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Ambient intelligence is an exciting new information technology paradigm in which

people are empowered through a digital environment that is aware of their presence

and context and is sensitive, adaptive, and responsive to their needs.1 Ambient-intelligence

environments are characterized by their ubiquity, transparency, and intelligence. In these

environments, a multitude of interconnected, invis-
ible embedded systems, seamlessly integrated into
the background, surround the user. The system rec-
ognizes the people that live in it and programs itself
to meet their needs by learning from their behavior.1

To realize the ambient-intelligence vision, people
must be able to seamlessly and unobtrusively use and
configure the computer-based artifacts and systems
in their ubiquitous-computing environments without
being cognitively overloaded.1 The user shouldn’t
have to program each device or connect them
together to achieve the required functionality. The
complexity associated with the number, varieties,
and uses of computer-based artifacts requires that
we design a system that lets intelligence disappear
into the infrastructure of active spaces (such as build-
ings, shopping malls, theaters, and homes),2 auto-
matically learning to carry out everyday tasks based
on the users’ habitual behavior.

Our work focuses on developing learning and
adaptation techniques for embedded agents. We seek
to provide online, lifelong, personalized learning of
anticipatory adaptive control to realize the ambient-
intelligence vision in ubiquitous-computing envi-
ronments.  We developed the Essex intelligent dor-
mitory, or iDorm, as a test bed for this work and an
exemplar of this approach.

Intelligent embedded agents
Embedded intelligence refers to including some

capacity for reasoning, planning, and learning in an
artifact. Embedded computers that contain such an

intelligent capability are normally referred to as
embedded agents2 and are intrinsic parts of intelli-
gent artifacts. These autonomous entities typically
have a network connection, thereby facilitating com-
munication and cooperation with other embedded
agents to form multi-embedded-agent systems.

Embedded agents in the form of mobile robotic
agents can learn and adapt their navigation behav-
iors online.3 However, we concentrate on embedded
agents in ubiquitous-computing environments that
will help us realize the ambient-intelligence vision.
Each embedded agent is connected to sensors and
effectors, comprising a ubiquitous-computing envi-
ronment. The agent uses our fuzzy-logic-based
Incremental Synchronous Learning (ISL) system to
learn and predict the user’s needs, adjusting the agent
controller automatically, nonintrusively, and invisi-
bly on the basis of a wide set of parameters (which
is one requirement for ambient intelligence).4 Thus,
we need to modify effectors for environmental vari-
ables (such as heat and light) on the basis of a complex,
multidimensional input vector. An added control dif-
ficulty is that people are essentially nondeterministic
and highly individual. Because the embedded agents
are located on small embedded computers with lim-
ited processor and memory abilities, any learning
and adaptation system must deal with these compu-
tational limitations.

Most automation systems, which involve minimal
intelligence, use mechanisms that generalize actions
across a population—for example, setting tempera-
ture or loudness to the average of many peoples’needs.

The Essex intelligent

dormitory, iDorm, uses

embedded agents to

create an ambient-

intelligence

environment. In a 

five-and-a-half-day

experiment, a user

occupied the iDorm,

testing its ability to

learn user behavior and

adapt to user needs.

The embedded agent

discreetly controls the

iDorm according to

user preferences.
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However, to achieve the ambient-intelligence
vision, any type of intelligence applied to per-
sonal artifacts and spaces must be particular
to the individual.2 Furthermore, any agent
serving a person must always and immedi-
ately carry out any requested action—that is,
to achieve the responsive property implied in
the ambient-intelligence vision, people must
always be in control, subject to overriding
safety considerations.1 The embedded-agent
learning technique we’ve adopted can partic-
ularize its actions to individuals and immedi-
ately execute user commands. We are testing
our embedded agent in the iDorm.

Intelligent inhabited
environments and 
intelligent buildings

Intelligent inhabited environments are
spaces such as cars, shopping malls, homes,
and even our bodies that respond “thought-
fully” to our needs. Such environments
would consist of a multitude of possibly dis-
connected active spaces providing ubiqui-
tous access to system resources according to
the user’s current situation. Such environ-
ments promise a future where computation
will be freely available everywhere, similar
to the availability of batteries and power
sockets today. These intelligent environments

will personalize themselves in response to
our presence and behavior.

Intelligent buildings are precursors to such
environments.2 A typical container environ-
ment for ubiquitous computing is an intelli-
gent building, possibly a house or office. 
The heterogeneity, dynamism, and context-
awareness in a building make it a good
choice to explore ubiquitous-systems design
challenges. We view intelligent buildings as
computer-based systems, gathering infor-
mation from various sensors (and other com-
puters) and using intelligent embedded
agents to determine various devices’ appro-
priate control actions.2,3,5 In controlling such
systems, we are faced with the imprecision
of sensors, the large number of information
sources, the lack of adequate models of many
of the processes, and the nondeterministic
aspects of human behavior. Embedded
agents must be able to continuously learn and
adapt to the needs of individuals in an intel-
ligent building, while always providing a safe
and timely response to any situation.5 (See
the “Related Work” sidebar for other research
in this area.)

iDorm
The iDorm (see Figure 1a) is a test bed for

ubiquitous-computing environments. We are

using the iDorm to test the intelligent-learn-
ing and adaptation mechanisms our embed-
ded agent needs with the hopes of realizing
the ambient-intelligence vision in ubiquitous-
computing environments. As an intelligent
dormitory, the iDorm is a multiuse space—
that is, it contains areas for varied activities
such as sleeping, working, and entertain-
ing—that compares in function to other liv-
ing or work spaces such as a one-room apart-
ment, hotel room, or office. The iDorm
contains the normal mix of furniture found
in a study or bedroom, letting the user live
comfortably. The furniture (most of which
we fitted with embedded sensors) includes a
bed, work desk, bedside cabinet, wardrobe,
and PC-based work and multimedia enter-
tainment system. The PC contains most
office-type programs to support work as well
as audio and video services for entertainment
(to play music CDs, listen to radio stations
using Dolby 5.1 surround sound, and watch
television and DVDs).

To make the iDorm as responsive as pos-
sible to its occupant’s needs, we fitted it with
an array of embedded sensors (such as tem-
perature, occupancy, humidity, and light-level
sensors) and effectors (such as door actuators,
heaters, and blinds).6 Among these interfaces,
we produced the virtual reality system in Fig-
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A growing number of research projects are concerned with
applying intelligent agents to intelligent inhabited environ-
ments and intelligent buildings. In Sweden, Paul Davidsson and
Magnus Boman used multiagent principles to control building
services.1 These agents are based on the artificial intelligence
thread that decomposes systems by function rather than behav-
ior. Their work does not address issues such as occupant-based
learning. In Colorado, Michael Mozer uses a soft-computing
approach—neural networks—focusing solely on the intelligent
control of lighting within a building.2 Mozer’s system, imple-
mented in a building with a real occupant, achieved a signifi-
cant energy reduction, although this was sometimes at the
expense of the occupant’s comfort. Work at the Massachusetts
Institute of Technology on the HAL project concentrated on
making the room responsive to the occupant by adding intelli-
gent sensors to the user interface.3 Context-aware systems such
as the Aware Home4 at the Georgia Institute of Technology
represent a large body of current research effort but differ
from our work in that they are more concerned with time-
independent context rather than temporal history or learning,
which are central issues in our work.

Other high-profile intelligent-environment projects also
exist, such as the Microsoft Smart House, BT’s Tele-care, and
Cisco’s Internet Home.5 However, most of these industrial

projects, including home automation technologies such as
Lonworks and X10, are geared toward using networks and
remote access with some smart control (mostly simple automa-
tion), with sparse use of AI and little emphasis on learning and
adaptation to the user’s behavior.
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ure 1b, which marries the Virtual Reality
Modeling Language (VRML) with a Java
interface controlling the iDorm. It provides
the user with a visualization tool showing the
iDorm’s current state and enables direct con-
trol of the various effectors in the room.

Although the iDorm looks like any other
room, the ceiling and walls hide numerous
networked embedded devices residing on
three different networks: Lonworks, 1-Wire,
and IP. They provide the diverse infra-
structure present in ubiquitous-computing
environments and let us develop network-
independent solutions.6 Because we need to
manage access to the devices, gateways
between the different networks are critical
components in such systems, combining
appropriate granularity with security.

Lonworks, Echelon’s proprietary network,
includes a protocol for automating buildings.
Many commercially available sensors and
actuators exist for this system. The physical
network installed in the iDorm is the Lon-
works TP/FP10 network, and Echelon’s
iLON 1000 Web server provides the gateway
to the IP network. This server lets us read and
alter the states and values of sensors and actu-
ators via a standard Web browser using
HTML forms. Most of the sensors and effec-
tors in the iDorm are connected via a Lon-
works network.

The 1-Wire network, developed by Dallas
Semiconductor, was designed to connect sim-
ple devices over short distances. It offers a
range of commercial devices including small
temperature sensors, weather stations, ID but-
tons, and switches. The 1-Wire network is

connected to a Tiny Internet Interface board
(www.ibutton.com/TINI), which runs an em-
bedded Web server serving the status of the
networked devices using a Java servlet. The
servlet collects data from the network devices
and responds to HTTP requests.

The IP network forms a backbone to inter-
connect all the networks and other devices,
such as the multimedia PC. This PC is the
focus for work and entertainment in the
iDorm; it also uses the HTTP protocol to dis-
play its information as a Web page.

The iDorm’s gateway server is a practi-
cal implementation of an HTTP server act-
ing as a gateway to each of the room’s sub-
networks. This shows that by using a
hierarchy of gateways, it would be possible
to create a scalable architecture across 
such heterogeneous networks in intelligent
inhabited environments and ubiquitous-
computing environments.6 The iDorm gate-
way server allows a standard interface to all
the room’s subnetworks by exchanging
XML-formatted queries with all the princi-
pal computing components. This overcomes
many of the practical problems of mixing
networks. This gateway server lets the sys-
tem operate over any standard network such
as EIBus or Bluetooth. We could readily
develop it to include plug-and-play, letting
the system automatically discover and con-
figure devices using intelligent mecha-
nisms.6 In addition, such a gateway is
clearly an ideal point to implement security
and data mining associated with the sub-
network. Figure 2 shows the logical network
infrastructure in the iDorm.

iDorm’s embedded
computational artifacts

The iDorm has three types of embedded
computational artifacts connected to the net-
work infrastructure. Some of these devices
contain agents. 

The first type is a physically static com-
putational artifact closely associated with the
building. In our case, this artifact contains an
agent and thus is termed the iDorm embed-
ded agent. This agent receives sensor values
through the network, contains the user’s
learned behavior, and computes the appro-
priate control actions using the fuzzy ISL
system. It then sends them to iDorm effec-
tors across the network. The agent shown in
Figure 3a is based on a 68000 Motorola
processor with 4 Mbytes of RAM, has an
Ethernet network connection, and runs the
VxWorks Real Time Operating System.

The agent accesses 11 environmental para-
meters, some on multifunction appliances:

• Time of day, measured by a clock con-
nected to the 1-Wire network

• Inside room light level, measured by an
indoor light sensor connected to the Lon-
works network

• Outdoor lighting level, measured by an
external weather station connected to the
1-Wire network

• Inside room temperature, measured by
sensors connected to the Lonworks and 
1-Wire networks

• Outdoor temperature, measured by an
external weather station connected to the
1-Wire network
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Figure 1. (a) The Essex intelligent dormitory iDorm and (b) the iDorm VRML (Virtual Reality Modeling Language) interface.

(a) (b) 



• Whether the user is running the com-
puter’s audio entertainment system,
sensed by custom code that publishes the
activity on the IP network 

• Whether the user is lying or sitting on the
bed, measured by pressure pads connected
to the 1-Wire network

• Whether the user is sitting on the desk
chair, measured by a pressure pad con-
nected via a low-power wireless connec-
tion to the 1-Wire network

• Whether the window is opened or closed,
measured by a reed switch connected to
the 1-Wire network

• Whether the user is working, sensed by
custom code that publishes the activity on
the IP network

• Whether the user is using video enter-
tainment on the computer (either a TV
program via WinTV or a DVD using the
Winamp program), sensed by custom
code that publishes the activity on the IP
network

The agent controls nine effectors, which
are attached to the Lonworks network:

• A fan heater
• A fan cooler
• A dimmable spotlight above the door
• A dimmable spotlight above the wardrobe
• A dimmable spotlight above the computer
• A dimmable spotlight above the bed
• A desk lamp
• A bedside lamp
• Automatic blind status (open or closed, or

at an angle)  

Other sensors in the room include a smoke
detector, a humidity sensor, activity sensors,

and a telephone sensor (to sense whether the
phone is on or off the hook) as well as a cam-
era to monitor what happens in the iDorm. It’s
possible to follow (and control) activities in the
iDorm via a live video link over the Internet.

The second type of embedded computa-
tional artifact is a robotic agent, a physically
mobile service robot containing an agent.
The robotic agent can learn and adapt robot
navigation behaviors online3 (which is dif-
ferent from the iDorm embedded agent,
which seeks to realize ambient intelligence).
Figure 3b shows the robot prototype we use
in the iDorm. The robot is a servant-gadget
for delivering various objects of interest to

the iDorm user such as food, drink, and med-
icine. It has a rich set of sensors (nine ultra-
sound sensors, two bumpers, and an IR bea-
con receiver) and actuators (wheels). It uses
68040 Motorola processors and runs the
VxWorks Real-Time Operating System.

The robot is equipped with essential
behaviors for navigation, such as obstacle
avoidance, goal seeking, and edge following.
We combined and coordinated these behav-
iors with a fuzzy coordination module so that
the robot could reach a desired location and
avoid obstacles. The static embedded agent
that controls the iDorm passes and processes
the robot’s location as an additional input. In
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Figure 3. The iDorm embedded computational artifacts include (a) the static iDorm embedded agent, (b) a mobile service robot, 
(c) a portable iPAQ (pocket PC) interface, and (d) a portable mobile-phone interface.
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the experimental setup, we use a simplified
system in which the robot can go to two loca-
tions identified by infrared beacons to pick
up objects. After picking up an object, the
robot can deliver it to the user and then go to
its charging station, which another infrared
beacon identifies. The robotic agent sends
information about its location to the iDorm
agent, and it takes destination instructions
from that agent depending on the user’s
learned behavior. For example, the robot
might learn to fetch a newspaper from a spe-
cific location whenever it is delivered in the
morning.

We implemented the communication be-
tween the static embedded agent and the
mobile robotic agent via a wireless link. We
establish communication by initiating a
request from the embedded agent to the
mobile agent server. Once the request has been
sent, the server passes it to the robotic agent to
carry out the task and informs the iDorm
embedded agent of the robot’s current status.
If the task is in progress or not completely fin-
ished, the server sends a message indicating
that the job is incomplete. Every time the
iDorm embedded agent wants to send out a
new request, it waits until the robot success-
fully completes the previously requested job.

The third type of embedded computational
artifact is a physically portable computa-
tional device. Typically, these are wearable
technologies that can monitor and control the
iDorm wirelessly. The handheld iPAQ in Fig-
ure 3c contains a standard Java process  that

can access and control the iDorm directly.
This forms a type of remote control interface
that would be particularly suitable to elderly
and disabled users. Because the iPAQ sup-
ports Bluetooth wireless networking, it’s pos-
sible to adjust the environment from anywhere
inside and nearby outside the room. It’s also
possible to interact with the iDorm through
mobile phones because the iDorm central
server can also support the Wireless Markup
Language. Figure 3d shows the mobile-phone
wireless application protocol interface, which
is a simple extension of the Web interface.
Such portable devices can contain agents, but
this remains one of our longer-term goals.

We designed the learning mechanism in the
embedded agent to learn behaviors relating to
different individuals. To achieve this, the
embedded agent must be able to distinguish
between users in the environment. This is
achieved by using an active key button,
designed and built by our research team and
based on Dallas Semiconductor’s 1-Wire pro-
tocol. Each user is given an electronic key
about the size of a penny. This is mounted onto
a key fob and contains a unique identification
number inside its 2-Kbyte memory. The user’s
unique ID number is passed to the iDorm
embedded agent so that it can retrieve and
update previous rules it learned about that user.

Fuzzy, incremental, synchronous
learning technique

In our work, learning is achieved through
interaction with the actual environment. We

call this online learning because adaptive
behaviors can’t be considered a product of
an agent in isolation from the world but can
only emerge from a strong coupling of the
agent and its environment.5

Figure 4 shows the ISL architecture, which
forms the learning engine in the iDorm
embedded agent. The ISL system aims to
provide lifelong learning and adapts by
adding, modifying, or deleting rules. It is
memory based in that the system can use its
previous experiences (held as rules) to nar-
row down the search space and speed up
learning. The embedded agent is an aug-
mented-behavior-based architecture, which
uses a set of parallel fuzzy logic controllers
(FLCs), each forming a behavior. We use the
FLC approach because it’s useful when the
processes are too complex for analysis by
conventional quantitative techniques or when
the available sources of information are inter-
preted qualitatively, imprecisely, or uncer-
tainly3,5 (this is the case with embedded
agents operating in intelligent inhabited envi-
ronments and ubiquitous-computing envi-
ronments). For embedded agents, the num-
ber of inputs and outputs are usually large,
and the desired control behaviors are com-
plex. However, by using a hierarchical
assembly of fuzzy controllers, we signifi-
cantly reduce the number of rules required.3,5

In general, we divide the behaviors avail-
able to the iDorm embedded agent into fixed
and dynamic sets, where the dynamic behav-
iors are learned from the person’s behavior
and the fixed behaviors are preprogrammed.
We predefined these latter behaviors because
they can’t easily be learned—for example, the
temperature at which water pipes freeze. The
fixed behaviors include safety, emergency,
and economy behaviors. A safety behavior
ensures that the environmental conditions are
always at a safe level. An emergency behav-
ior (in case of a fire alarm or another emer-
gency) might open the emergency doors and
switch off the main heating and illumination
systems. Economy behaviors ensure that
energy isn’t wasted so that if a room is unoc-
cupied, the heating and illumination will be
switched to a sensible minimum value. All
these behaviors are fixed but adjustable.

Each dynamic FLC (the comfort behavior
in the iDorm case) has one parameter (which
is the rule base for each behavior) that we can
modify. Also, at the high level, the coordina-
tion parameters can be learned.3,5 Each
behavior uses a FLC using a singleton fuzzi-
fier, triangular membership functions, prod-
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uct inference, max-product composition, and
height defuzzification. We chose these tech-
niques because of their computational sim-
plicity and real-time considerations. The
equation that maps the system input to out-
put is

where M is the total number of rules, yp is the
point having maximum membership in the
pth rule output fuzzy set, ΠαAip is the prod-
uct of the membership functions for each
rule’s inputs, and G is the number of inputs.

We use a higher-level coordinator FLC to
combine the preferences of different behav-
iors into a collective preference (giving a
two-level behavior hierarchy). (Previous
work gives additional information about the
fuzzy hierarchical architecture.3,5)

The ISL works as follows: when new users
enter the room, they are identified by the
active key button, and the ISL enters an ini-
tial monitoring mode where it learns the
users’ preferences during a nonintrusive
cycle. In the experimental setup, we used a
30-minute period, but in reality, this is linked
to how quickly and completely we want the
initial rule base. For example, in a care home,
we might want this rule base to be as com-
plete as possible, and in a hotel, we might
want this initialization period to be short to
allow fast learning. The rules and preferences
learned during the monitoring mode form the
basis of the user rules, which are reactivated
whenever the user reenters the room. During
this initialization period, the system moni-
tors the inputs and the user’s action and tries
to infer rules from the user’s behavior. The
user will usually act when a set of environ-
mental conditions (an input vector) is unsat-
isfactory by altering the output vector (for
example, the user needs to turn a light on or
adjust the heating). Learning is based on neg-
ative reinforcement because users will usu-
ally request a change to the environment
when they are dissatisfied with it.

After the monitoring period, the ISL enters
a control mode in which it uses the rules
learned during the monitoring mode to guide
its control of the room’s effectors. Whenever
the user behavior changes, it might need to
modify, add, or delete some of the rules in the
rule base. Thus, the ISL goes back to the non-

intrusive cycle to infer rule base changes—
that is, to determine the user’s preferences in
relation to the specific components of the
rules that have failed. The user is essentially
unaware of this short cycle; such modifica-
tions and adaptations are distributed through-
out the lifetime of the environment’s use, thus
forming a lifelong-learning phase.

As in the case of classifier systems, to pre-
serve system performance, we let the learn-
ing mechanism replace a subset of the clas-
sifiers (the rules in this case). The worst m
classifiers are replaced by m new classifiers.4

In our case, we change all the consequents
of the rules whose consequents were unsat-
isfactory to the user. We find these rules by
finding all the rules firing at this situation

whose firing strength is ΠαAip > 0. We
replace these rule consequents by the fuzzy
set that has the highest membership of the
output membership function. We make this
replacement to achieve nonintrusive learn-
ing, avoiding direct interaction with the user.
The set of learned-consequent fuzzy rules is
guided by the contextual prompter, which
uses sensory input to guide the learning.

During the nonintrusive monitoring and the
lifelong-learning phases, the agent encounters
many different situations as both the environ-
ment and the user’s behavior change. For
example, the agent will try to discover the
rules needed in each situation guided by the
occupant’s behavior in response to different
temperature and lighting levels inside and out-
side the room. The learning system consists
of different learning episodes; in each situa-
tion, the agent will fire only a small number
of rules. The model the agent must learn is
small, as is the search space. The accent on
local models implies the possibility of learn-

ing by focusing at each step on only a small
part of the search space, thus reducing inter-
action among partial solutions. The interac-
tion among local models, due to the intersec-
tion of neighboring fuzzy sets, means local
learning reflects on global performance.4

Thus, we can have global results from the
combination of local models and smooth tran-
sition between close models. By doing this,
we don’t need to learn the complete rule base
all at once, only the rules the user needs dur-
ing the different episodes. This marks a sig-
nificant difference in our method of classify-
ing or managing rules compared to other
work: rather than seeking to extract general-
ized rules, we try to define particularized ones.

The system has an Experience Bank that
stores all the previous occupiers’ rule bases.
After the initial monitoring phase, the sys-
tem tries to match the user-derived rules to
similar rules stored in the Experience Bank
that were learned from other occupiers. The
system chooses the rule base that’s most sim-
ilar to the user-monitored actions. By doing
this, the system is trying to predict the rules
that weren’t fired in the initialization session,
thus minimizing the learning time as the
search starts from the closest rule base rather
than starting at random. This action should
be satisfactory for the user as the system
starts from a similar rule base and then fine-
tunes the rules.

Subsequently, the agent operates with rules
learned during the monitoring session plus
rules that deal with situations uncovered dur-
ing the monitoring process, which are ported
from the most similar user’s rule base. All the
rules that are constructed and added to the
system are symbolized by the Rule Con-
structor block in Figure 4. The system then
operates in the control mode with this rule
base until the occupant’s behavior indicates
that his or her needs have altered; this change
is flagged by the Solution Evaluator (that is,
the agent is event-driven). The system can
then add, modify, or delete rules to satisfy the
occupant by briefly reentering the monitor-
ing mode. In this case again, the system finds
the rules fired and changes their consequent
to the user’s action. In this way, the system
implements a lifelong-learning strategy.

Because we’re dealing with embedded
agents with limited computational and mem-
ory capabilities, it’s difficult to deal with a
large number of rules in the rule base. For
example, for the iDorm comfort behaviors in
our current implementation, a complete rule
base contains 62,208 rules. This would lead
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to large memory and processor requirements
that are unrealistic in embedded agents. So,
we limited the number of stored rules to 450
(in our case, the maximum number the agent
can store on the onboard memory without

exceeding the memory limit or degrading
real-time performance). Each rule will have
a measure of importance according to how
frequently it’s used. In calculating this degree
of importance, we also include a most-

recent-use measure. When the system
reaches the memory limit, the Rule Assassin
retains rules according to the priority of high-
est frequency of use, followed by most
recently used. If two rules share the same
degree of relative rule frequency recall, the
system breaks the tie by eliminating the least
recently used rule. This action lets the
onboard memory store only the most effi-
cient and frequently used rules and reduces
degradation of the embedded agent’s real-
time performance. However, we can store the
rules chosen for replacement with the other
rules representing the user behavior in an
external hard disk, so that the agent can recall
them when needed.

Experimental results
In our experiment, a user occupied the

iDorm for five and a half days (132 hours).
The system identified the user by his active
key button, which operated the active lock
(see Figure 5a).  In our experiment, the user
(shown sleeping in Figure 5b) occupied the
iDorm for five and a half days (132 hours).
He used the wireless iPAQ to monitor and
control the iDorm environment whenever he
was dissatisfied with the environment’s cur-
rent state. We recorded a history of the user
decisions in a journal. One of our axioms is
that “the user is king,” by which we mean
that an agent always executes the user’s
instruction immediately, to achieve the re-
sponsive property implied in the ambient-
intelligence vision, unless safety is compro-
mised. Figure 5c shows this; whenever
changes to controls occurred, the iDorm
embedded agent received the request, gen-
erated a new rule or adjusted a previously
learned rule, and allowed the action. We
wrote a small parsing tool to convert the text
file containing the fuzzy-rule sets into a
human-readable format.

At the end of the experiment, we exam-
ined the rules in two ways. First, we com-
pared the human-readable rules with the
user’s journal entries to ensure that the agent
had successfully learned the behaviors the
user was intending. Second, we compared
the number of rules learned over time. We
measured the embedded agent’s success by
monitoring how well it matched the envi-
ronment to the user’s demands. If it did this
well, the user intervened less, which resulted
in less rule generation over time. If it did this
poorly, the user intervened more, which
resulted in more rule generation over time.
A logging program took a reading of the
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Figure 5. The user is (a) using the iDorm’s active lock and (b) sleeping in bed. (c) The
agent communication path.

36 48 60 72 84 96 1200 12 24 132 144108
0

50

100

150

200

250

300

350

Experiment time (hours)

Nu
m

be
r o

f r
ul

es
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number of rules learned by the ISL every five
minutes for the experiment’s duration; it
stored each count along with a time stamp. 

Figure 6 summarizes the experiment’s
results. Several sections of the graph are
worth noting. In the first 24 hours, starting
with an initial rule base of zero, the system
learned many rules in a comparatively short
period of time. In fact, in the experiment’s
first nine hours, the agent learned 128
rules—nearly half the total number of rules
learned by the end of the experiment. These
results are consistent with the agent learn-
ing and making incorrect decisions for the
user in the initial stage. However, at the end
of the first 24 hours, the agent’s learning rate
(rules/time) dropped drastically. The agent’s
reactions required less correction by the user
because it made useful decisions about the
environment based on the user’s require-
ments. This trend of fewer rules learned over
time is consistent across the whole experi-
ment. Hence, the level of comfort the user
experienced (in relation to the environment
state) was high enough for him not to make
an environmental change and consequently
alter the learning rate.

The second section of the graph (from 60
to 72 hours) shows a sharp increase in the
agent’s learning rate. This is explained by the
user introducing novel activity into his reper-
toire of behaviors. It shows that our system,
which operates in a lifelong learning mode,
adapts to user needs.

The third section (from 72 to 132 hours)
shows that in the experiment’s last two days, the
agent didn’t generate any new rules. The user
didn’t intervene with the system because he was
generally satisfied with the agent’s actions.

The agent learned the 280 rules needed to
capture this user’s behavior over the 132-hour
experiment, which demonstrates that our sys-
tem can learn effectively using the ISL, and it
doesn’t need to learn the complete rule base
(potentially 62,208 rules in the case of the
iDorm). Also, over the experimental period,
the agent made a significant reduction in the
user’s need to intervene. Figure 6 shows that
the agent had to learn fewer new rules about
the user as the experiment progressed.
Because this was one of our criteria for mea-
suring the agent’s success, the evidence of the
continual reduction in the learning rate leads
us to conclude that the agent managed to pick
out the user’s pertinent behavior over time.

In our previous work, we experimented with
different room users.3 We found that the role of
the Experience Bank was important in reduc-

ing the time the ISL takes to learn the user’s
behavior and achieve user satisfaction. This is
because it starts learning the user’s behavior
from the best-matching behavior previously
recorded rather than starting from scratch.

Our results suggest that over the experi-
mental period, the embedded agent sig-

nificantly reduced the user’s need to intervene.
This not only reduces the complexity of use but
can bring significant cost and effort savings
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over the evolving lifetime of products by avoid-
ing expensive programming (and reprogram-
ming). In addition, it empowers ordinary users
by letting them use collections of computer-
based artifacts to design novel systems to suit
their personal tastes without needing to under-
stand the technical complexities or program the
systems. The learning curve’s shape in Figure
6 suggests that the agent moved increasingly
closer to the user’s environmental preference
even though this preference was never static.

Our experiment also suggests that the agent
requires surprisingly few rules to auto-
nomously create a comfortable environment,
with diminishing need for user correction.
This is important new information: prior to
this work, it was unknown whether a tractable
rule set would emerge and whether embed-
ded architectures with only megabytes of
memory would be able to host agents for such
ubiquitous-computing environments.

Our future experimental program includes
plans for multiuser and multiroom habitation
experiments. We also plan wider deployment
of embedded agents (such as personal agents
inside wearable technology) and experiments

on differing agent granularities. We are build-
ing a multiroom version of the iDorm, called
iDorm-2, as a preliminary step toward con-
structing a fully functional apartment (iFlat),
which will house visiting researchers and act
as a unique ubiquitous-computing test bed.
We are currently designing the iFlat for such
experimentation from the ground up.
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ransportation and logistics organizations often face
large-scale combinatorial problems on operational and
strategic levels. In such problems, all possible combina-

tions of decisions and variables must be examined to find a
solution; consequently, no partial enumeration-based exact
algorithm can consistently solve them. This occurs because
sharp lower bounds on the objective value are hard to derive,
thus causing a slow convergence rate. By exploiting problem-
specific characteristics, classical heuristic methods aim at a
relatively limited exploration of the search space, thereby
producing acceptable-quality solutions in modest computing
times. As a major departure from a classical heuristic, a meta-
heuristic method implies a higher-level strategy controlling a
lower-level heuristic method. Metaheuristics exploit not only
the problem characteristics but also ideas based on artificial
intelligence rationale, such as different types of memory struc-
tures and learning mechanisms. Solutions produced by meta-

heuristics typically are of much higher quality than those
obtained with classical heuristic approaches.

This special issue of IEEE Intelligent Systems will feature
original, high-quality submissions that address all aspects of
metaheuristic methods as applied to transportation and
logistics. Applications-oriented papers will be extremely wel-
come, as well as papers addressing computational perfor-
mance of metaheuristic methods on well-known benchmark
instances.
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