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ABSTRACT 
 
In this paper we describe a novel system for learning and adapting fuzzy controllers 
for intelligent agents that are embedded in ubiquitous computing environments to 
support the activities of the user. We have performed unique experiments in which 
the intelligent agent has learnt and adapted online to the user’s behaviour, during a 
stay of five consecutive days in the intelligent Dormitory (iDorm) which is a real 
ubiquitous computing environment test bed. Both offline and online experimental 
results are presented comparing the performance of our technique with other 
approaches. The results show that our proposed system has outperformed the other 
systems while operating online in a life long learning mode.  
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INTRODUCTION 
 
Ubiquitous computing also referred to as pervasive computing, is a paradigm in which 
computing technology becomes virtually invisible by being embedded in our environments. 
These environments will contain networked embedded computer artefacts that can interact with 
the users living or working within them. The challenge however is how to manage and 
configure the computer-based artefacts and systems present in these ubiquitous environments 
in a seamless, unobtrusive and non-intrusive way; without the user being cognitively 
overloaded by having to manually configure these devices to achieve a desired functionality. 
Embedded intelligent mechanisms can go some way to achieve this goal. 
   Embedded intelligence is the inclusion of some capacity for reasoning, planning and learning 
in an artefact. Embedded-computers containing this kind of intelligent capacity are referred to 
as “embedded-agents”. Each embedded agent is an autonomous entity in a pervasive 
computing environment.   
   In this paper, we will present a novel system for learning and adapting fuzzy controllers for 
agents that can be embedded in ubiquitous computing environments. Each agent is connected 
to sensors and effectors integrated within the environment. The intelligent learning mechanism 
learns the particularised needs of the user and adjusts the agent controller based on a wide 
range of parameters in a non-intrusive and invisible way. It is also able to adapt online to 
changing conditions and user preferences in a life-long learning mode. Our technique is a one 
pass method which does not require heavy computation so it is suitable for embedded 
computers which have limited computational abilities. 
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   We have performed unique experiments in which our intelligent agent has learnt and adapted 
to the behaviour of a user who spend five consecutive days in the Essex Intelligent Dormitory 
(iDorm) shown in Figure 1. This is test bed for ubiquitous and pervasive computing 
environments comprising of a large number of embedded sensors, actuators, processors and a 
heterogeneous network [3]. 
 

 
 

Figure 1: the iDorm.    
 

ADAPTIVE ONLINE FUZZY INFERENCE SYSTEM (AOFIS)  
 
Our proposed Adaptive Online Fuzzy Inference System (AOFIS) technique is an unsupervised 
data-driven one-pass approach for extracting fuzzy rules and membership functions from data, 
to learn a Fuzzy Logic Controller (FLC) that will model the user’s behaviours. The data is 
collected by monitoring the user in the environment over a period of time. The learnt FLC 
provides an inference mechanism that will produce output control based on the current state of 
the inputs. Our adaptive FLC will therefore control the environment on behalf of the user and 
will also allow the rules to be adapted online as the user’s behaviour drifts over time. AOFIS 
comprises of five phases which are illustrated in Figure 2. 
 

 
Figure 2: Flow diagram showing five phases of AOFIS. 

 
Phase 1: Capturing Input/Output Data 
The agent initially monitors the user’s actions in the environment. Whenever the user changes 
actuator settings, the agent records a ‘snapshot’ of the current inputs (sensor states) and the 
outputs (actuator states with the new altered values of whichever actuators were adjusted by the 
user). These ‘snapshots’ are accumulated over a period of time (three days in the case of our 
experiments) so that the agent observes as much of the user’s interactions within the 

In Proceedings of the 2004 World Automation Conference, pp. 101-106, Seville, Spain, July 2004



 3 

environment as possible. AOFIS learns a descriptive model of the user’s behaviours from the 
data accumulated by the agent. Therefore given a set of multi-input multi-output data pairs: 
 
 

),;( )()( tt yx   Nt ,...,2,1�                                     (1) 
 
 

where N is the number of data instances, nt Rx �)(  and  kt Ry �)( . AOFIS extracts rules which 

describe how the k output variables ),...,( 1 kyyy �  are influenced by the n input variables 
nT

n Rxxx �� ),...,( 1  based on the sampled data. In our experiments in the iDorm we used 7 

sensors for our inputs and 10 actuators for our outputs. The fuzzy rules which are extracted 
represent local models that map a set of inputs to the set of outputs without the need for 
formulating any mathematical model. Individual rules can therefore be adapted online 
influencing only specific parts of the descriptive model learnt by the agent. 

Phase 2: Fuzzy Membership Function Extraction 

It is necessary to be able to categorise the accumulated user input/output data into a set of 
fuzzy membership functions which quantify the raw crisp values of the sensors and actuators 
into linguistic labels such as normal, cold or hot. AOFIS is based on learning the particularised 
behaviours of the user and therefore requires these membership functions be defined from the 
user’s input/output data recorded by the agent. A Double Clustering approach [2] combining 
Fuzzy-C-Means [1] and hierarchical clustering [4], is used for extracting fuzzy membership 
functions from the user data. 
   The Double clustering technique uses a combination of Fuzzy-C-Means [1] and Hierarchical 
clustering for extracting a predefined number of membership functions for the input and output 
parameters from the sampled user data. An initial clustering of the dataset is performed using 
the FCM algorithm that defines a set of p clustered regions over the sampled data. Hence there 
are p centres r

pccc R�,...,, 21  defined for these clustered regions. The number of clusters p is 

predefined and in our case was set to 90. Each centre is an r-dimensional vector 
),...,,( 21 iriii cccc � , in our case the number of dimensions r was 17 corresponding to number of 

input and output parameters (7 sensors inputs and 10 actuators outputs) that were used in the 
iDorm. Therefore there are p one-dimensional centroid values for each input and output 
parameter of the user data. The centroid values for each separate input and output dimension 
are then iteratively clustered again to form a new set of centres which  represent the rough 
centres of the membership functions that will be extracted for each input and output parameter. 
Specifically let ijc  be the j-th component of the i-th cluster centre. For each dimension 

,,...,2,1 rj �  we perform clustering on the set of one-dimensional centroid 
values � �picC ijj ,...,2,1: �� . The approach used for this secondary clustering is an 

agglomerative hierarchical clustering approach [4]. Here the elements in jC  are sequentially 

clustered together reducing the number of elements at each step by merging together the two 
most similar consecutive elements. This is repeated until the number of elements corresponds 
to the number of membership functions we want to extract for each input and output parameter. 
The similarity between two elements is measured based on the closeness between their values. 
The number of membership functions to be defined for each input and output parameter is 
predefined in advance. 
   The agglomerative hierarchical clustering algorithm used in AOFIS can be formally 
described as follows: Let jK   ),...,2,1( rj �  represents the required number of centres and the 
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corresponding number of membership functions to be derived from each set jC  ),...,2,1( rj � , 

where Kj is fixed for each input and output dimension r. The elements of jC  are initially sorted 

such that jiji ccii
2121 ��	 . Hence the initial set of elements in jC  is defined as: 

 
 

� � � �pjjjp cccprprprpr ,...,,:,...,,: 21
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   Therefore at each step of the algorithm the two nearest consecutive elements are merged into 
a single cluster where the new centre of the cluster is the average of the two merged elements. 
After the hierarchical clustering is completed on each set jC  ),,...,1( rj �  we have derived jK  

new centres for each input and output dimension of the dataset. We represent the set of these 

centres by � �jK
Kp

prprprprpr j ,..,:: 21
)( ��

	

 which correspond to the rough centres for the fuzzy 

membership functions that AOFIS will extract for each input and output parameter. 
   The Kj cluster centres defined on each dimension rj ,...,2,1�  are then converted to fuzzy 
membership functions, which involves the quantification of the centres in terms of 
interpretable fuzzy sets [2]. As mentioned the value of Kj defines the number of fuzzy 
membership functions which are to be extracted for each input and output parameter. Gaussian 
membership functions are used to describe the fuzzy sets j

zA , (where jKz ,...,2,1� ) the 

mathematical definition of which is 
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where the value of the centre j
zw  and the spread j

z�  for each gaussian membership function z, 
for the j-th input/output parameter is derived as follows. 
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   The sampled data is defined as a hyper-interval � �jj

r

j
MmX ,:

1�
��  where jm and jM  are the 

minimum and maximum values respectively, of the j-th input/output dimension of the sampled 

dataset. The set of cuts jT  is defined as � �j
K
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The centre j
zw  and spread j

z�  of each membership function j
zA  for all jKz ,...,2,1� is derived 

from the set jT  as follows:      

 
� � 2/: 1
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where�  is the maximum overlap between two adjacent fuzzy sets. 
   We therefore obtain the centres and spreads for a set of Kj fuzzy membership functions 
defined for each input and output parameter of the user data that was sampled. These 
membership functions are distributed over the range of values of each parameter. The 
membership functions at the boundaries are modified such that they are extended indefinitely 
beyond their respective centres with a membership value of 1. A semantic meaning can be 
associated with each of the resulting fuzzy sets, so depending on the value of index z, a 
meaningful symbolic label can be given to j

zA . 
 

Phase 3: Fuzzy Rule Extraction 

The defined set of membership functions are combined with the existing user input/output data 
to extract the rules defining the user’s behaviours. The fuzzy rule extraction approach used by 
AOFIS is based on an Enhanced version of the Mendel Wang (MW) method [7] developed by 
L.X. Wang. This is a one pass technique for extracting fuzzy rules from the sampled data. The 
fuzzy sets for the antecedents and consequents of the rules divides the input and output space 
into fuzzy regions.  
   AOFIS extracts multi-input multi-output rules which describe the relationship between 

),...,( 1 kyyy �  and T
nxxx ),...,( 1� , and take the following form: 

 
 

IF 1x is )(
1

lA and … and nx  is ,)(l
nA THEN 1y  is )(

1
lB   and … and  ky  is )(l

kB         (8) 
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Ml ,...,2,1� , where M is the number of rules and l is the index of the rules. There are V  fuzzy 

sets ,,...,1, VqAq
s �  defined for each input sx . There are W fuzzy sets ,,...,1, WhBh

c �  defined 

for each output cy . AOFIS now extracts rules in the form of Equation (8) from the data.  

 
   To simplify the following notation, the method for rules with a single output is shown, as the 
approach is quite easily expanded to rules with multiple outputs. In the following steps we will 
show the different steps involved in rule extraction: 
 
Step 1: For a fixed input-output pair );( )()( tt yx  in the dataset (1) ( Nt ,...,2,1� ), compute the 

membership values )( )( t
sA

xq
s

�  for each membership function Vq ,...,1� , and for each input 

variable s ),,...,1( ns � find },...,1{* Vq � , such that  

 
 

)()( )()(
*
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t
s

A
xx q

sq
s

�� �                                              (9) 

 
 

for all Vq ,...,1� . 

Let the following rule be called the rule generated by :);( )()( tt yx  
 
 

IF tx1 is 
*

1
qA and … and t

nx  is ,
*q

nA THEN y  is centred at )(ty             (10) 

 
 

   For each input variable sx  there are V  fuzzy sets VqAq
s ,...,1, � , to characterise it; so that 

the maximum number of possible rules that can be generated is Vn , where n is the total number 
of input variables. However given the dataset only those rules among the Vn possibilities whose 
dominant region contains at least one data point will be generated. In step 1 one rule is 
generated for each input –output data pair, where for each input the fuzzy set that achieves the 
maximum membership value at the data point is selected as the one in the IF part of the rule, as 
explained in Equations (9),(10).  
   This however is not the final rule which will be calculated in the next step. The weight of the 
rule is computed as 
 
 

 
�

�
n

s
sA

t txw q
s

1

)( ))((�
                                             (11) 

 
 

The weight of a rule )(tw  is a measure of the strength of the points )(tx  belonging to the fuzzy 
region covered by the rule.  
 
Step 2: Step 1 is repeated for all the t data points from 1 to N to obtain N data generated rules 
in the form of Equation (10). Due to the fact that the number of data points is quite large, many 
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rules are generated in step 1, that all share the same IF part and are conflicting, i.e. rules with 
the same antecedent membership functions and different consequent values. In this step rules 
with the same IF part are combined into a single rule.  
   The N rules are therefore divided into groups, with rules in each group sharing the same IF 
part. If we assume that there is M such groups. Let group l have lN  rules in the following form: 

 
 

IF 1x is 
)(

1

lq
A and … and nx  is ,)( lq

nA THEN y  is centred at 
)( l

uty          (12) 

 
 

Where lNu ,...1�  and l
ut  is the index for the data points in group l. The weighted average of all 

the rules in the conflict group is then computed as 
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We now combine these lN  rules into a single rule of the following form: 

 
 

IF 1x is 
)(

1
lA and … and nx  is ,)(l

nA THEN y  is 
)(lB                       (14) 

 
 

Where the output fuzzy set lB  is chosen based on the following. Among the W  output fuzzy 
sets WBB ,...,1  find the *hB such that 
 
 

)()( )()(
*

l

B

l

B
avav hh �� �                                                     (15) 

 
 

for ,,...,2,1 Wh � B is chosen as .*hB  
   As mentioned above AOFIS deals with input-output data pairs with multiple outputs. Step 1 
is independent of the number of outputs for each rule. Step 2 is simply expanded to allow rules 
to have multiple outputs where the calculations in Equations (13) and (15) are repeated for 
each output value. 
 

Phase 4: Agent Controller 

Once the agent has extracted the membership functions and the set of rules from the user 
input/output data, it has then learnt the FLC that captures the human behaviour. The agent FLC 
can start controlling the environment on behalf of the human according to his desires. The 
agent starts to monitor the state of the environment and affect actuators based on its learnt FLC 
that approximate the particularised preferences of the user. In our agent we use singleton 
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fuzzification, max-product composition, product implication, and height defuzzification [6]. 
The fuzzy sets used for the antecedent and consequent parameters are gaussian membership 
functions of the type shown in Equation (4). 
 

Phase 5: Online Adaptation  

In the previous phases we have shown how our agent can learn a FLC that approximates the 
user’s behaviour. However, the user may need to make adjustments to tune the system or their 
behaviour might change as the user requirements change over time. So our agent needs to adapt 
to the user’s behavioural changes in a non intrusive manner and in a short time interval.    
   Whenever the user overrides the agent’s control responses and actuates any of the controlled 
output devices, a snapshot of the state of the environment is recorded and passed to the rule 
adaptation routine. Each input parameter in the input vector x is compared to each of the 

antecedent sets )( l
sA  of a given rule in the rule base to determine its membership value. The 

weight of the rule is then calculated to determine if the product of the input membership 
functions (degree of firing of the rule) in Equation (11) 0)( �lw , meaning that the rule fired, 
and would therefore have contributed to the overall control response generated by the agent’s 
FLC. The consequent membership functions that give the highest membership values to the 
user defined actuator values are selected to replace the consequent sets of all fired rules in the 
rule base.  
 
 

)()(* cBcB
yy h

c
h

c
�� �                                                 (16) 

 
 

for .,...,2,1 Wh �  The cB is chosen as 
*h

cB . Where c=1,2..,k. 

    The fired rules are therefore adapted to better reflect the user’s updated actuator preferences 
given the current state of the environment. If none of the existing rules fired, new rules are 
added based on forming rules from the input fuzzy sets. For each input parameter sx  the fuzzy 

sets that give a membership value where )( )’(t
sA

xq
s

� 0�  are identified. This leads to a grid of 

identified fuzzy set(s) for each input parameter. From this grid new rules are constructed based 
on each unique combination of consecutive input fuzzy sets. The consequent fuzzy sets for 
each of the new rules are determined using Equation (16). This allows new rules to be 
gradually added to the rule base. The agent will also add new rules when the currently 
monitored environmental state is undefined by the existing rules in the rule base; i.e. none of 
the existing rules fired. In this case the agent will create new rules where the antecedent sets 
reflect the current input states of the environment and the consequent fuzzy sets are based on 
the current state of the actuators. The agent adopts life long learning where it extends its rules 
as the state of the environment and user activity change over a significantly long period of time.  
 

EXPERIMENTAL RESULTS 
 
We have performed unique experiments in which a user lived in the iDorm for a period of five 
consecutive days. During the monitoring phase which lasted for three consecutive days the 
agent recorded the user interactions with the environment. Seven input sensors were monitored 
which are: internal light level, external light level, internal temperature, external temperature, 
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chair pressure, bed pressure and time measured as a continuous input on an hourly scale. Ten 
output actuators were controlled consisting of the four variable intensity spot lights, the desk 
and bed side lamps, window blinds, the heater and the two PC based applications comprising 
of a word processing program and a media playing program. The outputs thus covered the 
spectrum of physical devices and computer based applications found in a typical study 
bedroom environment. 
   The data from the iDorm that was captured during the monitoring phase was used to compare 
the offline performance of AOFIS with three other soft-computing based techniques which are 
Genetic Programming (GP), the Adaptive-Neuro Fuzzy Inference System (ANFIS) [5] and the 
Multi-Layer Perceptron Neural Network. The dataset comprised of 408 instances and was 
randomised into six samples. Each sample was then split into a training and test set consisting 
of 272 and 136 instances respectively. The offline performance error for each technique was 
obtained on the test instances as the Root Mean Squared Error which was also scaled to 
account for the different ranges of the output parameters. We tested our AOFIS with different 
number of fuzzy sets and the overlap between the membership functions was set to 0.5; as this 
gave both a sufficient degree of overlap while allowing the system to distinguish between the 
ranges covered by each fuzzy set. This value was also used for evaluating the double clustering 
approach presented in [2]. Figure 3a illustrates the Scaled Root Mean Squared Error (SRMSE) 
for each technique averaged over the six randomised samples, and corresponding to the values 
of the variable parameter tested for each approach. 
 

 
       
   Figure 3   a): Average SRMSE For AOFIS,           b): Number of online rule adaptations       
                           GA, ANFIS & MLP.                                      against time in minutes. 
 
   The offline results above show that the optimum number of fuzzy sets for AOFIS is 7 and on 
average AOFIS generated 155 rules from the 272 training instances. The GP in comparison 
gives a marginally lower error for 7 fuzzy sets. Both ANFIS and the MLP on average give a 
higher error than AOFIS. The iterative nature of the compared approaches makes them more 
computationally intensive than the one pass AOFIS technique which makes it suitable for 
embedded agents. The other approaches cannot easily be adapted online as this would require 
their internal structures to be re-learnt every time either new rules were added or existing rules 
were adapted. So our method is unique in that it can learn a good model of the user’s behaviour 
which can then be adapted online in a life long mode in a non intrusive manner.  
   The online performance of the agent was evaluated on how well AOFIS could model the 
user’s behaviour from their observed activity that had been recorded over the initial three days 
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of monitoring. The performance of the learnt FLC could then be gauged online in its ability to 
control the environment and satisfy the preferences of the user. The agent was therefore run 
online for a further two days during which it monitored the environment and user’s activities, 
and it produced the appropriate control responses based on its learnt FLC. During this time the 
user could override and adapt the agent’s learnt control responses, if it was necessary to modify 
and tune them further. The agent could also autonomously add new rules to its rule base.  
   The online performance of the agent could be measured by monitoring how well it adjusted 
the environment to the user’s preferences such that the user intervention was reduced over time. 
This can be shown in Figure 3b which plots the number of online rule adaptations against time 
measured in minutes that occurred over the course of the two days. This initially shows the 
user intervention to be high but seems to stabilise by early afternoon on the second day. The 
agent initially started with the 186 rules it learnt from the 408 training instances accumulated 
during the three days of monitoring the user. Over the course of the subsequent two days 120 
new rules were added. The number of fuzzy sets representing the input and output parameters 
were set to 7 which was the optimum number derived from the offline experiments. The agent 
was therefore able to learn and adapt in a non intrusive way to most of the user’s preferences 
for various environmental conditions over the duration of the two days, including specific 
behaviours associated with user activity such as lying on the bed and listening to music or 
sitting at the desk to word process a document.  
 

CONCLUSION 
 
In this paper we presented a novel system for learning and adapting fuzzy controllers for agents 
that can be embedded in ubiquitous computing environments. Our agent learnt a FLC that 
modelled the user’s particularised behaviour and it was adaptive as it allowed the learnt 
behaviours to be modified and extended online and in a life-long learning mode as the user’s 
activity and environmental conditions changed over time.  
   We carried out unique experiments in which a user stayed in the iDorm for five consecutive 
days. The proposed AOFIS technique was compared with other soft-computing based 
approaches; namely a GP, ANFIS and an MLP; using data acquired from the iDorm. The 
results showed that the optimum performance of AOFIS produced on average a lower error 
than both ANFIS and the MLP. AOFIS allowed online learning and was computationally less 
intensive and better suited for embedded intelligence than the other approaches compared. The 
online operation of the agent showed that AOFIS was effective at both learning the behaviours 
of a user and adapting and tuning its rules online to meet the user’s preferences. 
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