiP tasks are wrapped
within the “appliance” metaphor, which is a well established idea in home environments, and are
created by the user using real devices (or graphical emulations of them) to demonstrate what is

 N Mean Std.
Dev

Std.
Error

95% Confidence
Interval for Mean

 Lower
Bound

Upper
Bound

Conceptual 113 4.3186 .53894 .05070 4.2181 4.4190
User Control 191 4.1990 .59134 .04279 4.1146 4.2834
Cognitive Load 155 4.2710 .57332 .04605 4.1800 4.3619
Information
Presentation

112 4.4107 .54613 .05160 4.3085 4.5130

Affective
Experience

240 4.6083 .50596 .03266 4.5440 4.6727

Future Potential 83 4.1687 .76221 .08366 4.0022 4.3351
Total 894 4.3602 .59489 .01990 4.3211 4.3992

Figure 10 - The Six Dimension Rating

Table 2 - The Evaluation Ratings

Published as part of Advances in Management Information Systems research monographs, ME Sharp, New York, November 2005

© Essex University 2005 15

required. The complexity and variety of tasks that can be programmed are limited only by the
user’s actions which provide both its distinctive edge and principal research challenge. In TBC
task are created by the system associating service producers and consumers that the system has
found, with the resultant behaviour being limited by, and an outcome of, the pre-programmed
services. PiP is able to extend the capabilities of TBC by providing a mechanism for users to create
tasks that go beyond the limits of anticipated or pre-programmed use.

We have presented an ontology (dComp) that allows meta appliances and applications

(collectives) to be described and configured. These descriptions can be either supplied with
systems, so the devices offer default functionality akin to current appliances and applications
(without user intervention) or, for the more creative end-user, to enable them to create their own
novel meta-appliances and applications (MAps), thereby allowing them to decorate their domestic
environments in new ways; ‘DIY in the pervasive computing age’. We have provided a formalism
that describes the task translation and allocation problem needed to support MAps and movement of
people and devices. Finally, although this work is aimed at the future digital home rather than those
existing now, we have built and evaluated a prototype system. Whilst we have only been able to
undertake a comparatively small scale evaluation, some 18 users, the initial finding are most
encouraging as they support our original hypothesis that it is possible to produce an end-user
programming system that empowers non-specialists to be able, and to enjoy, programming
coordinated actions of distributed embedded computer systems in a digital home.

7.7.2 Future Directions

Concerning longer term work we need to refine the techniques elaborated in this chapter. Also,

whilst we have directed our work at a domestic setting, these methodologies are generic in nature
and can be applied to other environments, something we will pursue in the future. Another area we
are especially interested in exploring is the synergy in the interoperation of an ontology engine in
support of user based programming. How might this work and what would be gained? Taking a PiP
user as an example, an ontology engine might be used to prompt the user with a set of possible
communities that the ontology recognises and which could be achieved with the currently available
devices. This would help a novice user to setup an acceptable world with a minimum level of
intervention on their part. The options offered might be graded, either all possibilities, or options
related to high- level functions described by the user with perhaps, the high- level requirement itself
captured as an ontology. This process might be implemented as a ‘virtual helper’ suggesting the
range of possible virtual devices that could be built from the currently available devices. As all
technology has to have commercial potential, an opening for this might be that the ontology engine
could suggest devices the user might consider buying. The ontology descriptions themselves (of
MAps) would also have a commercial value and open up the possibility for new forms of trading in
virtual commodities. More speculatively, if the system included an agent based learning
mechanism, over and above any end-user programming, there might be patterns of use and
behaviour of the sorts of (implicit) communities formed and their use, that could be captured by an
agent from the (implicit) rules created, which in their turn, could be used to improve the advice
offered by the helper system. In terms of the underlying science, such an approach could unify
implicit autonomous agent learning mechanisms with explicit end-user programming. In terms of
the levels of abstraction involved one might characterise this as an epistemological level as it seems
to capture tacit knowledge from the behaviour of the user rather than rely on what the user knows
and wants consciously and explicitly. There would be a degree of recursion in this process as
epistemological level processes could result in ontological instantiations, which in turn could feed
the epistemological level modelling potentially leading the user to possibilities nobody had
considered. The point being that through PiP, the user’s beliefs and desires are captured at an
epistemological level which via ontology could add a more personal aspect to the prompts and
suggestions offered to the user. Of course, using PiP, the user could still invent new virtual devices

Published as part of Advances in Management Information Systems research monographs, ME Sharp, New York, November 2005

© Essex University 2005 16

which could then become part of an expanded (personal) ontology however well or badly they were
formed. In some senses both the ontology and the epistemology described here are dynamic bodies
of knowledge and belief that evolve as the pervasive system and the users evolve. The basic
ontology of devices would probably be manufacturer based and refer to physical device descriptions
whereas the virtual devices constructed by the user would be the equivalent of an epistemological
level (i.e. what the user wants and knows how to construct for their own purposes). Clearly, there is
equivalence between the epistemological level and a personal ontology leading the potential to
encapsulate personal and subjective views which are especially in keeping with the domestic
pervasive information systems in the private spaces of our homes.

Whatever the future holds, pervasive information’s systems have the potential to radically

change our homes. Our hope is that this will be done in a way that empowers people without
compromising their privacy or security.

Acknowledgements:

We wish to record our gratitude to the following who, in various ways, have supported this
work: The DTI (Next Wave Technologies and Markets programme), Chimera, Essex University,
Dr Martin Colley, Dr Hani Hagras, Dr Martin Hicks, Greg Willat and Malcolm Lear.

References:
Adair M. “X10 Projects for Creating a Smart Home ”, Indy-Tech Publishing, ISBN: 0790613069,
March 2005.
Andersen P.; Bardram J,; Christensen H,; Corry A.; Greenwood D.; Hansen K.: Schmid R. Open
Architecture for Palpable Computing Some Thoughts on Object Technology, Palpable Computing,
and Architectures for Ambient Computing, Discussion Document on Palpable Computing
architecture (see http://www.ist-palcom.org/ accessed on the 15th October 2005).
Asaravala A. Give Your Home a Brain for Xmas, Wired, Dec 2004.Le Corbusier. Towards a New
Architecture (Vers Une Architecture)”, Architectural Press, 1921 (reprinted 1989).
Basu J, Callaghan V “Towards A Trust Based Approach to Security and User Confidence in
Pervasive Computing Systems”, IE05, Essex, 28-29th June 05
Berners-Lee T,; Hendler J,; Lassila O. The Semantic Web, Scientific American, May 2001
Callaghan V,; Clarke G,; Chin J, Pervasive Computing: Issues for the Individual and Society, New
Atlantis, New York, February 06.
Callaghan V,; Colley M,; Hagras H,; Chin J,; Doctor F,; Clarke G,; Programming iSpaces: A Tale
of Two Paradigms, in book Intelligent Spaces, The Application of Pervasive ICT part of the series
Computer Communications and Networks, Steventon, A; Wright, S (Eds.) approx. 455 p. 162 illus.
ISBN: 1-84628-002-8, Dec 2005.
Canfield-Smith D.; Cypher A.; Tesler L. Programming by example: novice programming comes of
age, Communications of the ACM, Volume 43 , Issue 3 (March 2000), Pages: 75 – 81, 2000.
Chen H,; Finin T,; Joshil A. SOUPA: Standard Ontology for Ubiquitous and Pervasive
Applications, Int’l Conference on Mobile & Ubiquitous Systems: Networking & Services
(MobiQuitous 2004), Boston, Massachusetts, USA, August 22-26, 2004
Chin J.; Callaghan V.; Colley M.; Hagras H.; Clarke G. Virtual Appliances for Pervasive
Computing: A Deconstructionist, Ontology based, Programming- By-Example Approach,
Proceedings of Intelligent Environments 2005 (IE05), Essex, 28-29th June 05.
Chin J,; Callaghan V, ; Colley M,; Hagras H,; Clarke G. End-User Programming in Pervasive
Computing Environments, Pervasive Systems and Computing (PSC-05), Las Vegas, Nevada, USA,
June 27-30, 2005.
Chin JSY.; Callaghan V.; Clarke G.; Colley M,; Hagras H. “Pervasive Computing and Urban
Development: Issues for the Individual and Society”, UN Second World Urban International
Conference on The Role of Cities in an Information Age, Barcelona, Spain, 13-17 September, 2004.

Published as part of Advances in Management Information Systems research monographs, ME Sharp, New York, November 2005

© Essex University 2005 17

DCOMP. Deconstruction and Community Based Ontology For Pervasive Computing
(http://iieg.essex.ac.uk/dcomp/ont/dev/2004/05/ accessed 15th October 2005)
DiDuca D and Van Helvert J. User Experience of Intelligent Buildings; A user-Centered Research
Framework, Intelligent Environments 2005, Essex, 28-29th June 2005
DTI. Next Wave Markets, UK Department of Trade and Industry web pages; (available at
www.nextwave.org.uk/docs/markets.htm, accessed 15 Oct 05).
Easy Living. Microsoft’s Easy Living Project (available at http://research.microsoft.com/easyliving/
accessed on the 15th October 2005).
Economist. The digital home; Science fiction?, The Economist, Thursday September 15th 2005.
Epsilon. SUN’s Epsilon Project (available at http://research.sun.com/projects/epsilon/) accessed on
15th October 2005.
Haarslev V and Moller R. Description of the RACER system & its application, Proc Int’l
Workshop on Description Logics (DL-2001), 2001.
Horan B. The Use of Capability Descriptions in a Wireless Transducer Network, Sun Microsystems
Research Labs, Report Number: TR-2005-131, Feb 1, 2005 (available at
http://research.sun.com/techrep/2005/abstract-131.html, accessed 15th October 2005).
Ishii, H,; Ratti, C,; Piper, B,; Wang, Y,; Biderman, A,; Ben-Joseph, E. Bringing clay and sand into
digital design - continuous tangible user interfaces, BT Technology Journal, Vol. 22, No. 4, October
2004, pp. 287-299
Jobs S. Tiger (Mac OS X), Apple Worldwide Developer Conference WWDC 2004, San-Francisco,
27 June – 3rd July 2005 (available at http://developer.apple.com/macosx/automator.html, accessed
15th October 2005).
Lieberman H. Your wish is my command, Morgan Kaufmann Press, 2001
Lyons M. “Privacy, Freedom and Control in Intelligent Environments” keynote talk, Proceedings of
Intelligent Environments 2005 (IE05), Essex, 28-29th June 05,
(http://www.iee.org/OnComms/PN/controlauto/Michael%20Lyons%20Presentation.pdf accessed
15th October 2005.
Masuoka R,; Parsia B,; Labrou Y. Task Computing - the Semantic Web meets Pervasive
Computing, 2nd Int’l Semantic Web Conf (ISWC2003), 20-23 Oct 2003, Florida, USA.
McBride B. Jena: A Semantic Web Toolkit, IEEE Internet Computing, Nov/Dec 2002
O'Neill, E. and Johnson, P. (2004) Participatory Task Modelling: users and developers modelling
users' tasks and domains. 3rd International Workshop on task models and diagrams for user
interface design (TAMODIA 04). Prague, Czech Republic, 15-16th November 2004.
Smith, D. C. Pygmalion: A Computer Program to Model and Stimulate Creative Thought , Basel,
Stuttgart, Birkhauser Verlag. 1977
OWL-S. Ontology Web Language for services, (http://www.w3.org/Submission/2004/SUBM-
OWL-S-20041122/ accessed 15th October 2005)
Vastenburg M, “SitMod: a tool for modelling & communicating situations”, 2nd International Conf,
Pervasive 04, Vienna Austria, April 21-23, 2004, ISBN: 3-540-21835-1
Wacks K. Home Automation and Utility Customer Services, Cutter Information Corporation
Report, April 1998
Wang Z, Garlan D. Task-Driven Computing, Technical Report, CMU-CS-00-154, Computer
Science, Carnegie Mellon University, May 2000.
Zamudio, V.; Callaghan, V.; Chin, J. A Multi-Dimensional Model for Task Representation and
Allocation in Intelligent Environments, Proceedings of The Second International Symposium on
Ubiquitous Intelligence and Smart Worlds (UISW2005). Nagasaki, Japan. 6-7th December, 2005.
Zou Y,; Chen H,; Finin T. F-OWL: an Inference Engine for Semantic Web, 3rd NASA-
Goddard/IEEE Workshop Formal Approaches to Agent-Based Systems, Greenbelt, Maryland, USA,
26 April 2004.

