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Abstract— In this paper we introduce a novel mechanism for 
controlling autonomous mobile robots that is based on using 
Spiking Neural Networks (SNNs). SNNs are inspired by 
biological neurons that communicate using pulses or spikes. As 
SNNs have shown to be excellent control systems for biological 
organisms, they have the potential to produce good control 
systems for autonomous robots. In this paper we present the use 
and benefits of SNNs for mobile robot control. We also present an 
adaptive Genetic Algorithm (GA) to evolve the weights of the 
SNNs online using real robots. The adaptive GA using adaptive 
crossover and mutation converge in a small number of 
generations to solutions that allow the robots to complete the 
desired tasks. We have performed many experiments using real 
mobile robots to test the evolved SNNs in which the SNNs 
provided a good response.  

Index terms - spiking neural network; genetic algorithms; 
autonmous mobile robots; robot navigation; fuzzy controllers 

I.  INTRODUCTION 
This work is part of a European Union funded project 

entitled “Self-Organised Societies of Connectionist intelligent 
Agents capable of Learning" (No IST-2001-38911). The three 
year project’s aim is to produce nano-scale autonomous robots 
capable of achieving well defined tasks in difficult, challenging 
and inaccessible environments. An application benchmark for 
this project is the on-line maintenance and repair of filters for 
organ replacement therapy systems.  

Most biological neurons communicate by sending pulses 
across connections to other neurons [1]. The pulse is also 
known as a “spike” to indicate its short and transient nature [2]. 
Such neurons are called spiking neurons and their networks are 
termed Spiking Neural Networks (SNNs). As biological 
organisms have shown to be excellent control systems using 
SNNs then SNNs have the potential to produce good control 
systems for autonomous robots [2].  

SNNs are deemed computationally more powerful than 
conventional artificial neural network formalisms on the basis 
of extensive theoretical work by Maass [3]. “Computationally 
more powerful” implies that SNNs need fewer nodes to solve 
the same problem than conventional artificial neural networks 
[3]. From an implementation viewpoint, this means that SNN 
circuits of the same complexity can provide “more for less” 

compared to other neural network implementations (such as the 
multi layer perceptrons). In addition, SNNs provide a number 
of other desirable features such as noise-robustness (tolerance 
to background noise) and simple real-world interfaces [4].  

The computational power of SNNs exist because of the 
intrinsic time-dependent dynamics of spiking neurons that 
allow the temporal patterns of sensory-motor events to be 
captured and exploited more efficiently than the other 
connectionist models (i.e. with fewer neurons and simpler 
circuits) [1,3]. Moreover, SNNs can be mapped easily to 
hardware because the spikes are in essence binary events and 
the non linear dynamics and the coding of spiking circuits can 
be provided by spiking times, rather than by non linear, real 
valued activation functions used in the traditional connectionist 
neuron models [2]. In other words, a few logic operations and 
instructions to move around single bits over time would be 
sufficient to embed large circuits of spiking neurons that 
display complex abilities and behaviours into tiny and low 
power chips. Therefore such SNNs will be appropriate control 
mechanisms for our nano-scale autonomous robots as they can 
give a very good response dealing with noise using tiny chips 
that consume little power in inaccessible environments. This is 
a big advantage especially as both memory and power are 
extremely limited on the micro and nano-scale platforms 
currently being developed by the project.  

There have been many applications of SNNs to robotics; 
most of these applications are focused on the first stages of 
sensory processing and on relatively simple motor control. For 
example [5] developed neuromorphic vision circuits that 
emulate interconnections among neurons in the early layers of 
the biological retina in order to extract motion information and 
implement a simple form of attentive selection. These vision 
circuits have been interfaced with a robot to follow lines. In [6] 
they developed an analog VLSI circuit with four spiking 
neurons capable of controlling a robotic leg and adapting the 
motor commands using sensory feedback. This circuit’s size is 
less than 0.4 mm2 and it consumes less than 1 microwatt.  

Despite these interesting implementations, they did not 
produce methods for developing complex SNNs that could 
display minimally cognitive functions or learn their behaviours 
through autonomous interactions with their environment [1]. 
Implementations of SNNs are difficult as the hand design of 
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SNNs that display a desired functionality is not a trivial task 
because of the highly non linear dynamics [2]. Furthermore, the 
learning algorithms developed for SNNs are often restricted to 
very simple and application specific architectures [7]. 

Artificial evolution through Genetic Algorithms (GAs) is 
therefore an interesting method to discover SNNs that 
autonomously develop desired behaviours for robots without 
imposing constraints on their architecture and functioning 
modality. GAs have been used to evolve SNNs for a task of 
vision-based navigation using a Khepera robot to navigate in a 
rectangular arena with textured walls [1]. Implementation of 
these SNNs in digital microcontrollers with size and power 
consumption competitive with analog VLSI chips has also been 
described [2]. Their controller was implemented in a small 
robot only 2 cm long [2]. However in [1,2] they evolved only 
the signs of the SNN’ s weights leaving the values of weights 
constant to 1. They have used a GA with fixed crossover and 
mutation probabilities and they have used a large population of 
60 chromosomes. Their GA converged after 30 generations 
where each generation took about 80 minutes using the real 
robots, so their GA converged after approximately 40 hours.  

In this paper we introduce an adaptive GA which uses 
adaptive crossover and mutation probabilities. We used our 
adaptive GA to evolve the weight values and signs of the SNNs 
online in a relatively short time interval using real robots 
interacting with their environment. We will show many 
experiments in which we evolved good SNN controllers in a 
small number of generations.  

In Section II we will introduce SNNs and their operation. 
Section III introduces the online adaptive GA. The application 
of SNNs to mobile robots is introduced in Section IV. 
Experimental results are introduced in Section V and 
conclusions and future work are presented in Section VI. 

II. SPIKING NEURAL NETWORKS 

The “ time aspect”  of SNNs is responsible for their 
computational power. In virtually every artificial computing 
machine one is keen to ensure that the timing of individual 
computation steps adheres to a global schedule, which is 
independent of the values of the input variables [3]. For 
example, layer d of a feed forward neural network is required 
to produce its output at step Kd of the computation regardless of 
the values of the inputs to the network [3]. In contrast to that, 
the firing times of neurons in a biological neural system depend 
on the input to that system [3]. Hence networks of spiking 
neurons (which are very close to the real world biological 
neural network) are capable of exploiting time as a resource for 
coding and computation in a much more sophisticated manner 
than virtually all other common computational models [7,8].  

The state of a spiking neuron is described by the voltage 
difference across its membrane, also known as membrane 
potential v [1]. Incoming spikes can increase or decrease the 
membrane potential. The neuron emits a spike when the total 
amount of excitation induced by the incoming excitatory and 
inhibitory spikes exceeds its firing threshold . After firing, the 
membrane potential of the neuron resets its state to a low 
negative voltage during which it cannot emit a new spike, and 

it gradually returns to its resting potential. The recharging 
period is called the refractory period. 

There are several models of spiking neurons that account 
for these properties with various degrees of detail. In this paper 
we will use the Spike Response Model (SRM) [9]. It has been 
shown that several other models of spiking neurons, such as the 
class of Integrate and Fire neurons (where the membrane 
potential of the neuron is immediately reset to its resting value 
after a spike), represent special cases of the Spike Response 
Model [1,9]. 

In the SRM, the effect ε of an incoming spike on the neuron 
membrane is a function of the difference 

 ftts −= . (1) 

Where t is the current time and t f is the time when the spike 
was emitted (firing time). The properties of the function are 
determined by the following:  

• The delay ∆ between the generation of a spike at the 
pre-synaptic neuron and the time of arrival at the 
synapse.  

• A synaptic time constant τs. 

• A membrane time constant τm. 

The idea is that a spike emitted by a pre-synaptic neuron 
takes some time to travel along the axon and once it has 
reached the synapse, its contribution to the membrane potential 
is higher as soon as it arrives but gradually fades as time passes 
[1]. A possible function ε(s) describing this behaviour is shown 
in Fig. 1(a) and can be written as follows [1]: 

( ) ( )[ ] ( )[ ]( ) ∆≥∆−−−∆−−= ssss sm :exp1exp ττε
∆<s:0 . (2) 

Once a neuron has emitted a spike, its membrane potential is 
set to a very low value to prevent an immediate second spike 
and then it gradually recovers to its resting potential. The speed 
of recovery depends on the membrane time constant τm. A 
possible function η(s), for this refractory period is shown in 
Fig. 1(b) and can be written as follows [1,9] 

 ( ) [ ]mss τη −−= exp . (3)           

We can now put together the equations describing synaptic 
contributions and the refractory period to describe the 
dynamics of a neuron that has several synaptic connections 
from the input neurons. Each synaptic connection has a weight 
wij which can be negative (inhibitory) or positive (excitatory). 
The membrane potential of a neuron i at time tc is given by      
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Where j is the pre-synaptic neuron and i is the post-synaptic 
neuron. wij is the weight of the synaptic connection between 
neuron i and neuron j. N is the total number of the pre-synaptic 
neurons. tc is the current time. sj is an application of (1) for the 
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pre-synaptic neuron j and si is an application of (1) for the post-
synaptic neuron i.  

 
Figure 1.  (a) Function describing ε  (b) Function describing refractory period 

If the membrane potential vi(tc) is equal to or larger than the 
neuron threshold θi, the neuron emits a spike (fires) at ti

f and ηi 
takes a very low value that prevents an immediate new spike. 
After that, ηi is computed according to (3). 

As it is complex to solve (4) [10], in each control cycle 
which takes T time steps we will iterate over tc to find when (4) 
exceeds the threshold at the time the spike was emitted. For our 
robots the control cycle takes 100 ms thus we have set T to be 
100 and each time step is 1 ms. 

In our SNNs the robot sensor inputs are connected to the 
pre-synaptic neurons, while the actuator’ s outputs are 
connected to the post-synaptic neurons.  

In SNNs, a single spike is a binary event that can encode 
only the presence or absence of a stimulus. There are many 
ways of mapping the sensor’ s analog value to spikes at the 
beginning of the control cycle. One method consists of 
mapping the sensor analog value to the firing rate of the 
neuron; this method is based on the hypothesis that a neuron 
increases its firing rate to indicate a high analog sensor value 
[1]. This is biologically inspired from the frog in which the 
firing rate of a stretch receptor in the frog’ s leg is a 
monotonically increasing function of the strength of 
stimulation [11]. Another method for mapping consists of 
encoding the sensory stimulation across several neurons and 
mapping the intensity of the stimulation into the number of 
neurons that spike at the same time [1]. This method is based 
on the hypothesis that the brain represents meaningful 
information by synchronising spiking activities across several 
neurons, this has been supported by measurements in the visual 
and temporal cortex of monkeys [12].  

Another method for mapping sensor values to spikes 
consists of encoding the strength of the sensor value in the 
firing delay of the neuron. The underlying hypothesis is that 
neurons that receive stronger stimulation fire earlier than 
neurons receiving weaker stimulation, so highly stimulated 
neurons tend to spike sooner. This has been supported by 
measurements in olfactory neurons [13]. In this paper, we use 
the latter method for mapping sensor analog values to spikes. 
This coding system known as “ delay coding”  or “ latency 
coding”  has been used by many researchers as it is simple and 
it is one of very few coding methods that might theoretically be 
used for very fast neural computation [8,14,15] which is 
required in our problem domain.  

For an analog input sensor value xj to pre-synaptic neuron j, 
the firing time tj

f can be calculated as follows [14] 

 j
f
j kxTt −= . (5) 

Where T is the time of the control cycle (100 ms in our 
case) and k is a suitable scaling factor. 

At the end of the control cycle, we need to convert the 
firing of the post-synaptic neuron i, to analog outputs for the 
actuators. We are going to use the delay coding again, so the 
analog output yi passed to the actuator connected to neuron i 
can be written as follows: 

 
c

tT
y

f
i

i

−= .  (6) 

Where c is a suitable scaling factor, ti
f is the firing time for 

the post-synaptic neuron i. The generic architecture of an SRM 
SNN using delay coding is shown in Fig. 2.  

III. ONLINE  GENETIC ALGORITHMS 

Adaptive behaviours in robots cannot be considered as a 
product of the robot in isolation from the world, but can only 
emerge from a strong coupling of the robot and its environment 
[16]. It is desirable that the robots learn their own behaviour 
online through interacting with their real environment rather 
than relying totally on simulations. The fact that it is very hard 
to simulate the actual dynamics of the real world implies that 
effort will go into solving problems that exist only in the 
simulation. Additionally, programs which work well on 
simulated robots might not work properly on real robots [17]. 

Not only are implementations of SNNs difficult to hand 
craft [2] but the learning algorithms developed for SNNs are 
often restricted to very simple and application specific 
architectures [7]. For the mobile robot domain there is a need to 
produce methods for developing complex SNNs that could 
display minimally cognitive functions and learn their 
behaviours through autonomous interactions with the 
environment [1]. 

 
Figure 2.  SRM SNN using delay coding architecture 

Artificial evolution through Genetic Algorithms (GAs) is 
therefore a useful method to discover SNNs that autonomously 
develop behaviours for robots without imposing constraints on 
their architecture and functioning modality. GAs are a 
biologically inspired class of algorithms which do not rely on 
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any analytical properties of the function to be optimised (such 
as an existence of a derivative). They are capable of performing 
an intelligent search for a solution from a nearly infinitely sized 
problem space [18]. GAs are suited to a wide class of problems 
and they are particularly suitable for solving complex 
optimisation problems and therefore suitable for applications 
that require adaptive problem-solving strategies [18]. 

Standard GAs are widely known to be slow as they usually 
require big populations and they only converge after a large 
number of generations. This limits their application to mobile 
robot online learning [18]. However we can use adaptive online 
GAs, rather than standard GAs to find good enough solutions 
in a relatively short time interval [18]. 

Using online GAs, it is desirable to achieve a high level of 
online performance whilst being capable of reacting rapidly to 
changes requiring new actions [18]. Hence it is necessary to 
maintain a limited amount of exploration and diversity in the 
population. These requirements mean that the population size 
should be kept sufficiently small, so that progression towards 
near-convergence can be achieved within a relatively short time 
[18]. Similarly the genetic operators (crossover and mutation) 
should be used in a way that rapidly achieves high-fitness 
individuals in the population [18]. In our online GAs we will 
use small population sizes and we are going to use adaptive 
genetic parameters to speed up the search process.  

We will use a novel method to adaptively change the 
crossover and mutation probabilities based on Srinivas method 
[19]. This method helps us to achieve good crossover and 
mutation parameters that aid convergence in a short time 
interval. The strategy used for adapting the control parameters 
depends on the definition of the performance of the GA. The 
GA should possess the capacity to track optimal solutions and 
the adaptation strategy needs to vary the control parameters 
appropriately whenever the GA is not able to track the located 
optimum [19]. There are two essential characteristics that must 
exist in the GA for optimisation. The first characteristic is the 
capacity to converge to an optimum (local or global) after 
locating the region containing the optimum [19]. The second 
characteristic is the capacity to explore new regions of the 
solution space in search of the global optimum [19]. In order to 
vary Pc (crossover probability) and Pm (mutation probability) 
adaptively to prevent premature convergence of the GA, it is 
essential to be able to identify whether the GA is converging to 
an optimum. One possible way of detecting convergence is to 
observe the average fitness value f  of the population in relation 
to the maximum fitness value fmax of the population. fmax - f  is 
likely to be less for a population that has converged to an 
optimum solution than that for a population scattered in the 
solution space. Pc and Pm are defined as follows: 

 ff
ff
ff

Pc ′≥′′
′−
′′

= :
-

max

max  

 ffPc ′<′′= :1  (7) 

 ff
ff
ff

Pm ′≥
−
−

= :
)’2( max

max  

 ffPm ′<= :5.0  (8) 

Where f  is the larger of the fitness values of the solutions 
to be crossed. f is the fitness of the individual solutions. The 
method means that we have Pc and Pm for each chromosome. 
The type of crossover was chosen to be a one point crossover 
for computational simplicity and real time performance. 

One of the goals of this approach is to prevent the GA 
from getting stuck in a local optimum. As we are using small 
population sizes, we employ a high Pm value of 0.5 to the 
average and sub average fitness chromosomes to introduce 
new genetic material without reducing the search process to a 
random process [19]. The same for the Pc which takes a value 
of 1.0 to ensure that average and sub average fitness 
chromosomes undergo crossover. In [19] they proved that this 
method was superior to the simple GA and gave a faster 
convergence rate of 8:1. This approach produces fast 
converging solutions and adapts the GA for non-static 
environments [16]. It also relieves the designer from 
determining these values heuristically [16]. 

IV. APPLICATION OF SNNS TO MOBILE ROBOT CONTROL 
We are going to apply our SNNs to the control of the 

mobile robot shown in Fig. 3(a). The robot features two 
independently controllable wheels and a bank of nine 
ultrasound sensors. These ultrasound sensors are made up of an 
emitter and receiver pair as shown in Fig. 3(b). All of the 
ultrasound sensors are time multiplexed such that they do not 
interfere with each other. The wheels are connected to stepper 
motors which are capable of variable speeds, both forwards and 
in reverse. The robot is also equipped with four overlapping 
bump sensors which enable the robot to know when it has 
collided with an obstacle.  

 
Figure 3.  (a) The robot  (b) One of the ultrasound sensors used 

The robot runs the VxWorks operating system and is 
programmed by compiling C code with the appropriate robot 
libraries into an object file which can be loaded into the robot’ s 
memory for execution. Communication with the robot is 
achieved across Wireless LAN 802.11b using both the Telnet 
and File Transfer (FTP) protocols. The robot also includes a 
rechargeable battery that allows it to run wirelessly for 
approximately 2.5 hours. 

We have used ultrasound sensors as they represent the sort 
of sensors to be used in our nano robots. The ultrasound 
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sensors used are noisy and imprecise so they allow us to 
evaluate the performance of the SNNs under these conditions. 

In our SNNs, we use a two layer structure, in which the 
ultrasound sensors’  analog value will be the inputs to the 
SNN’ s pre-synaptic neurons and the analog values from the 
post-synaptic neurons will be the outputs to the actuators. So in 
the case of the right edge following behaviour, using the two 
right side sensors means we will have two pre-synaptic 
neurons. As we have two actuators which are the left and right 
motor speeds, we have two post-synaptic neurons and thus we 
will have four weights connecting the two pre-synaptic neurons 
to the two post-synaptic neurons.  

To evolve the SNN controller online we evolve the values 
and signs of the weights of the SNNs; the weights take any 
value between -1 and +1 and we use binary coding in our 
online GAs. The chromosome which represents a possible 
solution for the problem consists of all the weights in the SNN 
and we represent each weight by 5 binary bits. The bit strings 
are combinations of 0 and 1s, which represent positive and 
negative values of the weights in a binary form. An n-bit string 
can accommodate all integers up to the value 2n – 1. So using 5 
bits can represent 25 = 32 integer values, where a weight of +1 
will be equivalent to an integer value of 31, a weight of -1 will 
be equivalent to an integer value of 0 and a weight of 0 (i.e. no 
connection) will be equivalent to an integer value of 15. 
Consequently positive weight values between 0 and +1 will be 
equivalent to integer values between 15 and 31 and the 
negative weight values between -1 and 0 will be equivalent to 
integer values between 0 and 15. In this way we can evolve the 
signs and values of the weights of the SNN. When testing a 
chromosome the weight binary value is mapped back into a real 
weight value between -1 and +1 and applied to the SNN 
controller which the robot uses to move. 

In the case of the right edge following behaviour, each 
chromosome will code four weights and each weight will be 
coded by 5 bits, therefore each chromosome will consist of 5*4 
= 20 bits. As we are using online GAs we have to use small 
population sizes; we have used a population of 4 chromosomes 
in our experiments.  

In all our experiments the robot is started from a random 
location with a random chromosome (i.e. random weights). The 
robot then moves forward a constant distance to test each 
chromosome solution. At the end of this testing, each 
chromosome is allocated a level of fitness according to how 
well it did the specified job. This is repeated until each 
chromosome in the population has been evaluated and assigned 
a level of fitness. We then use the adaptive crossover and 
mutation explained in Section III to generate a new population 
of chromosomes. We used an elite strategy, meaning that the 
best individual is automatically promoted to the next generation 
and used to generate subsequent populations. 

The search for the solution stops when the stopping 
criterion of achieving the desired performance is met. In the 
next section we will show many experiments evolving the SNN 
controllers for mobile robots. 

V. EXPERIMENTS AND RESULTS 
We have performed many experiments to evaluate the 

performance of the SNN controller in mobile robots. Due to the 
limited space we will only introduce as a proof of concept 
experiments related to evolving the right edge following 
behaviour which is needed by the nano robots in our project. 
The aim of the right edge following behaviour is to follow the 
edge at a desired distance. As we explained above we used the 
front and back right side sensors as inputs to two pre-synaptic 
neurons and the two post-synaptic neuron outputs were fed to 
the left and right motor speeds. We used the online GAs to 
optimise the values and signs of the weights as well as their 
existence, for example if weight w11 is optimised by the GAs to 
be zero, then w11 can be removed from the SNN to optimise its 
architecture. The fitness of each solution (Chromosome) 
proposed by the GA can be written as 1 – the scaled average 
deviation from the desired distance. Thus the GA maximises its 
fitness by minimising the average deviation from following the 
edge at the desired distance. 

The robot path was drawn using a pen fixed to the back of 
the robot. In the following experiments we used noisy 
ultrasound sensors and different irregular geometrical 
structures which cause multiple reflections and sonar diffuse 
reflection. We used these noisy sensors and environments in 
order to test the ability of SNNs to deal with noisy 
environments. In all the following experiments, all the scaled 
average and standard deviations from the desired values were 
calculated over four experiments, where we used different 
geometrical structures, started the robot from different random 
locations and used different desired wall following distances 
for the right edge following behaviour. The deviations are 
scaled to have values between 0 and 1. 

To test the quality of the evolved solutions we started 
experiments using handcrafted SNNs in which all the weights 
were either +1, 0 or -1 as used by [1,2]. The SNN controller has 
given a good response as shown in Fig. 4. The robot had given 
a scaled average deviation of 0.23 and an absolute standard 
deviation of 0.16. 

 
Figure 4.  The handcrafted SNN path 

We then performed more experiments to compare the SNNs 
evolved using the adaptive online GA to the SNNs evolved 
using a standard GA to show the benefits of the former. The 
standard GA used the same population size as the adaptive 
online GA and it used fixed crossover and mutation 
probabilities. Fig. 5 shows the results from the comparison 
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between the standard GA and the online GA using adaptive 
crossover and mutation probabilities.  

Figure 5.  Average GA fitness agianst number of generations 

Fig. 5 shows the average fitness of the population (over 
four experiments) plotted against each generation in the GA 
cycle. The dotted line represents the progress of the standard 
GA’ s attempt to improve the quality of the wall following 
SNN. The solid line represents the progress of the adaptive 
online GA. It can be seen that both the standard and the 
adaptive online GA provide a large initial improvement in the 
average fitness of the solutions in the 1st to 3rd generation which 
outperform the hand crafted SNN. In the first few generations 
the indicative benefit of using GAs to evolve the SNNs weights 
can be seen. 

However the standard GA and the adaptive GA both suffer 
from the local minima problem as can be seen in the flat part of 
both lines from generations 3 to 9. The adaptive GA using the 
adaptive mutation and crossover probabilities can escape from 
the local minima and satisfy the desired stopping criteria giving 
a very good best scaled average deviation of 0.0973 whilst the 
standard GA was stuck in an area of local minima and could 
not achieve the desired stopping criteria. The adaptive online 
GA had converged to the required solution and satisfied the 
stopping criteria after only 14 generations which took 40 
minutes of the robot’ s time where most of the time was 
consumed in moving the robot forward and backward to its 
starting position to test a new chromosome. So using our online 
GAs which use small population sizes and adaptive crossover 
and mutation probabilities had resulted in converging to the 
desired solution in a relatively short time interval using the real 
robots.  

The values for the evolved SNN weights using our online 
adaptive GAs are as follows, w11 = 0.453125, w12 = -0.25, w21 = 
0.468750, w22 = -0.25. The evolved SNN has shown to have a 
very good response in the face of noise, uncertainty and 
imprecision as shown in Fig. 6, where it gave a best scaled 
average deviation of 0.0973 starting the robot from different 
starting positions and using different obstacles and geometrical 
set-ups.  

We have also compared the SNN controller against a well 
known technique for dealing with noise, uncertainty and 
imprecision which is the Fuzzy Logic Controller (FLC). As 

shown in Fig. 6, the SNN controller provides a much smoother 
response when compared to the FLC, whilst the FLC has a 
worse scaled average deviation. Also in all cases the SNN 
controller response was repeatable in face of noise, but the FLC 
failed in some cases and collided with the walls. 

These experiments have shown that the SNNs which 
provide a fast processing system, provide very good 
performance in the face of noise and imprecision. 

 
Figure 6.  Wall following path of SNN and Fuzzy controllers 

VI. CONCLUSIONS AND FUTURE WORK 
In this paper, we have introduced a novel controller for a 

mobile robot that is based on SNNs. SNNs are inspired from 
biological neural networks and they provide a fast processing 
system that provide tolerance to background noise. They can 
also be mapped in small programs and thus requires few logic 
operations and instructions to move around single bits. Thus 
large SNNs can be embedded in tiny and low power chips that 
can achieve complex tasks and behaviours. Such SNNs will be 
appropriate control mechanisms for the nano-scale autonomous 
robots developed by our project as they can give a very good 
response when dealing with noisy, inaccessible environments 
whilst consuming little power. This is a big advantage 
especially considering that both memory and power are 
extremely limited on the micro and nano-scale platforms 
currently being developed by the project.  

We have presented an adaptive online GA based system 
that was used to evolve the SNN controller online through 
interaction with the real environment; it converged in a 
relatively short time interval in a small number of generations 
and produced a very good solution that outperformed the 
standard GA. The evolved SNN controller also provided an 
acceptable solution to the wall following problem even when 
compared with a Fuzzy controller benchmark; the SNN 
controller gave a smoother and better response.  

The results shown in this paper for the edge following 
behaviours only provide sample behaviour as we have also 
developed other SNN behaviours. Also, we are currently 
working on evolving more complex behaviour that is needed 
by nano robots in three dimensional environments.  As part of 
the project we are currently mapping the evolved SNN 
controller to evolvable FPGA hardware.  
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Much of the time in GA evolution was spent waiting for 
robot to return to the starting position. It has been a popular 
trait in mobile robot research to use simulation rather than real 
robots to produce solutions. However, previous experience has 
shown that solutions evolved in a simulated environment rarely 
function as well or even as expected when placed back into the 
real world. With this in mind, we are currently working on a 
simulator for the robot that is able to work alongside real world 
experiments. 

For our future work we intend to extend the online GAs to 
evolve other parameters of the SNNs like the membrane and 
synaptic time constant. The ultimate goal in this thread of 
research is to produce an adaptive GA that is able to evolve 
both the parameters and the structure of the SNN to produce 
solutions to more complex behavioural problems.  

By the end of the project we hope to implement SNNs on 
VLSI to produce controllers for small robots. These small 
robots will communicate with each other to collaboratively 
solve problems in complex and inaccessible environments.  
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