
Evolving Spiking Neural Network Controllers for
Autonomous Robots

Hani Hagras, Anthony Pounds-Cornish, Martin Colley, Victor Callaghan and Graham Clarke
Department of Computer Science

University of Essex
Wivenhoe Park, Colchester, CO4 3SQ, UK

 Email: {hani, apound, martin, vic, graham}@essex.ac.uk

Abstract— In this paper we introduce a novel mechanism for
controlling autonomous mobile robots that is based on using
Spiking Neural Networks (SNNs). SNNs are inspired by
biological neurons that communicate using pulses or spikes. As
SNNs have shown to be excellent control systems for biological
organisms, they have the potential to produce good control
systems for autonomous robots. In this paper we present the use
and benefits of SNNs for mobile robot control. We also present an
adaptive Genetic Algorithm (GA) to evolve the weights of the
SNNs online using real robots. The adaptive GA using adaptive
crossover and mutation converge in a small number of
generations to solutions that allow the robots to complete the
desired tasks. We have performed many experiments using real
mobile robots to test the evolved SNNs in which the SNNs
provided a good response.

Index terms - spiking neural network; genetic algorithms;
autonmous mobile robots; robot navigation; fuzzy controllers

I. INTRODUCTION
This work is part of a European Union funded project

entitled “Self-Organised Societies of Connectionist intelligent
Agents capable of Learning" (No IST-2001-38911). The three
year project’s aim is to produce nano-scale autonomous robots
capable of achieving well defined tasks in difficult, challenging
and inaccessible environments. An application benchmark for
this project is the on-line maintenance and repair of filters for
organ replacement therapy systems.

Most biological neurons communicate by sending pulses
across connections to other neurons [1]. The pulse is also
known as a “spike” to indicate its short and transient nature [2].
Such neurons are called spiking neurons and their networks are
termed Spiking Neural Networks (SNNs). As biological
organisms have shown to be excellent control systems using
SNNs then SNNs have the potential to produce good control
systems for autonomous robots [2].

SNNs are deemed computationally more powerful than
conventional artificial neural network formalisms on the basis
of extensive theoretical work by Maass [3]. “Computationally
more powerful” implies that SNNs need fewer nodes to solve
the same problem than conventional artificial neural networks
[3]. From an implementation viewpoint, this means that SNN
circuits of the same complexity can provide “more for less”

compared to other neural network implementations (such as the
multi layer perceptrons). In addition, SNNs provide a number
of other desirable features such as noise-robustness (tolerance
to background noise) and simple real-world interfaces [4].

The computational power of SNNs exist because of the
intrinsic time-dependent dynamics of spiking neurons that
allow the temporal patterns of sensory-motor events to be
captured and exploited more efficiently than the other
connectionist models (i.e. with fewer neurons and simpler
circuits) [1,3]. Moreover, SNNs can be mapped easily to
hardware because the spikes are in essence binary events and
the non linear dynamics and the coding of spiking circuits can
be provided by spiking times, rather than by non linear, real
valued activation functions used in the traditional connectionist
neuron models [2]. In other words, a few logic operations and
instructions to move around single bits over time would be
sufficient to embed large circuits of spiking neurons that
display complex abilities and behaviours into tiny and low
power chips. Therefore such SNNs will be appropriate control
mechanisms for our nano-scale autonomous robots as they can
give a very good response dealing with noise using tiny chips
that consume little power in inaccessible environments. This is
a big advantage especially as both memory and power are
extremely limited on the micro and nano-scale platforms
currently being developed by the project.

There have been many applications of SNNs to robotics;
most of these applications are focused on the first stages of
sensory processing and on relatively simple motor control. For
example [5] developed neuromorphic vision circuits that
emulate interconnections among neurons in the early layers of
the biological retina in order to extract motion information and
implement a simple form of attentive selection. These vision
circuits have been interfaced with a robot to follow lines. In [6]
they developed an analog VLSI circuit with four spiking
neurons capable of controlling a robotic leg and adapting the
motor commands using sensory feedback. This circuit’s size is
less than 0.4 mm2 and it consumes less than 1 microwatt.

Despite these interesting implementations, they did not
produce methods for developing complex SNNs that could
display minimally cognitive functions or learn their behaviours
through autonomous interactions with their environment [1].
Implementations of SNNs are difficult as the hand design of

vic
Text Box
Published in ICRA'04 (c) Essex University

SNNs that display a desired functionality is not a trivial task
because of the highly non linear dynamics [2]. Furthermore, the
learning algorithms developed for SNNs are often restricted to
very simple and application specific architectures [7].

Artificial evolution through Genetic Algorithms (GAs) is
therefore an interesting method to discover SNNs that
autonomously develop desired behaviours for robots without
imposing constraints on their architecture and functioning
modality. GAs have been used to evolve SNNs for a task of
vision-based navigation using a Khepera robot to navigate in a
rectangular arena with textured walls [1]. Implementation of
these SNNs in digital microcontrollers with size and power
consumption competitive with analog VLSI chips has also been
described [2]. Their controller was implemented in a small
robot only 2 cm long [2]. However in [1,2] they evolved only
the signs of the SNN’ s weights leaving the values of weights
constant to 1. They have used a GA with fixed crossover and
mutation probabilities and they have used a large population of
60 chromosomes. Their GA converged after 30 generations
where each generation took about 80 minutes using the real
robots, so their GA converged after approximately 40 hours.

In this paper we introduce an adaptive GA which uses
adaptive crossover and mutation probabilities. We used our
adaptive GA to evolve the weight values and signs of the SNNs
online in a relatively short time interval using real robots
interacting with their environment. We will show many
experiments in which we evolved good SNN controllers in a
small number of generations.

In Section II we will introduce SNNs and their operation.
Section III introduces the online adaptive GA. The application
of SNNs to mobile robots is introduced in Section IV.
Experimental results are introduced in Section V and
conclusions and future work are presented in Section VI.

II. SPIKING NEURAL NETWORKS

The “ time aspect” of SNNs is responsible for their
computational power. In virtually every artificial computing
machine one is keen to ensure that the timing of individual
computation steps adheres to a global schedule, which is
independent of the values of the input variables [3]. For
example, layer d of a feed forward neural network is required
to produce its output at step Kd of the computation regardless of
the values of the inputs to the network [3]. In contrast to that,
the firing times of neurons in a biological neural system depend
on the input to that system [3]. Hence networks of spiking
neurons (which are very close to the real world biological
neural network) are capable of exploiting time as a resource for
coding and computation in a much more sophisticated manner
than virtually all other common computational models [7,8].

The state of a spiking neuron is described by the voltage
difference across its membrane, also known as membrane
potential v [1]. Incoming spikes can increase or decrease the
membrane potential. The neuron emits a spike when the total
amount of excitation induced by the incoming excitatory and
inhibitory spikes exceeds its firing threshold . After firing, the
membrane potential of the neuron resets its state to a low
negative voltage during which it cannot emit a new spike, and

it gradually returns to its resting potential. The recharging
period is called the refractory period.

There are several models of spiking neurons that account
for these properties with various degrees of detail. In this paper
we will use the Spike Response Model (SRM) [9]. It has been
shown that several other models of spiking neurons, such as the
class of Integrate and Fire neurons (where the membrane
potential of the neuron is immediately reset to its resting value
after a spike), represent special cases of the Spike Response
Model [1,9].

In the SRM, the effect ε of an incoming spike on the neuron
membrane is a function of the difference

 ftts −= . (1)

Where t is the current time and t f is the time when the spike
was emitted (firing time). The properties of the function are
determined by the following:

• The delay ∆ between the generation of a spike at the
pre-synaptic neuron and the time of arrival at the
synapse.

• A synaptic time constant τs.

• A membrane time constant τm.

The idea is that a spike emitted by a pre-synaptic neuron
takes some time to travel along the axon and once it has
reached the synapse, its contribution to the membrane potential
is higher as soon as it arrives but gradually fades as time passes
[1]. A possible function ε(s) describing this behaviour is shown
in Fig. 1(a) and can be written as follows [1]:

() ()[] ()[]() ∆≥∆−−−∆−−= ssss sm :exp1exp ττε
∆<s:0 . (2)

Once a neuron has emitted a spike, its membrane potential is
set to a very low value to prevent an immediate second spike
and then it gradually recovers to its resting potential. The speed
of recovery depends on the membrane time constant τm. A
possible function η(s), for this refractory period is shown in
Fig. 1(b) and can be written as follows [1,9]

 () []mss τη −−= exp . (3)

We can now put together the equations describing synaptic
contributions and the refractory period to describe the
dynamics of a neuron that has several synaptic connections
from the input neurons. Each synaptic connection has a weight
wij which can be negative (inhibitory) or positive (excitatory).
The membrane potential of a neuron i at time tc is given by

 () ∑ ∑ ∑= =
=

+= N

j

t

t

t

t
iijjijci

c
c

sswtv
1 1

1

)()(ηε . (4)

Where j is the pre-synaptic neuron and i is the post-synaptic
neuron. wij is the weight of the synaptic connection between
neuron i and neuron j. N is the total number of the pre-synaptic
neurons. tc is the current time. sj is an application of (1) for the

vic
Text Box
Published in ICRA'04 (c) Essex University

pre-synaptic neuron j and si is an application of (1) for the post-
synaptic neuron i.

Figure 1. (a) Function describing ε (b) Function describing refractory period

If the membrane potential vi(tc) is equal to or larger than the
neuron threshold θi, the neuron emits a spike (fires) at ti

f and ηi
takes a very low value that prevents an immediate new spike.
After that, ηi is computed according to (3).

As it is complex to solve (4) [10], in each control cycle
which takes T time steps we will iterate over tc to find when (4)
exceeds the threshold at the time the spike was emitted. For our
robots the control cycle takes 100 ms thus we have set T to be
100 and each time step is 1 ms.

In our SNNs the robot sensor inputs are connected to the
pre-synaptic neurons, while the actuator’ s outputs are
connected to the post-synaptic neurons.

In SNNs, a single spike is a binary event that can encode
only the presence or absence of a stimulus. There are many
ways of mapping the sensor’ s analog value to spikes at the
beginning of the control cycle. One method consists of
mapping the sensor analog value to the firing rate of the
neuron; this method is based on the hypothesis that a neuron
increases its firing rate to indicate a high analog sensor value
[1]. This is biologically inspired from the frog in which the
firing rate of a stretch receptor in the frog’ s leg is a
monotonically increasing function of the strength of
stimulation [11]. Another method for mapping consists of
encoding the sensory stimulation across several neurons and
mapping the intensity of the stimulation into the number of
neurons that spike at the same time [1]. This method is based
on the hypothesis that the brain represents meaningful
information by synchronising spiking activities across several
neurons, this has been supported by measurements in the visual
and temporal cortex of monkeys [12].

Another method for mapping sensor values to spikes
consists of encoding the strength of the sensor value in the
firing delay of the neuron. The underlying hypothesis is that
neurons that receive stronger stimulation fire earlier than
neurons receiving weaker stimulation, so highly stimulated
neurons tend to spike sooner. This has been supported by
measurements in olfactory neurons [13]. In this paper, we use
the latter method for mapping sensor analog values to spikes.
This coding system known as “ delay coding” or “ latency
coding” has been used by many researchers as it is simple and
it is one of very few coding methods that might theoretically be
used for very fast neural computation [8,14,15] which is
required in our problem domain.

For an analog input sensor value xj to pre-synaptic neuron j,
the firing time tj

f can be calculated as follows [14]

 j
f
j kxTt −= . (5)

Where T is the time of the control cycle (100 ms in our
case) and k is a suitable scaling factor.

At the end of the control cycle, we need to convert the
firing of the post-synaptic neuron i, to analog outputs for the
actuators. We are going to use the delay coding again, so the
analog output yi passed to the actuator connected to neuron i
can be written as follows:

c

tT
y

f
i

i

−= . (6)

Where c is a suitable scaling factor, ti
f is the firing time for

the post-synaptic neuron i. The generic architecture of an SRM
SNN using delay coding is shown in Fig. 2.

III. ONLINE GENETIC ALGORITHMS

Adaptive behaviours in robots cannot be considered as a
product of the robot in isolation from the world, but can only
emerge from a strong coupling of the robot and its environment
[16]. It is desirable that the robots learn their own behaviour
online through interacting with their real environment rather
than relying totally on simulations. The fact that it is very hard
to simulate the actual dynamics of the real world implies that
effort will go into solving problems that exist only in the
simulation. Additionally, programs which work well on
simulated robots might not work properly on real robots [17].

Not only are implementations of SNNs difficult to hand
craft [2] but the learning algorithms developed for SNNs are
often restricted to very simple and application specific
architectures [7]. For the mobile robot domain there is a need to
produce methods for developing complex SNNs that could
display minimally cognitive functions and learn their
behaviours through autonomous interactions with the
environment [1].

Figure 2. SRM SNN using delay coding architecture

Artificial evolution through Genetic Algorithms (GAs) is
therefore a useful method to discover SNNs that autonomously
develop behaviours for robots without imposing constraints on
their architecture and functioning modality. GAs are a
biologically inspired class of algorithms which do not rely on

ANALOG
SENSORS

INPUT
SPIKES

T

INPUT
UNITS

OUTPUT
UNITS

OUTPUT
SPIKES

i1

i2

o1

o2

w11

w12

wji

w1i

ft1

ft2

t

s1

s2

f
jt

sj

x1

x2

xj ij oi

ft1

ft2

f
it

ANALOG
OUTPUT

y1

y2

yi

vic
Text Box
Published in ICRA'04 (c) Essex University

any analytical properties of the function to be optimised (such
as an existence of a derivative). They are capable of performing
an intelligent search for a solution from a nearly infinitely sized
problem space [18]. GAs are suited to a wide class of problems
and they are particularly suitable for solving complex
optimisation problems and therefore suitable for applications
that require adaptive problem-solving strategies [18].

Standard GAs are widely known to be slow as they usually
require big populations and they only converge after a large
number of generations. This limits their application to mobile
robot online learning [18]. However we can use adaptive online
GAs, rather than standard GAs to find good enough solutions
in a relatively short time interval [18].

Using online GAs, it is desirable to achieve a high level of
online performance whilst being capable of reacting rapidly to
changes requiring new actions [18]. Hence it is necessary to
maintain a limited amount of exploration and diversity in the
population. These requirements mean that the population size
should be kept sufficiently small, so that progression towards
near-convergence can be achieved within a relatively short time
[18]. Similarly the genetic operators (crossover and mutation)
should be used in a way that rapidly achieves high-fitness
individuals in the population [18]. In our online GAs we will
use small population sizes and we are going to use adaptive
genetic parameters to speed up the search process.

We will use a novel method to adaptively change the
crossover and mutation probabilities based on Srinivas method
[19]. This method helps us to achieve good crossover and
mutation parameters that aid convergence in a short time
interval. The strategy used for adapting the control parameters
depends on the definition of the performance of the GA. The
GA should possess the capacity to track optimal solutions and
the adaptation strategy needs to vary the control parameters
appropriately whenever the GA is not able to track the located
optimum [19]. There are two essential characteristics that must
exist in the GA for optimisation. The first characteristic is the
capacity to converge to an optimum (local or global) after
locating the region containing the optimum [19]. The second
characteristic is the capacity to explore new regions of the
solution space in search of the global optimum [19]. In order to
vary Pc (crossover probability) and Pm (mutation probability)
adaptively to prevent premature convergence of the GA, it is
essential to be able to identify whether the GA is converging to
an optimum. One possible way of detecting convergence is to
observe the average fitness value f of the population in relation
to the maximum fitness value fmax of the population. fmax - f is
likely to be less for a population that has converged to an
optimum solution than that for a population scattered in the
solution space. Pc and Pm are defined as follows:

 ff
ff
ff

Pc ′≥′′
′−
′′

= :
-

max

max

 ffPc ′<′′= :1 (7)

 ff
ff
ff

Pm ′≥
−
−

= :
)’2(max

max

 ffPm ′<= :5.0 (8)

Where f is the larger of the fitness values of the solutions
to be crossed. f is the fitness of the individual solutions. The
method means that we have Pc and Pm for each chromosome.
The type of crossover was chosen to be a one point crossover
for computational simplicity and real time performance.

One of the goals of this approach is to prevent the GA
from getting stuck in a local optimum. As we are using small
population sizes, we employ a high Pm value of 0.5 to the
average and sub average fitness chromosomes to introduce
new genetic material without reducing the search process to a
random process [19]. The same for the Pc which takes a value
of 1.0 to ensure that average and sub average fitness
chromosomes undergo crossover. In [19] they proved that this
method was superior to the simple GA and gave a faster
convergence rate of 8:1. This approach produces fast
converging solutions and adapts the GA for non-static
environments [16]. It also relieves the designer from
determining these values heuristically [16].

IV. APPLICATION OF SNNS TO MOBILE ROBOT CONTROL
We are going to apply our SNNs to the control of the

mobile robot shown in Fig. 3(a). The robot features two
independently controllable wheels and a bank of nine
ultrasound sensors. These ultrasound sensors are made up of an
emitter and receiver pair as shown in Fig. 3(b). All of the
ultrasound sensors are time multiplexed such that they do not
interfere with each other. The wheels are connected to stepper
motors which are capable of variable speeds, both forwards and
in reverse. The robot is also equipped with four overlapping
bump sensors which enable the robot to know when it has
collided with an obstacle.

Figure 3. (a) The robot (b) One of the ultrasound sensors used

The robot runs the VxWorks operating system and is
programmed by compiling C code with the appropriate robot
libraries into an object file which can be loaded into the robot’ s
memory for execution. Communication with the robot is
achieved across Wireless LAN 802.11b using both the Telnet
and File Transfer (FTP) protocols. The robot also includes a
rechargeable battery that allows it to run wirelessly for
approximately 2.5 hours.

We have used ultrasound sensors as they represent the sort
of sensors to be used in our nano robots. The ultrasound

vic
Text Box
Published in ICRA'04 (c) Essex University

sensors used are noisy and imprecise so they allow us to
evaluate the performance of the SNNs under these conditions.

In our SNNs, we use a two layer structure, in which the
ultrasound sensors’ analog value will be the inputs to the
SNN’ s pre-synaptic neurons and the analog values from the
post-synaptic neurons will be the outputs to the actuators. So in
the case of the right edge following behaviour, using the two
right side sensors means we will have two pre-synaptic
neurons. As we have two actuators which are the left and right
motor speeds, we have two post-synaptic neurons and thus we
will have four weights connecting the two pre-synaptic neurons
to the two post-synaptic neurons.

To evolve the SNN controller online we evolve the values
and signs of the weights of the SNNs; the weights take any
value between -1 and +1 and we use binary coding in our
online GAs. The chromosome which represents a possible
solution for the problem consists of all the weights in the SNN
and we represent each weight by 5 binary bits. The bit strings
are combinations of 0 and 1s, which represent positive and
negative values of the weights in a binary form. An n-bit string
can accommodate all integers up to the value 2n – 1. So using 5
bits can represent 25 = 32 integer values, where a weight of +1
will be equivalent to an integer value of 31, a weight of -1 will
be equivalent to an integer value of 0 and a weight of 0 (i.e. no
connection) will be equivalent to an integer value of 15.
Consequently positive weight values between 0 and +1 will be
equivalent to integer values between 15 and 31 and the
negative weight values between -1 and 0 will be equivalent to
integer values between 0 and 15. In this way we can evolve the
signs and values of the weights of the SNN. When testing a
chromosome the weight binary value is mapped back into a real
weight value between -1 and +1 and applied to the SNN
controller which the robot uses to move.

In the case of the right edge following behaviour, each
chromosome will code four weights and each weight will be
coded by 5 bits, therefore each chromosome will consist of 5*4
= 20 bits. As we are using online GAs we have to use small
population sizes; we have used a population of 4 chromosomes
in our experiments.

In all our experiments the robot is started from a random
location with a random chromosome (i.e. random weights). The
robot then moves forward a constant distance to test each
chromosome solution. At the end of this testing, each
chromosome is allocated a level of fitness according to how
well it did the specified job. This is repeated until each
chromosome in the population has been evaluated and assigned
a level of fitness. We then use the adaptive crossover and
mutation explained in Section III to generate a new population
of chromosomes. We used an elite strategy, meaning that the
best individual is automatically promoted to the next generation
and used to generate subsequent populations.

The search for the solution stops when the stopping
criterion of achieving the desired performance is met. In the
next section we will show many experiments evolving the SNN
controllers for mobile robots.

V. EXPERIMENTS AND RESULTS
We have performed many experiments to evaluate the

performance of the SNN controller in mobile robots. Due to the
limited space we will only introduce as a proof of concept
experiments related to evolving the right edge following
behaviour which is needed by the nano robots in our project.
The aim of the right edge following behaviour is to follow the
edge at a desired distance. As we explained above we used the
front and back right side sensors as inputs to two pre-synaptic
neurons and the two post-synaptic neuron outputs were fed to
the left and right motor speeds. We used the online GAs to
optimise the values and signs of the weights as well as their
existence, for example if weight w11 is optimised by the GAs to
be zero, then w11 can be removed from the SNN to optimise its
architecture. The fitness of each solution (Chromosome)
proposed by the GA can be written as 1 – the scaled average
deviation from the desired distance. Thus the GA maximises its
fitness by minimising the average deviation from following the
edge at the desired distance.

The robot path was drawn using a pen fixed to the back of
the robot. In the following experiments we used noisy
ultrasound sensors and different irregular geometrical
structures which cause multiple reflections and sonar diffuse
reflection. We used these noisy sensors and environments in
order to test the ability of SNNs to deal with noisy
environments. In all the following experiments, all the scaled
average and standard deviations from the desired values were
calculated over four experiments, where we used different
geometrical structures, started the robot from different random
locations and used different desired wall following distances
for the right edge following behaviour. The deviations are
scaled to have values between 0 and 1.

To test the quality of the evolved solutions we started
experiments using handcrafted SNNs in which all the weights
were either +1, 0 or -1 as used by [1,2]. The SNN controller has
given a good response as shown in Fig. 4. The robot had given
a scaled average deviation of 0.23 and an absolute standard
deviation of 0.16.

Figure 4. The handcrafted SNN path

We then performed more experiments to compare the SNNs
evolved using the adaptive online GA to the SNNs evolved
using a standard GA to show the benefits of the former. The
standard GA used the same population size as the adaptive
online GA and it used fixed crossover and mutation
probabilities. Fig. 5 shows the results from the comparison

vic
Text Box
Published in ICRA'04 (c) Essex University

between the standard GA and the online GA using adaptive
crossover and mutation probabilities.

Figure 5. Average GA fitness agianst number of generations

Fig. 5 shows the average fitness of the population (over
four experiments) plotted against each generation in the GA
cycle. The dotted line represents the progress of the standard
GA’ s attempt to improve the quality of the wall following
SNN. The solid line represents the progress of the adaptive
online GA. It can be seen that both the standard and the
adaptive online GA provide a large initial improvement in the
average fitness of the solutions in the 1st to 3rd generation which
outperform the hand crafted SNN. In the first few generations
the indicative benefit of using GAs to evolve the SNNs weights
can be seen.

However the standard GA and the adaptive GA both suffer
from the local minima problem as can be seen in the flat part of
both lines from generations 3 to 9. The adaptive GA using the
adaptive mutation and crossover probabilities can escape from
the local minima and satisfy the desired stopping criteria giving
a very good best scaled average deviation of 0.0973 whilst the
standard GA was stuck in an area of local minima and could
not achieve the desired stopping criteria. The adaptive online
GA had converged to the required solution and satisfied the
stopping criteria after only 14 generations which took 40
minutes of the robot’ s time where most of the time was
consumed in moving the robot forward and backward to its
starting position to test a new chromosome. So using our online
GAs which use small population sizes and adaptive crossover
and mutation probabilities had resulted in converging to the
desired solution in a relatively short time interval using the real
robots.

The values for the evolved SNN weights using our online
adaptive GAs are as follows, w11 = 0.453125, w12 = -0.25, w21 =
0.468750, w22 = -0.25. The evolved SNN has shown to have a
very good response in the face of noise, uncertainty and
imprecision as shown in Fig. 6, where it gave a best scaled
average deviation of 0.0973 starting the robot from different
starting positions and using different obstacles and geometrical
set-ups.

We have also compared the SNN controller against a well
known technique for dealing with noise, uncertainty and
imprecision which is the Fuzzy Logic Controller (FLC). As

shown in Fig. 6, the SNN controller provides a much smoother
response when compared to the FLC, whilst the FLC has a
worse scaled average deviation. Also in all cases the SNN
controller response was repeatable in face of noise, but the FLC
failed in some cases and collided with the walls.

These experiments have shown that the SNNs which
provide a fast processing system, provide very good
performance in the face of noise and imprecision.

Figure 6. Wall following path of SNN and Fuzzy controllers

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we have introduced a novel controller for a

mobile robot that is based on SNNs. SNNs are inspired from
biological neural networks and they provide a fast processing
system that provide tolerance to background noise. They can
also be mapped in small programs and thus requires few logic
operations and instructions to move around single bits. Thus
large SNNs can be embedded in tiny and low power chips that
can achieve complex tasks and behaviours. Such SNNs will be
appropriate control mechanisms for the nano-scale autonomous
robots developed by our project as they can give a very good
response when dealing with noisy, inaccessible environments
whilst consuming little power. This is a big advantage
especially considering that both memory and power are
extremely limited on the micro and nano-scale platforms
currently being developed by the project.

We have presented an adaptive online GA based system
that was used to evolve the SNN controller online through
interaction with the real environment; it converged in a
relatively short time interval in a small number of generations
and produced a very good solution that outperformed the
standard GA. The evolved SNN controller also provided an
acceptable solution to the wall following problem even when
compared with a Fuzzy controller benchmark; the SNN
controller gave a smoother and better response.

The results shown in this paper for the edge following
behaviours only provide sample behaviour as we have also
developed other SNN behaviours. Also, we are currently
working on evolving more complex behaviour that is needed
by nano robots in three dimensional environments. As part of
the project we are currently mapping the evolved SNN
controller to evolvable FPGA hardware.

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
NUMBER OF GENERATIONS PASSED

W
A

LL
 F

O
LL

O
W

IN
G

 F
IT

N
E

S
S

Adaptive GA Static GA

vic
Text Box
Published in ICRA'04 (c) Essex University

Much of the time in GA evolution was spent waiting for
robot to return to the starting position. It has been a popular
trait in mobile robot research to use simulation rather than real
robots to produce solutions. However, previous experience has
shown that solutions evolved in a simulated environment rarely
function as well or even as expected when placed back into the
real world. With this in mind, we are currently working on a
simulator for the robot that is able to work alongside real world
experiments.

For our future work we intend to extend the online GAs to
evolve other parameters of the SNNs like the membrane and
synaptic time constant. The ultimate goal in this thread of
research is to produce an adaptive GA that is able to evolve
both the parameters and the structure of the SNN to produce
solutions to more complex behavioural problems.

By the end of the project we hope to implement SNNs on
VLSI to produce controllers for small robots. These small
robots will communicate with each other to collaboratively
solve problems in complex and inaccessible environments.

ACKNOWLEDGMENT

We are pleased to acknowledge the funding support from
the EU Future and Emerging Technology programme for the
project entitled "Self-Organised Societies of Connectionist
Intelligent Agents capable of Learning ", No IST-2001-38911.
We are also pleased to acknowledge our project partners: the
University of Patras, Greece; CTI, Greece and NMRC, Ireland.

REFERENCES
[1] D.Floreano and C.Mattiussi, "Evolution of spiking neural controllers for

autonomous vision-based robots," Proceedings of the International
Symposium on Evolutionary Robotics (ER-2001), 2001.

[2] D.Floreano, N.Schoeni, G.Caprari and J.Blynel, "Evolutionary bits ’n’
spikes," Proceedings of the Eighth International Conference on Artificial
Life, 2002.

[3] W.Maass, "Networks of spiking neurons: the third generation of neural
network models," Australian Conference on Neural Networks, 1996.

[4] T.Lehmann and R.Woodburn, "Biologically-inspired on-chip learning in
pulsed neural networks," in Analog Integrated Circuits and Signal
Processing, 2 ed., vol. 18. 1999, pp. 117-131.

[5] G.Indiveri, "Neuromorphic analog VLSI sensor for visual tracking:
circuits and application examples," in IEEE Trans.on Circuits and
Systems II, 11 ed., vol. 46. 1999, pp. 1337-1347.

[6] M.A.Lewis, R.Etienne-Cummings, A.H.Cohen and M.Hartmann,
"Toward biomorphic control using custom VLSI CPG chips," in
Proceedings of IEEE International Conference on Robotics and
Automation, 2000, pp. 494-500.

[7] W.Maass and C.M.Bishop, "Pulsed Neural Networks," 1999.
[8] W.Maass, "On the computational complexity of networks of spiking

neurons," in Advances in Neural Information Processing Systems, 7.
1995, pp. 183-190.

[9] W.Gerstner, J.Leo van Hemmen and J.D.Cowan, "What matters in
neuronal locking?," in Neural Computation, 8 ed., vol. 8. 1996, pp.
1653-1676.

[10] B.Tonkes, "Simulation issues in spiking neural networks," Proceedings
on the Eighth Australian Conference on Neural Networks, 1997.

[11] W.Singer, "Search for coherence: a basic principle of cortical self-
organization," in Concepts in Neuroscience, 1. 1990, pp. 1-26.

[12] W.Singer and C.M.Gray, "Visual feature integration and the temporal
correlation hypothesis," in Annual Review of Neuroscience, 18. 1995,
pp. 555-586.

[13] J.J.Hopfield, "Pattern recognition computation using action potential
timing for stimulus representation," 2002.

[14] W.Maass, "On the relevance of time in neural computation and
learning," in Theoretical Computer Science, 1 ed., vol. 261. 2001, pp.
157-178.

[15] S.Thorpe and J.Gautrais, "Rapid visual processing using spike
asynchrony," 1997.

[16] H.Hagras, V.Callaghan and M.Colley, "Prototyping design and learning
in outdoor mobile robots operating in unstructured outdoor
environments," 2001.

[17] R.A.Brooks, "Artificial Life and Real Robots," Toward a Practice of
Autonomous Systems: Proceedings of the First European Conference on
Artificial Life, 1992.

[18] G.Linkens and O.Nyongeso, "Genetic algorithms for fuzzy control, part
II: online system development and application," IEE Proceedings
Control Theory Applications, 1995.

[19] M.Srinivas and L.Patnaik, Adaptation in Genetic Algorithms in Genetic
Algorithms For Pattern Recognition. CRC Press, 1996.

vic
Text Box
Published in ICRA'04 (c) Essex University

