
In the IEE International Workshop, Intelligent Environments 2005 (IE05), Colchester, UK, 28-29th June 05

© Essex University & IEE June 2005 1

VIRTUAL APPLIANCES FOR PERVASIVE COMPUTING: A
DECONSTRUCTIONIST, ONTOLOGY BASED, PROGRAMMING-BY-

EXAMPLE APPROACH

J.S.Y. Chin, V. Callaghan, M. Colley, H. Hagras, G. Clarke
Department of Computer Science, University of Essex, UK

Email: iieg@essex.ac.uk Web: http://iieg.essex.ac.uk

ABSTRACT

People are going to experience a revolution in the nature and
capability of their home environment in a future where
domestic electronic artefacts containing embedded computers
and network connections opens up the possibility for hundreds
of communicating devices cooperating in communities serving
the occupant – this is the “Pervasive Computing” vision. This
paper describes research in progress that takes the notion of
collaborating home artefacts forward in four ways; (a) it
introduces a model that promises to change the nature of
home appliances - the deconstructed appliance model (b) it
introduces a novel approach to programming pervasive
computers called Task Oriented Programming (TOP), (c) it
presents a Deconstruction and Community Programming
(dComp) ontology supporting the formation and programming
of coordinated communities of home appliances and (d) it
describes the iDorm a test-bed for this work . We support the
theoretical ideas in the paper with details of our
implementation and initial evaluation work that shows that
TOP operations, such as queries, can be completed in under a
second. The work described in this paper is funded by the UK
DTI Next Wave and Markets Technology programme.

1.0 INTRODUCTION

1.1 Background

Embedded-computer technology is developing at a
breathtaking pace. According to industry statistics, a
staggering 98% of the world’s production of microprocessors
(some 8 billion, in 2001) is integrated into gadgets such as
video recorders, washing machines, mobile phones and other
embedded-computer based appliances [14]. For example, it is
estimated that there are at least 680 million mobile phones in
the world [5]. While these technological advances are fuelling
significant changes in both the high-tech marketplace and
living-environments, the most radical paradigm shift will
originate from the way these technologies are applied.
Communities of appliances (collectives) will be able to
collaborate to provide new synergetic functionalities e.g. the
telephone ringing can be made to interact with other devices
to carry out other functions, such as pausing the TV, creating
higher order “virtual appliances” [3]. The nature of appliances
themselves will be questioned. Are appliances monolithic
artefacts containing inaccessible sets of fixed functionalities
or are they artefacts whose sub-functionalities are visible and
accessible to other users and devices and can be logically or
physically, deconstructed and reconstructed differently? The

role of the end-user changes as tools to design novel
functionalities from communicating communities of
coordinating devices become available . The main implication
arising from this vision is that techniques for describing the
knowledge within such systems need to be found e.g. the
devices and their capabilities, together with methods that
would allow end-users to manage and program communities
of coordinating pervasive computing devices, without
incurring prohibitive cognitive loading. We argue that the key
enabling technologies in realising this vision are an end-user
programming tool and a methodology for describing
networked device capabilities, particularly a means to
describe the notion of community. Thus we have developed
an end-user programming tool, TOP, and an ontology, dComp
that supports this paradigm, both of which form the main
focus, and original contribution, of this paper.

1.2 The Deconstructed Appliance Model

Whilst traditional stand-alone home appliances provide very
useful functionality to users , when you add a network
connection a number of significant possibilities arise. It
becomes possible to access individual sub-functions within
the appliance allowing, for example, the on/off switch in a
light to be emulated by software on a PC thus enabling remote
control of home appliances. More significantly it allows the
functional units that make up current appliances to be shared.
For example, the audio amplifier in a TV could be used by the
HiFi system, or vice versa. Thus, virtual appliances could be
created by establishing logical connections between the sub-
functions of appliances, creating replicas of traditional
appliances, or inventing altogether new appliances [3]. In
essence this paradigm involves the deconstruction of
traditional appliances into their atomic functionalities (either
physically or logically), allowing the user to re-construct
virtual appliances by reconnecting the basic atomic
functionalities in various ways, we call this the deconstructed
appliance model. Examples of this approach include SUN’s
Epsilon Project1, which is exploring how appliances are
decomposed into small independent devices each having a
virtual world proxy which can be “connected” to other proxies
to create meta systems (offering conventional appliance
functions, or novel ones created by the user “invented”
combinations). A particularly interesting aspect of the Epsilon
work is that it explores the notion of ultra-thin clients where
the physical manifestation of the appliance becomes near
stateless with most state and process residing on proxies
whose location is almost irrelevant. The work at SUN is wide

1 http://research.sun.com/projects/epsilon/

In the IEE International Workshop, Intelligent Environments 2005 (IE05), Colchester, UK, 28-29th June 05

© Essex University & IEE June 2005 2

ranging and includes studies on supporting middleware [19].
As part of their EasyLiving2 project Microsoft are also
exploring the notion of deconstruction (dis -aggregation in
their terminology) to PCs and services, demonstrating how a
disconnected “pool” of screens, keyboards and applications
can be dynamically (and automatically) re -connected to
recreate a virtual PC for a user in differing contexts (eg the
screen may change from a beamer to a TFT depending on the
user’s position within a room). Other work at Essex (beyond
that described in this paper) is investigating a user metaphor
referred to as “creative misuse” which explores how end-users
“program” technology in ways manufactures may not have
envisaged by deliberately operating systems in ways they
were not designed [20]. The key to creating virtual appliances
from deconstructed functions is making connections between
these functions so that they form a virtual appliance with its
own functionality. It becomes a community of coordinating
devices with a new functionality. This concept of community
is not limited to deconstructed appliances, but relates to any
set of coordinated pervasive services, whatever their
functional level. Clearly the richer the pool of (sub-)functions
or services, the greater the possible permutations for the user
to create new virtual appliances. However user friendly tools
for the creation of such commu nities are required in order to
protect the user from the cognitive loading imposed by the
complexity of the task.

1.3 The Task Oriented Programming approach

A critical aspect of this vision is providing the non-technical
lay end-users with a means t o “program” the coordinated
actions of communities of communicating pervasive
computing devices. There are numerous approaches to this
challenge such as implicit methods that use autonomous
intelligent agents [10] [7] that aim to reduce the cognitive load
on the user aspects or explicit methods that use end-user
programming approaches [15] [12] which seek to introduce
creativity and transparency. an be traced to work such as
Programming-By-Example (PBE) (sometimes referred to as
Programming-By-Demonstration - PBD), an end user
programming paradigm pioneered by Smith in the mid-
seventies [15], Tangible Computing, a way of bringing a
physical metaphor to software abstractions pioneered by
Ullmer and Ishii [Ullmer 00], Palpable Computing3 an
approach to promote user control and choice through
increased visibility of pervasive computing technology,
Learning-From-the User (LFU), an embedded-agent learning
paradigm Essex University has been developing for many
years [3] and ontology mainly drawn from research work on
the semantic web [1]. The underlying principle is that a person
sets a community into a “teaching mode” and then
demonstrates the behaviour required from the system, by
either physically, or graphically, using the system.

1.3 Programming-By-Example

Programming-by-example (PBE) was introduced by Smith in
the mid-seventies, where the algorithms for the system

2 http://research.microsoft.com/easyliving/
3 http://www.ist-palcom.org/

functionalities were not described abstractly but rather
demonstrated in concrete examples [15]. Henry Lieberman
later described PBE is “a software agent that records the
interactions between the user and a conventional direct-
manipulation interface and writes a program that corresponds
to the user’s actions”, where “the agent can then generalise
the program so that it can work in other simulations similar
to, but not necessarily exactly the same as, the example on
which it is taught” [12]. Thus, PBE reduces the gap between
the user interactions and the delivered program functionality
by merging the two tasks. The main area of PBE work has
focused on graphical user interfaces running on PCs. By way
of a few examples, PBE has been applied to computer
application development; Computer-Aided Design (CAD)
system, children’s programs, World Wide Web related
technologies and home automation, [2], [8],[13],[12]. The
underlying principles in PBE are generic and transportable to
the pervasive computing world. In addition to the underlying
scientific principle PBE shares the same motivation of
empowering lay-end-users to utilise what would otherwise be
prohibitively complex technology. However, to-date PBE has
not been applied to programming tangible physical objects,
nor any other aspect of pervasive computing. Thus TOP is the
first application of PBE to pervasive computing. Further
details on the TOP paradigm and progress in achieving it are
presented in section 3.

1.4 The dComp Ontology

One similarity between all the projects that address pervasive
computing is the need to encapsulate environmental
information. The lack of a standard way of describing such
knowledge is seen as an obstacle for independently developed
software applications to interoperate [4]. One standard
approach is an ontology which defines the terms used to
describe and represent an area of knowledge. This consists of
sets of well-defined vocabularies and associated semantics
that can be reasoned about. Although XML, DTDs and XML
Schemas are sufficient for exchanging data between parties
who have agreed to the definitions beforehand, their lack of
semantics make reasoning (or even merging information)
across diverse communities difficult.. Until recently, most
ontology work focused on the Semantic Web. Many well-
defined ontologies have been developed. For example, in
bioscience, the GENE Ontology and the MGED ontology in
the human domain, the “Food Ontology” and “Wine
Ontology”, were developed by the W3C and in the
Information Science domain, the SUMO ontology has been
flourishing for promoting information processing related
activities. However, the most relevant ontology standard to
dComp is SOUPA, developed by UbiComp which defines a
set of generic vocabularies for ubiquitous and pervasive
applications [4]. Although SOUPA promotes the
interoperability of information between applications, it is
based on a context -awareness model, and as a result, it is
particularly well suited in the context -awareness domain. This
model differs from dComp, in that our primary focus is on
coordinating actions of communities of home based
appliances, and deconstructed functions to produce higher
level community functionality. This concept has not been
fully addressed by the current SOUPA standard. In addition,

In the IEE International Workshop, Intelligent Environments 2005 (IE05), Colchester, UK, 28-29th June 05

© Essex University & IEE June 2005 3

SOUPA provides only limited support for the concept of
home UPnP-based devices. In order to realise our vision, a set
of explicitly well-defined vocabularies (i.e. an ontology) is
needed to model, not just to describe the basic concept of
deconstructed devices (or to deal with UPnP) but also, the
communities they form, the services they provide, the rules

and policies they follow, the resultant actions that they take,
and of course the people who inhabit the environment along
with their individual preferences. Thus, we have built on the
SOUPA work by defining vocabularies to provide direct
support for community coordination, deconstructed appliances
and home environments.

Figure 1 - dComp ontology (v.1.1)

We have chosen to model the dComp ontology using OWL,
the Semantic Web standard Language developed by the
semantic web initiative sponsored by the World Wide Web
Consortium (W3C). OWL provides a framework for asset
management, in particular it facilitates greater machine
interoperability for sharing and reusing of web data than is
supported by structured data markup languages such as
eXtensible Markup Language (XML), Resource Description
Framework (RDF) and RDF Schema (RDF-S). RDF is the
syntax generally used in the Semantic Web for representing
data. The data structure of RDF is in the form of triples2, and
each triple is referred as a resource which uniquely identified
by a URI. OWL shares the same root as its predecessor,
DAML-OIL, both use RDF as their main modelling language
to define vocabularies together with XML as the syntax for
representing information. We chose OWL for three main
reasons. Firstly, the language is now a standard with the
backing of a well known and highly regarded standards
organisation. Secondly, the language is much more expressive
than RDF or RDF-S by providing additional formal semantic
vocabularies allowing us to embed more information into our
ontology. Thirdly, it enjoys widespread support from
developers of Semantic Web tools such as Jena4 [19] and
inference engines such as RACER [9] and F-OWL [18]. More
information on the dComp ontology and current progress in
implementing is given in section 4.

2 An RDF triple contains three components: (1) the
subject, which is an RDF URI reference or a blank node
(2) the predicate, which is an RDF URI reference (3) the
object, which is an RDF URI reference, a literal or a blank
node
4 http://jena.sourceforge.net/

2.0 THE IDORM TEST ENVIRONMENT

For our experimental work on TOP we are using a pervasive
computing test-bed called the iDorm at the University of
Essex, which takes the form of a student bed-sitting room, see
figure 2. The iDorm is a multi-use, multi-user space
containing areas for different activities such as sleep, work
and entertaining. It comprises approximately 30 networked
functions built into devices such as telephones ,MP3 players,
lights, beds and chairs. Connectivity and a common interface
to the iDorm devices are implemented via IP networking and
Universal Plug and Play (UPnP). UPnP is a distributed
middleware that employs event-based communication and
supports automatic discovery and configuration. Our
experimental TOP architecture makes extensive use of UPnP
as its underlying network communication infrastructure.

3.0 TOP

3.1 TOP Overview

The motivation behind TOP was to create a system that
maximised user control and transparency whilst minimising
the need for detailed technical knowledge. This was driven by
experience with autonomous agent based systems where some
users expressed fears related to privacy - not knowing what
the agents were doing, when they were doing it and who or
what was accessing the information. [6] [21]. In the TOP
approach, the system is explicitly put into a “learning” mode
and is taught (by demonstration) how to behave by the lay
end-user. Virtual appliances could be created by establishing
logical connections between the sub-functions of appliances,

DCOMPDevice
Class
DCOMP Device
MobileDevice
StaticDevice
NomadicDevice
Light
Switch
Telephone
Alarm
Blind
Heater
FileRepository
DisplayDevice
AudioDevice
SetTopBox
Characteristic
DeviceInfo

DCOMPService
Class
DCOMP Service
LightsNFittingsService
LightService
SwitchService
TelephoneService
AlarmService
TemperatureService
EntertainmentService
AudioService
VideoService
FollowMeService
SetTopBoxService
StateVariable
TOPService

DCOMPHardware
Class
Hardware
CPU
Memory
DisplayOutput
DisplayScreenProperty
AudioOutput
AudioOutputProperty
Tuner
Amplifier

DCOMPCommunity
Class
Community
NotJointCommunity
PersistentCommunity
TransitoryCommunity
CommunityDevice

Rule Class
Rule
UnchangableRule
PersistentRule
NonPersistentRule
Preceding
Device

Policy Class
Policy
Mode

DCOMPperson
Class

Preference
Class
Preference
Situatio nalCondition
CommunityPreference

Time Class

Action Class
Action
PermittedAction
ForbiddenAction
Recipient
TargetAction

In the IEE International Workshop, Intelligent Environments 2005 (IE05), Colchester, UK, 28-29th June 05

© Essex University & IEE June 2005 4

creating replicas of traditional appliances, or inventing altogether new appliances.

Figure 2 – The iDorm

Users that don’t want to program new functions, are free to
use the stand-alone appliance. In addition, the vision for TOP
includes the notion of pre-fabricated interconnection
templates which are descriptions of pre-made communities,
such as a TV. The key to creating such virtual appliances is
that of making connections between network functions to
form a community of coordinating services. To facilitate this
it is necessary to have some standard way of describing the
functionality of the devices and connections. For TOP, we

utilise the dComp ontol (see next section for details). Clearly,
this concept of community relates to any set of coordinated
pervasive entities, whatever their functional or physical level
(i.e. ultimately, it could relate to any level of granularity that
had appropriate components and communications from nano
to macro scale building to building, city to city environments).
In general, the richer the pool of (sub-)functions, the greater
the number of possible virtual appliances.

.

Figure 3 – The TOP Editor with example community set up

2.2 TOP Architecture

As TOP has the notion of working with communities the
system supports setting up communities (sets of
communicating devices). By selecting a community that the
user wishes to program, a set of coordinated actions are taught
to the system by simply using the home networked devices in
a role-play mode, supported by some on-screen activities An
action causes an appliance to generate an associated event,
and this event is then used to generate appropriate rules (based
on a snapshot of the environment). More generally,
coordinating actions (i.e. tasks) are performed by a
community (i.e. one or more devices). A device can be

involved in more than one community (i.e. performing one or
more actions). The user interface with TOP is via an editor
called TOPeditor (see figure 3). This editor provides a means
for: (1) displaying discovered devices, (2) setting up /
amending communities and (3) managing learning sessions.
Tasks can be taught via interacting with on-screen or physical
devices. The TOP architecture, shown in Figure 4, comprises
the following main modules:

• TOPeditor – the user interface used to program
and interact with the system.

• TOP Engine – responsible for discovering and
subscribing to community events and contains a

Area for setting up
communities and
access members

Area showing
discovered
UPnP devices

Teaching and “replay”

Area showing
functions and
actions

In the IEE International Workshop, Intelligent Environments 2005 (IE05), Colchester, UK, 28-29th June 05

© Essex University & IEE June 2005 5

Rule Manager that is responsible for gathering,
generating and executing rules, together with an
Eventing Handler that manages TOP events.

• Data Modelling Manager – responsible for
maintaining and providing consistent data.

• Community Manager - manages the communities
of coordinating devices.

To facilitate the information to be used within and beyond the
community, data needs to be standardised so that it can be
understood by all other parties in the network. For this aspect
of work, the semantics in the dComp ontology supports
information interoperability between applications, providing a
common machine “understanding” knowledge framework.

Figure 4 - The TOP Architecture

3.3 TOP Progress to Date

Using the iDorm we have been able to validate the basic
components of the TOP architecture. In addition to the iDorm
infrastructure, we have also augmented our experimental
capability by creating a number of simulated UPnP devices
including telephones, lights and MP3 players. We have
implemented the TOP Engine component, which is
responsible for interfacing with the UpnP network as well as
managing the task of sending and receiving events. We have
implemented the Data Modelling Manager component, which
is responsible for translating UpnP parameters to the TOP
internal data structure which is based on the dComp ontology
model thereby providing the system components with a set of
consistent data. We have completed the Community Manager,
which is responsible for tasks such as setting up of
communities, checking and keeping track of what devices
have joined or left the community and subsequently
informing other interests parties about these events. (A
secondary function of the community manager is to manage
the device mode, during user interaction.) The TOPeditor is
the interface component allowing the user to interact with the
system (user can also interact physical devices after setting the
device mode within the TOP session). It is responsible for
presenting information to the users on communities and their
properties together with providing a means for the user to
interact and manipulate them. TOPeditor has been
constructed with a dynamically configured control panel that

provides the means for the user to directly control and interact
with the networked devices. The TOPeditor also contains a
history panel that retains a record of the user’s activities.
Three rule panels’ present rule related information. An
Environmental Naming module is provided to give devices
meaningful names. The current TOP naming convention used
by this module is to seek to base names on location (current
location is predefined). We have completed and tested all of
the above components on a live UpnP device network.
Currently work is underway to complete the last module, the
Rule Manager which should be completed well ahead of the
workshop.

4.0 THE DCOMP ONTOLOGY

4.1 Introduction

In this section, we describe the key ontology concepts in the
current version (v.1.1) of dComp. The full version is available
on the web at http://iieg.essex.ac.uk/dcomp/ont/dev/2004/05/. To
avoid any confusion, henceforth we refer to the dComp
Ontology as dComp whereas the documents that describe
entities (e.g. device, services, community etc) that exist in the
dComp environment are referred to as documents. Figure 1
shows a complete list of names of classes in the current
version of the dComp ontology. dComp also describes a set

Out/in events

Network

IP

Information
space /
dComp

device
ontologies

Community
description

Engine (module) on Device

TOP
Event ing
handler

Rule Manager

TOPeditor

Rule Sets

Environmental Naming

Data Modelling Manager Community Manager

User’s action

HTTP

TCP

GENA

Ontology
Manager

In the IEE International Workshop, Intelligent Environments 2005 (IE05), Colchester, UK, 28-29th June 05

© Essex University & IEE June 2005 6

properties and relationships (that are associated with these
concepts, along with the restrictions they may have.

4.2 Namespace

The base namespace for dComp is given at
http://iieg.essex.ac.uk/dcomp/ont/dev/2004/05/. However, for ease
of file management, every dComp document was built under
this base namespace plus a name associated with its main
class. For example, the DCOMPDevice document namespace
is: http://iieg.essex.ac.uk/dcomp/ont/dev/2004/05/DCOMPDevice#,
and the DCOMPCommunity document namespace is
http://iieg.essex.ac.uk/dcomp/ont/dev/2004/05/DCOMPCommunity#
and so forth.

4.3 DCOMPDevice

UPnP™ technology is perhaps the leading technology to
enable simple and robust peer-to-peer connectivity among
devices and PCs. Our pervasive computing test-bed, the
iDorm (has been built on top of UPnP, and, our first model of
deconstructed pervasive devices was based on UPnP
technologies. The notion of dComp Devices refers to
networked devices, or home appliances, where the
functionalities are similar to those we would normally find in
a home. The main class called DCOMPDevice provides a
generic description of any devices/appliances. Another class
called DeviceInfo is for all individuals which share some
UPnP descriptions. Because of problems relating to UPnP
vulnerabilities it will probably take some time for all home
electronic devices/appliances to become UPnP compatible.

Figure 5 - Typical DisplayDevice Expression

For these reasons, the DeviceInfo class has only partial
restrictions to UPnP related properties; the classes are: (1)
deviceUUID (2) friendlyName (3) deviceType (4)
deviceModelURL. The dComp environment, supports
devices with different mobility characteristics. To model
these, we have defined a class called Characteristic that
generalise these via use of one of these classes: StaticDevice,
NomadicDevice or MobileDevice. As dComp defines a
closed-world then any device/appliance is also a

DCOMPDevice (i.e. By OWL equivalentClass). The
DCOMPDevice includes both nuclear (traditional appliances)
and atomic (deconstructed) devices. Currently
DCOMPDevice has 10 sub-classes, these are: Light, Switch,
Telephone, Alarm, Blind, Heater, FileRepository,
DisplayDevice, AudioDevice, SetTopBox. The
DCOMPDevice class (including its sub-classes) have
associated containment relationships. These relationships are
defined by using OWL object property5 and they are: (1)
hasDeviceInfo (2) hasHardwareProperty (3)
hasDCOMPService (4) hasCharacteristic. A typical
DCOMPDevice can be expressed as shown in figure 5.

4.4 DCOMPHardware

We define an abstract class, DCOMPHardware, that
generalises all hardware that exists in DCOMPDevice.
DCOMPHardware has 8 sub-classes along with associated
properties. They are: CPU, Memory, DisplayOutput,
DisplayInput, AudioOutput, AudioInput, Amplifier and
Tuner. The CPU class has two properties: speed and
speedUnit. To model the relationship between a
DCOMPDevice and its hardware, we define a
SymmetricProperty6 “componentOf” that links the
DCOMPDevice to the range of DCOMPHardware. With this
SymmetricProperty, we could express:

<hw:CPU rdf:ID="IntelIPX255">
 <hw:speed
rdf:datatype="&xsd;int">400</hw:speed>
 <hw:speedUnit
rdf:datatype="&xsd;string">MHZ</hw:spee
d>
</hw:CPU>
<device:MobileDevice
rdf:ID="JCpocketPC">
 <componentOf
rdf:resource="#IntelIPX255" />
</device:MobileDevice >

The statement show’s there is a mobileDevice called
JCpocketPC, and it is the componentOF a CPU called
“IntelPXA255”whose speed is 400MHZ, and vice versa.
Memory Class has two properties. They are:
amountOfmemory and unitOfMemory. Display Device in a
dComp environment can have different resolutions (eg. in the
above, the display screen resolution of JCpocketPC is smaller
than those LCD screens). Likewise, audio sources demand
differing bandwidth depending on the manufacturer.
Therefore, two extra classes: DisplayScreenProperty and
AudioInOutput Property have been defined to express these
needs. Finally, the relationships between the
DisplayScreenProperty and the DisplayInput class are linked
by the object property “has DisplayScreenProperty” while the
relationship between the AudioInOutputProperty and the
AudioOutput/Input class are linked by the object properties
“has AudioInOutputProperty” respectively.

5 object property denotes relations between instances of
two classes. See owl:ObjectProperty
6 SymmetricProperty denotes: If a property, P, is tagged as
symmetric then for any x and y: P(x,y) iff P(y,x)

<device:DisplayDevice rdf:ID="CRT monitor">
 <rdfs:label xml:lang="en">CRT monitor</rdfs:label>
 <device:hasDeviceInfo>
 <device:friendlyName>Philips 17 CRT monitor</device:friendlyName>
 <device:DeviceUUID>UUID:PHLCRT17</device:DeviceUUID>
 <device:DeviceType>urn:schemas- upnp-
org:Philips17CRTmonitor:1</device:DeviceType>
<device:DeviceModelURL>http://iieg.essex.ac.uk/dComp/onto/Philips17CRTmonitor/</d
evice:DeviceModelURL>
 <device:DeviceModelNumber>107T61/05</device:DeviceModelNumber>
</device:hasDeviceInfo>
<hw:componentOf>
 <hw:DisplayOutput rdf:ID="17CRT"/>
 <hw:hasDisplayScreenProperty>
 <hw:width rdf:datatype="&xsd;int">1024</hw:width>
 <hw:height rdf:datatype="&xsd;int">768</hw:height>
 </hw:hasDisplayScreenProperty>
</hw:componentOf>
<device:hasCharacteristic rdf:resource="#Nomadic"/>
 <serv:hasDCOMPService>
 <serv:DisplayService>
 <serv:serviceID>urn:iieg -essex-ac-uk:serviceId:DisplayCRT</serv:serviceID>
 <serv:hasStateVariable>
 <serv:name>DisplayCRT</serv:name>
 <serv:value rdf:datatype="&xsd;int">0</serv:value>
 <serv:evented rdf:datatype="&xsd;boolean">true</serv:evented>
 </serv:hasStateVariable>
 </serv:DisplayService>
 </serv:hasDCOMPService>
</device:DisplayDevice>

In the IEE International Workshop, Intelligent Environments 2005 (IE05), Colchester, UK, 28-29th June 05

© Essex University & IEE June 2005 7

4.5 DCOMPService

In order for the DCOMPDevices to work to together, every
DCOMPDevice on the dComp network offers services. We
model these services by introducing a class called
DCOMPService, representing all services on the dComp
network. DCOMPService has three sub-classes, namely;
TOPService, LightsAndFittingsService and
EntertainmentService. The TOPService class is given as an
example of a programming-by-example service.
Programming-by-example systems are generally composed of
two services, an execution engine and an editor. Thus in this
example TOPService is described as a collection of
TOPEngineService and TOPEditorService. The editing
service will have various sub-services. Thus,
TOPEditorService includes: EditingService, SettingUp
CommunityService, and ConfigurationService. The
LightsAndFittings Service class denotes a set of Lights and
Fittings services include: Light Service, Telephone Service,
Alarm Service, Heater Service, and Temperature Service. The
EntertainmentService class corresponds to the services
include: AudioService, VideoService, FileRepositoryService,
SetTopBoxService and FollowMeService. A DisplayService,
which is the same as VideoService is also introduced.
TOPService, LightsAndFittingsService and
EntertainmentService are mutually distinct, thus we model
this characteristic by declaring these classes to be
disjointWith7 each other. Every dComp service is identified
by its service ID. Thus every DCOMPService has a property
called “serviceID”. We also define a class called
“StateVariable” to represent UPnP values. The StateVariable
class has three properties, namely: “name”, “value” and
“evented”. The relationship between a DCOMPService and
the StateVariable is linked by an object property called
“hasStateVariable”. The relationship between a
DCOMPDevice and DCOMPService is coupled by an object
property called: hasDCOMPService.

4.6 Community

Devices in a dComp environment are expected to work
as a community (collective). We introduce a class called
DCOMPCommunity to represent all communities that
exist in the dComp environment. There are three types
of communities being modelled namely: (1)
SoloCommunity - for those devices that have not been
invited to join a community (perhaps newly joined) (2)
PersistentCommunity - for those communities that have
a degree of permanency (3) TransitoryCommunity - for
communities which have a short lifetime.
A DCOMPDevice can join one or more communities.
To model the relationship between a DCOMPDevice
and a DCOMPCommunity, we define an object
TransitiveProperty8 called “inTheCommunityOf”. A

7disjointWith asserts that the class extensions of the two
class descriptions involved have no individuals in
common.

class called CommunityDevice is introduced to
represent all the devices in a community. These devices
are identified by their deviceUUID identification. The
relationship between a Community and
CommunityDevice is linked by another object
TransitiveProperty called “hasCommunityDevice”. Of
course, a community must have at least one
CommunityDevice. This restriction holds for all
communities. Communities in dComp are formed and
owned by a user. The properties of Communities are:
community ID, communityName,
communityDescription and timestamp. The relationship
between a community and its owner is linked by an
object type property, called “hasOwner”. A DCOMPTV
community can be specified as shown in figure 6.

Figure 6 - Partial definition of a TV community

4.7 Rules

Rules are set for a community for executing
coordinating actions. We define an abstract class called
Rules to represent a set of rules for a community. We
model three types of rules: (1) FixedRules – for those
rules that can not be changed, (2) PersistentRules – for
those rules that are seldom changed as they are
repeatedly executed and (3) NonPersistentRules – for
rules that frequently change so only need to execute a
few times. Because these three types of rules are
mutually distinct, we declare them to be
complementOF9 each other. Every rule has properties:
ruleID and ruleDescription. Because rules are set by
users, each rule is also has an object property called
“hasRuleOwner” to link to the owner. (Note: the rule
and community owners may be different people). We
define a class called Preceding to represent a set of
triggers that cause the coordinating actions to be
executed. The devices in the Preceding class are

8 TransitiveProperty denotes if a device X is in the
community of C and the community C is a member of
Community P then the device X is also a member of
community P
9 complementOf denotes all individuals from the domain
of discourse that do not belong to a certain class

<com:TransitoryCommunity rdf:ID="JCTV">
 <com:communityID>Tran-JCTV</com:communityID>
 <com:communityName>JC TV</com:communityName>
 <com:communityDescription>The first JC testing
TV</com:communityDescription>
 <com:timeStamp rdf:datatype="&xsd;dateTime">2004-09-
06T19:43:08+01:00</com:timeStamp>
 <com:hasOwner>
 <person:Person>
 <person:firstName rdf:datatype="&xsd;String">Jeannette</person:firstName>
 <person:nickname rdf:datatype="&xsd;String">JC</person:nickname>
 <person:gender rdf:resource="#Female"/>
 </person:Person>
 </com:hasOwner>
<com:hasCommunityDevice>
 <com:CommunityDevice>
 <device:deviceUUID>UUID:PHLCRT17</device:deviceUUID>
 </com:CommunityDevice>
 <com:CommunityDevice>
 <device:deviceUUID>UUID:PHLAudioMMS223</device:deviceUUID>
 </com:CommunityDevice>
 <com:CommunityDevice>
 <device:deviceUUID>UUID:NetGem442</device:deviceUUID>
 </com:CommunityDevice>
</com:hasCommunityDevice>
</com:TransitoryCommunity>

In the IEE International Workshop, Intelligent Environments 2005 (IE05), Colchester, UK, 28-29th June 05

© Essex University & IEE June 2005 8

identified by their deviceUUID, and the service they
offer. Finally an object property called “hasAction”
binds the relationship between Rules and Actions.

Figure 7 – Example of Rule Structure

4.8 Action

Our Action ontology document has been influenced by the
SOUPA Action ontology. We define a class called Action to
represent the set of actions that are defined by the rules. As
with SOUPA, we have two types of actions, namely:
PermittedAction class and ForbiddenAction class
respectively. The Action class in dComp is the union of these
two action classes. In dComp, every coordinating action has
its target devices. To model these target devices, we define a
class called Recipient, that represents a set of target devices
where actions take place. The members of Recipient are
identified by their deviceUUID and serviceID. We call the
actions for the Recipient TargetAction. In the TargetAction
class, we define two properties namely: actionName (name of
the action) and targetValue. A typical statement “when the
phone rings, mute the TV” could be expressed as in Figure 7.

4.9 DCOMPperson, Policy and Time

Wherever possible we have sought to build on existing
ontology work. SOUPA provides a suitable DCOMPperson,
Policy and Time ontology and thus these have been adopted in
dComp. Due to space restrictions, we are not explaining them
here; for further information refer to their site at:
http://pervasive.semanticweb.org/soupa-2004-06.html

4.10 DCOMPPreference
As the name implies, DCOMPPreference describes the
preferences a person has within any given set of options. In
dComp, preferences are referred as “situated preferences”,

similar in idea to Vastenburg’s “situated profile” where he
uses situations as a framework for user profile so that the
values of the profile are relative to situations [17].

Figure 8 –Example of Context Condition

Figure 8 – Example of Context Condition

We define a class called Preference to represent a set of
contextual preferences of a person for his community. This
Preference class has a subclass called CommunityPreference
and an associated property called communityID. To model
“person A prefers X, depending on the context of Y”, we
define another class called SituatedConditions. This class
represents the set of contextual conditions which the person’s
preferences depend on. Although a person is allowed to define
his own SituatedConditions, we also explicitly define a list of
pre-set situated conditions so that it forms a default template
that a person can use. Figure 8 shows the default template of
context conditions. The Preference class has a close
relationship to the Person class. To bind this relationship, we
define an object property called “hasPreference” which links
the domain of Person to the range of Preference. The
relationship between the Preference class and
SituationConditions class is linked by another object property
called: “hasCondition”.

4.11 dComp Progress to Date
The biggest concern about the use of ontology in pervasive
systems is processing speed, especially for functions such as
device queries. In our iDorm architecture, we employ a
distributed hierarchical system in which the power of
computer units range from minimal processors (e.g. 20Mhz,
1MB) through to maximal embedded systems (e.g. 4Ghz,
100MB) allowing a full range of granularity distribution
experimentation. We envisage there being a mixture of
processors, some being powerful enough to support UPnP
stacks., agents or TOP, others, perhaps handling simple
sensors , not being so able and therefore requiring proxies. In
our tests we found the performance of dComp running on a
2Ghz processor and executing a query on 32 devices (which is
the current limit of our test-bed) was of the order 600ms

<NonPersistentRules rdf:ID="Rule1">
 <rule:ruleID rdf:datatype="&xsd;int">00001</rule:ruleID>
 <rule:ruleDescription>Test Rule 1</rule:ruleDescription>
 <com:communityID>Tran-JCTV</com:communityID>
 <rule:hasRuleOwner>
 <person:Person>
 <person:firstName>Jeannette</person:firstName>
 <person:nickname>JC</person:nickname>
 <person:gender rdf:resource="#Female"/>
 </person:Person>
 </rule:hasRuleOwner>
<rule:hasPreceding>
 <!-- can have more than 1 device -->
 <rule:Device>
 <dComp:DeviceUUID>uuid:Telephone01</dComp:DeviceUUID>
 <serv:hasDCOMPService>
 <!-- a device can provide more than 1 service -->
 <serv:TelephoneService>
 <serv:serviceID>Telephone</serv:serviceID>
 <serv:hasStateVariable>
 <!-- a service can have more than 1 value of state variable-->
 <serv:name>state variable 1</serv:name>
 <serv:value>RINGING</serv:value>
 </serv:hasStateVariable>
 </serv:TelephoneService>
 </serv:hasDCOMPService>
 </rule:Device>
</rule:hasPreceding>
<rule:hasAction>
 <act:PermittedAction>
 <act:actionName>Test action</act:actionName>
 <act:hasRecipient>

<owl:Class rdf:ID="SituationalCondition">
 <rdfs:label>SituationalCondition</rdfs:label>
 </owl:Class>
 <SituationalCondition rdf:ID="DuringTheWorkdays"/>
 <SituationalCondition rdf:ID="DuringTheWeekends"/>
 <SituationalCondition rdf:ID="WhileOutOfTown"/>
 <SituationalCondition rdf:ID="WorkingFromHome"/>
 <SituationalCondition rdf:ID="FriendsVisiting"/>
 <SituationalCondition rdf:ID="FamilyVisiting"/>
 <SituationalCondition rdf:ID="OnHoliday"/>
 <SituationalCondition rdf:ID="WhenComeHomeFromWork"/>
 <SituationalCondition rdf:ID="WhenComeHomeFromSchool"/>
 <SituationalCondition rdf:ID="WhenAtMyOffice"/>
 <SituationalCondition rdf:ID="WhenDining"/>
 <SituationalCondition rdf :ID="WhenHavingLunch"/>
 <SituationalCondition rdf:ID="WhenHavingBreakfast"/>
 <SituationalCondition rdf:ID="WhenEating"/>
 <SituationalCondition rdf:ID="WhenPlayingComputerGames"/>
 <SituationalCondition rdf:ID="WhenWatchingTV"/>
 <SituationalCondition rdf:ID="AtNight"/>
 <SituationalCondition rdf:ID="InTheMorning"/>
 <SituationalCondition rdf:ID="AtLunchTime"/>
 <SituationalCondition rdf:ID="AtTeaTime"/>
 <SituationalCondition rdf:ID="Alone"/>
 <SituationalCondition rdf:ID="WhenAlarmGoesOff"/>
 <SituationalCondition rdf:ID="WhenSmokeAlarmGoesOff"/>

In the IEE International Workshop, Intelligent Environments 2005 (IE05), Colchester, UK, 28-29th June 05

© Essex University & IEE June 2005 9

which, if this was part of a user interaction process, is just
within what might be acceptable. Therefore we envisage
needing the more powerful processors to support the
TOPengine.

5.0 SUMMARY

This paper has reported on research in progress within a
deconstructed appliance domain towards the development of
an end-user programming architecture (Task-Oriented-
Programming) for pervasive computing. This includes a run-
time environment (TOPengine) and an end-user tool
(TOPeditor) that enables lay-users to program coordinated
actions in groups of networked pervasive computing devices.
We explained that this deconstructed model is radical
departure from the current situation where appliance
functionality is designed and fixed by the manufacturer. This
approach is motivated by our belief that creativity, privacy
and transparency (i.e. understanding and trust) are essential
issues to users of pervasive network based appliances. In
pursuit of this vision we described components we have built
and tested to date namely the TOP system and supporting
ontology dComp . TOP is the only interpretation of
programming-by-example to be directed at pervasive
computing. dComp distinguishes itself from other ontologies
in that it directly supports the concept of community, and
collectives of devices coordinating actions to create meta-
group functionalities. The TOP approach involves the user
explicitly in the learning phase, making the system transparent
to her. The user plays a critical role in TOP and hence, in
addition to continuing the technical development work, our
future plans include a significant user trial to evaluate how
successful it is in fulfilling its goals of enabling non-technical
lay users to program coordinated actions in pervasive
computing systems. We look forward to reporting on our
progress in this ongoing work and demonstrating our
achievements at the workshop.

Acknowledgements
We are pleased to acknowledge the DTI's New Wave Technologies
and Markets programme which, via the PHEN project, supported
aspects of the TOP research and University of Essex which
facilitated the ontology related research as part of Jeannette Chin's
personal PhD. In addition we wish to record our gratitude to Phil
Bull, Rowan Limb and Alex Loffler of BT's Pervasive ICT Research
Centre and to Roy Kalawsky & Scott Armitage of Loughborough
University's Centre for the Integrated Home for their part in enabling
PHEN to be such an interesting research project.

REFERENCES:

[1] Berners-Lee T, Hendler J, Lassila O “The Semantic Web“,

Scientific American, May 2001
[2] Alan F. Blackwell, Rob Hague, “Designing a Program

Language for Home Automation”, in G.Kadoda (Ed).
Proc PP1G 2001 pp85-103.

[3] Callaghan V, Colley M, Hagras H Chin J, Doctor F,
Clarke G “Programming iSpaces: A Tale of Two
Paradigms” Chapter 24, Springer-Verlag, July 2005

[4] Chen H Finin T, and Joshil A., "SOUPA: Standard
Ontology for Ubiquitous and Pervasive Applications",
Int’l Conf on Mobile and Ubiquitous Systems:
Networking & Services, August 2004.

[5] Chin JSY, Callaghan V, “Embedded-Internet Devices: A
Means Of Realizing The Pervasive Computing Vision”,
IADIS Int’l Conf, Algarve, Portugal, 5-8 Nov 2003

[6] Chin J, Callaghan V, Clarke G “Pervasive Information
Systems: Issues for the Individual & Society”, Pervasive
Information Systems , M.E.Sharpe New York, Aug 05

[7] Doctor, F., Hagras,H.A.K., Callaghan,V., 'An Intelligent
Fuzzy Agent Approach to Realising Ambient
Intelligence in Intelligent Inhabited Environments', IEEE
Transactions on Systems, Man & Cybernetics, Part A:
Systems & Humans, 2004

[8] Guibert N. Girard P., “Teaching and Learning
Programming with a Programming by Example System”,
International Symposium on End User Development,
Sankt Augustin (Bonn), Germany, EUD - net, 2003

[9] V.Haarslev and R. Moller, Description of the RACER
system and its application, In proceedings International
Workshop on Description Logics (DL-2001), 2001.

[10] Hagras, H. A. K., Callaghan, V., Colley, M. J., Clarke, G.
S., and Duman, H., “A Fuzzy Logic Based Embedded
Agent Approach to Ambient Intelligence in Ubiquitous
Computing Environments, IEEE J. Intelligent Sys 2004

[11] McBride B.,”Jena: A Semantic Web Toolkit”, IEEE
Internet Computing Nov./Dec. issue 2002

[12] Lieberman H, “Your wish is my command”, Morgan
Kaufmann Press, 2001.

[13] Myers B.A., “Creating user interfaces using
programming by example, visual programming, and
constraints”, ACM Transactions on Programming
Languages & Systems ., 12:2, April 1990, pp 143 – 177

[14] Metcalfe R, “Keynote Presentation”, ACM1 Conference,
San Jose Convention Centre, California, 12-14 March 01

[15] Smith, D. C., “Pygmalion: A Computer Program to
Model and Stimulate Creative Thought”, Basel, Stuttgart,
Birkhauser Verlag. 1977.

[16] Sugiura A,Koseki Y. “ Internet scrapbook: automating
Web browsing tasks by demonstration” Proc 11th annual
ACM symp on User interface software & technology,
San Francisco 1998, pp.9-18.

[17] Vastenburg M, “SitMod: a tool for modelling and
communicating situations”, Pervasive 2004, Vienna
Austria, April 21-23, 2004, ISBN: 3-540-21835-1

[18] Young Zou, Harry Chen, and Tim Finin, “F-OWL: an
Inference Engine for Semantic Web”, Proceedings of the
Third NASA-Goddard/IEEE Workshop on Formal
Approaches to Agent-Based Systems, 26 April 2004.

[19] Horan B “The Use of Capability Descriptions in a
Wireless Transducer Network ”, Sun Microsystems
Laboratories Report Number: TR-2005-131,Feb 1, 2005

[20] DiDuca D, Van Helvert J “User Experience of Intelligent
Buildings; A user-Centered Research Framework”,
Intelligent Environments 2005, Colchester, 28-29th June
2005

[21] Basu J, Callaghan V “Towards A Trust Based Approach
To Security And User Confidence In Pervasive
Computing Systems”, IE05, Essex, 28-29th June 05

