
In 5th IFAC Symposium on Intelligent Autonomous Vehicles (IAV 2004), Lisbon, 5 to 7 July 2004 

© Essex University 2004 1 

 

 

I Spatially Integrate Therefore I Am… Lost?  

A New Benchmark For Autonomous Mobile Robot Navigation   
 

Simon J Egerton, Vic Callaghan 

University Of Essex, Wivenhoe Park, Colchester, CO4 3SQ, England 

egers@essex.ac.uk vic@essex.ac.uk 
 

 

Abstract 
In this paper we introduce a spatial integration model 

that is currently under development.  We have developed 

a set of tools and methods to help benchmark 

applications of the model to autonomous mobile robots 

situated in indoor and outdoor environments.  We 

present the Lost Metric benchmark, a new evaluation 

method that is grounded to a pragmatic navigation task, 

localisation.  We report on results of its application to 

some implementations of the model.  

 

 

1. Introduction 
 

With the growing number of spatial integration models 

being developed for autonomous mobile robots, there is 

also a growing need for a standard set of benchmarking 

tools with which to measure performance and to make 

comparisons, quantitatively.  In a step towards this goal, 

we offer in this paper a metric that can be used in such a 

way.  The benchmark we introduce is based upon a 

pragmatic navigation task that is central too most spatial 

models, localisation. 

To demonstrate the “Lost Metric” benchmark, we use 

examples of the spatial integration model shown in 

Figure 1, which is under continual development. 

In the remainder of the paper we give an overview of the 

spatial model we are developing and describe the lost 

metric and the benchmark.  We report on the methods of 

evaluation and results of an application of the 

benchmark over a range of implementations of the 

model. 

 

2. A Biologically Inspired Spatial Model  
 

Figure 1 illustrates the overall model.  The model 
introduces two concepts, firstly the notion of a 
“Perception Space” and secondly the notion of a 
“Geometric Space”.  The “Perception Space” is 
constructed directly from the robots sensory 
impressions.  These sensor impressions are defined as 
sensor element activation’s relating to some fixed 
physical location in the robots environment (generally 

not directly equitable to objects in the “human” 
perception domain) and we term these “Perception 
Signatures”.  These Perception Signatures are 
categorised by the “Perception Space” modules, each 
category formed is termed a “Perception Class”.  The 
“Geometric Space” module is a geometric framework 
and its purpose is to relate geometric areas to perception 
classes in the perception space modules.  This forms 
“Perception Areas”, which are homogenous areas 
sharing the same perception class, as illustrated by 
Figure 1.  A navigable map is formed in the later stages 
by adding the geometric spaces together; this can be a 
selective process, the selection based on quality of 
sensory data or quality of navigation paths, for example.  
The inspiration for this model was originally derived 
from the biological literature and is based on 
mammalian spatial integration theory [1, 3].  This is a 
very brief overview of the model and [4] gives a fuller 
description of the model. 
 

2.1. Model Benchmarking 
  
With respects to the many varied implementations of the 

spatial model in the mammalian world, there are as 

many varied implementations in the autonomous mobile 

robot world too.  Many factors effect how the model is 

applied to a robot situated in a real environment.  Those 

factors primarily include the type of target environment, 

the abilities of the target robot, and the target 

application.  It becomes apparent that we need to have 

some method of benchmarking each application of the 

model.  Primarily, the benchmark should indicate which 

implementation within a given situation is the “better”, 

the notion of “better” depending upon design criteria.  

And, while we believe that there is no generalised 

solution for the model, as the potential set of 

implementations over a range of environments, sensors 

and robots are as diametrically varied as they are 

numerous.  Benchmarking might allow generalisations 

to be made over a range of environments, sensors, and 

robots. 
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Figure 1. Architecture of the spatial integration model. 

 

3. The lost metric 
 

Generally, for purposes of navigation, a map is only 

useful if we know where we are within it.  Furthermore, a 

map is really useful if we can use it to find where we are 

within it, if for some reason, we become lost. Moreover, a 

map that lets one localise, when lost, with the least 

amount of effort is more useful than one that does not.  

The lost metric is based upon this notion of usefulness, 

which then forms the basis of the benchmark to be 

described later.  To measure the usefulness of a generated 

map in these terms we consider random locations within 

the mapped area and calculate the amount of effort 

required to locate ones self again from these locations.  

The amount of effort this takes can be quantified into the 

number of steps one takes, and also the size and similarity 

of the areas with the map that made the steps necessary in 

the first instance.     

These notions are reflected in the design of the Lost 

Metric for which we introduce two new concepts, firstly 

the notion of an “Adaptive Perceptual Area Inference 

Map” and secondly the “Lost Metric Function” itself, now 

described in the following sections.    

 

3.1. Adaptive perceptual area inference map 
 

The first three stages of the model are arguably the most 

important ashey deal with the robot’s sensors, the 

construction of the perception signatures, and the 

categorisation of those signatures.  Also an 

implementation of these stages involves many design 

decisions, these decisions influenced by the application of 

the robot, as discussed above.  In contrast, the later three 

stages are common to all implementations; they contain 

the components that are theorised to be common to all 

mammalian examples of the biological model [3].  For 

these reasons we apply the lost metric benchmark to the 

third stage, the Perception Space Modules, to 

quantitatively evaluate the design decisions taken.  We 

need to construct a perceptual map to facilitate this 

evaluation.  The perceptual map exhibits the properties 

needed for the lost metric evaluation, as explained in 

following sections.  The perceptual map grounds the 

perceptual classes within a perception space into a 

geometric frame, assigning them to one or more 

Perception Areas. 

A perceptual map is calculated from the perceptual 

classes of a perception space module and their geometric 

locations, as provided by odometry data, for the purposes 

of evaluation.  The odometry from the Pioneer robot is 

used directly; there is no need for filtering, since the data 

is sufficiently accurate from within the evaluation 

environments in the laboratory.   

 

 
Figure 2. From the perception signatures experienced by the 

robot along its path, Perceptual Area Inference Maps are 

generated using the robot’s odometry and the perceptual classes 

generated from the perception space modules. 
The odometry is used to assign perception classes along 

the robots path were they were experienced.  Each 

location along the path is grown and or shrunk, so that no 
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location of a different perception class overlaps. 

Locations that overlap and are of the same perception 

class are merged and a Perception Area formed.  Where 

the situation arises such that an area is of the same type, 

but do not overlap, they are treated as separate perception 

areas.  Such a situation may arise from perceptual aliasing 

or from two perceptual classes being in close proximity 

along a stretch of the robot’s path.  This process is 

adaptive and converges on a set of Perception Areas that 

“best” fit the parts of the environment the robot has 

explored. The area for each Perception Area is calculated.  

Areas are considered as neighbouring if they touch or if 

they have been neighbours along the path of the robot.  

These notions are illustrated in Figure 2; perception areas 

are assigned colours relating to their perceptual class.  

When the signature classes are grown from their locations 

in this way, it speculatively extends their region of 

influence away from the original path over an area as yet 

unexplored by the robot.  Hence, the term “inference 

maps”.  Speculation is required since the model is 

grounded in perceptions that are experienced at locations.  

The speculation is based on the continuity of successive 

signature classes along the path of the robot, Figure 2.   

 

3.2. Lost metric function 
 

The lost metric can be applied to any model that models 

the environment with the two properties of having defined 

areas of similarity and of having relations between those 

areas.  In the case where the model or part of the model 

does not explicitly have these properties then an inference 

map maybe generated, similar to the one described above.  

We use the perceptual inference map to evaluate the 

usefulness of the perception space modules with the lost 

metric, and we use the inference map as an example to 

explain the lost metric in the following.  

 

 
Figure 3. A line of the robot’s path is described by a set 

Perception Areas.  This description can be at two extremes.  The 

first extreme shows the path described by many small 

perception-areas Pa1 to Pa14.  A perception area may reduce to 

a point at its most extreme.  The other extreme shows the path 

described by few large perceptions-areas Pa15 to Pa17. A 

perception area may increase to fill the entire environment at its 

most extreme. 
 

If the robot is lost within the perceptual inference map, 

and if it occupies a perception area that is unique, no 

localisation is necessary.  However, if the area is not 

unique, then it is necessary to visit other perception areas 

until a unique perception area, or a unique sequence of 

perception areas, is encountered.  Therefore, a localisation 

path within the map may contain one or more perception 

areas and one or more localisation steps.  A localisation 

step is taken to be the number of perception areas with the 

localisation path.  The key to the lost metric is the 

interpretation of how a length of a robot’s path can be 

described in the inference map by a set of perceptual 

areas; the two extremes of the description are illustrated 

in Figure 3.  At one extreme, numerous small perception 

areas describe the path and at the other extreme, the path 

is described by one large perception area. Moreover, 

either of these extremes maybe a sign that the 

classification in the Perception Space module has failed. 

However, it maybe that the application calls for such 

extremes and is actually desirable. At the extreme of 

many small perception areas, storage and computational 

costs increase, as do the risks of perceptual aliasing.  

However, it is desirable to be able to localise within the 

space of one perception area. 

Two values are calculated for each localisation path, a 

“Localisation Steps Value” and a “Localisation Area” 

value, and these are used to calculate a lost metric value 

for the path.   

The “Localisation Steps” value is equal to the number of 

perception areas in a localisation path; the value can range 

from one upwards to the number of perception areas in 

the inference map.  The step value is passed to the 

“Localisation Steps” function defined by equation (1).  

The function returns a value in the range of 0 and 1.  The 

function’s behaviour depends on the values of two 

parameters.  These parameters form part of the lost metric 

criteria.  The function returns 1 in the best case, the 

criteria have been met, and 0 in the worst case.  The worst 

case also accounts for the situations where the localisation 

steps are infinite, if the robot were unable to localise, for 

example.  The number of steps to be considered as ideal is 

set by  and tolerance for steps beyond is set by the 

value of .  The criteria becomes more relaxed for larger 

values of and . For example, if , then up to 

and including 5 localisation steps in a localisation path is 

considered as ideal.  If then no tolerance is given to 

values beyond 5 steps.  Naturally,  and , are 

the ideal.  However, what the values actually are 

pragmatically, depends on the conditions acceptable for 

the desired application. 

 

 
 

(1) 

 

 

The “Localisation Area” is equal to the sum of the 

perception area areas in a localisation path; the value can 

range from the area of a single location in the map, to the 

area of the entire explored environment.  The area value is 

passed to the “Localisation Area” function defined by 
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equation (2).  The function takes the localisation area 

value as its argument and returns a value in the range of 0 

and 1.  The function’s behaviour depends on the values of 

four parameters. 

 

Figure 4. Graph of the Lost Metric function.  The parameters 

are , , , , , , 

and were chosen for illustrative purposes.  The plateau 

represents the ideal case. 
 

These parameters form part of the lost metric criteria.  

The function returns 1 in the best case, the criteria have 

been met, and 0 in the worst case.  The worst case also 

accounts for the situations where the localisation area is 

infinite, if the robot were unable to localise.  The range of 

area considered ideal is set between the minimum  and 

the maximum . The tolerance of areas below the ideal 

minimum is set by and the tolerance of areas above the 

ideal maximum is set by .  The criteria becomes more 

relaxed for larger ranges of area, between  and and 

for smaller values of and .  For example, if 

 and  then all areas between and 

including these sizes would be considered ideal.  If 

, then reasonable tolerance is given to areas 

below 0.3cm
2
 and if , then very little tolerance is 

given for areas beyond 0.5cm
2
.  The amount of tolerance 

given to a criteria maybe visualised by plotting function 

graph.  The ideal localisation area depends on the 

conditions acceptable for the desired application. 

 

 

 

(2) 

 

The Lost Metric function is defined by equation (3) and is 

the product of equation (1) and equation (2).  The 

function takes both the localisation steps and the 

localisation area values as its argument and returns a 

value in the range of 0 and 1.  The function returns 1 in 

the best case localisation path and 0 in the worst case, 

according to the defined criteria.  A graph of an instance 

of the Lost Metric function defined by equation (3) is 

illustrated in Figure 4. 

 

 (3) 

 

Although we have illustrated the Lost Metric with the 

perceptual inference map, the notions are readily 

extendable to other models that exhibit the localisation 

steps and localisation area properties, as described above. 

 

4. Paths of evaluation 
 

If the robot is lost within a mapped area, then it needs to 

localise, using the map.  The localisation process may 

follow two philosophies.  When the robot knows that it is 

lost, it may choose to ask the following questions:   

 

1) Where am I?    

 

2) Where was I when I became lost? 

 

There may be a natural order to these questions, once the 

first has been answered the robot is then in a position of 

answer the second.  It may be argued that a true measure 

of how useful a map is, is one that considers the costs 

involved in answering both these questions.  However, for 

the purposes of assessing the Perceptual Space module we 

choose to answer the later question, as it seems the more 

appropriate of the two.   

In order to justify this view, we illustrate the differences 

between the two questions by considering them within a 

simple Starmaze environment, illustrated in Figure 5.  The 

Starmaze is constructed from a set of perception areas.  

The centre of the Starmaze is of one perception type and 

the nine arms of the Starmaze are of the same perception 

type but differing from the centre.  

We examine each of the localisation questions in turn 

with respects this environment, assuming the robot is lost 

somewhere inside.  We further assume that the robot’s 

odometry has malfunctioned and is unreliable.  Therefore, 

it is using only its external perceptions to localise itself 

with, but it does have an accurate perceptual map of the 

environment. 
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Figure 5. A Starmaze, all the areas of the maze are of the same 

perception type, with the exception of maze centre. 
 

To answer the question of “Where Am I?” If the robot 

were not fortunate enough to be currently in a unique 

location, for example, in one of the maze arms, it would 

need to explore further.  The robot would need to explore 

to either find a location that was unique, the maze centre 

in this case, or to explore a path that was unique to the 

subsequent current location.  Under these conditions, the 

robot can reliably answer the question 100% of the time, 

by navigating to the centre of the maze.  However, to 

answer the question of “Where was I when I became 

lost?” If the robot were again not currently in a unique 

location, one of the maze arms, then it would need to 

explore a path that was unique starting from the location 

of where it currently was.  Under these conditions, the 

robot can reliably answer the question only 10% of the 

time, since no unique path exists from the maze arms. 

Therefore, for assessing the quality of the perception 

space module, or map, or a model in general, we 

recommend generating localisation paths based on the 

second question.  Since, the second question includes the 

notion of rewarding symmetry and aliasing with lower 

metric values, so rejecting apparently perfect solutions for 

potentially better ones, if they exist.  It is also worth 

noting that a perception space scoring highly with the 

“Where I became lost?” question, is guaranteed to also 

score highly with the “Where Am I?” question too.  

However, the opposite is not true, as shown in the above 

example.  Moreover, if the ideal set of criteria is satisfied, 

that of localising within one localisation step and within 

the desired localisation area, both of the localisation 

questions converge to the same solution, the solution 

where all of the Perception Areas are unique.  

 

5. Experimental setup 
 

The first three stages of the model are applied to the 

Pioneer robot that we have in the laboratory.  The Pioneer 

is equipped with a set of wheel encoders, which it uses to 

provide odometry information, a set of ultrasound sound 

sensors, which it uses to freely wander around a target 

environment, Figure 6, and a panoramic vision sensor [4], 

which it uses to generate perception signatures. 

The first stage of the model, as implemented on the robot, 

consists of an Omni-directional colour camera placed on 

the top and about the centre of the robot.  A video sender 

sends the video information to a frame grabber connected 

to a standard PC, where the information is collected and 

processed.  The frame grabber samples a 24-bit colour 

frame, at a resolution of 384 pixels by 284 pixels, at a 

frequency of 5Hz.  The collected video data is very noisy 

and suffers from dropped frames, interference, “salt and 

pepper” noise and gaussian noise. Each raw frame is 

filtered with gaussian and median filters that remove 

some, but not all, of the 2-Dimensional noise.  The video 

data is also greatly effected by lighting conditions.  

However, the conditions are acceptable for experimental 

purposes and were constant over the duration of the 

experiments. 

 

 
Figure 6. A picture of a typical laboratory environment, this 

shows a well lighted, colourful environment covering an area of 

approximately 4 square meters. 
 

 
Figure 7. The raw panoramic image is divided into n sectors of 

arc m. Sectors are bounded by  and , forming the 

Element Areas.  The arithmetic mean is taken of each element 

area forming the perception signature elements. The background 

is a raw RGB perception signature bounded by  and 

, . 

 

The filtered frames passed from the first stage are 

processed by the second stage into Perception Signatures.  

Frames are separated into six component frames of Red, 

Green, Blue, Hue, Saturation and Intensity and a 

perception signature generated from each.  A Perception 

Signature is a 128-element vector of real numbers, the 

size of 128 is calculated to be the optimum.  Segmenting a 
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raw frame about its centre and taking the arithmetic mean 

of the pixel values within a bounded area of the segment 

forms the vector of real numbers, Figure 7.  Each 

perception vector is cyclically shifted to minimise the 

Euclidean distance between a suitable reference vector, to 

account for rotational error.   

  Perception space modules process the perception 

signatures from the second stage.  We have implemented 

four types of perception space module using standard 

classifier algorithms; a Leader classifier [7]; a K-Mean 

classifier [8]; a Growing Cell Structure [5] and a Fuzzy-C 

mean classifier [2].  The parameters associated with each 

classifier are fixed to suitable values, given in Table 1, but 

the maximum classes, N, a classifier can create is 

variable. 

An instance of a perception space module is first trained 

with data from an initial exploration wander around the 

target environment, Figure 6.  We collect a training data 

set over a 60-minute exploration wander, which produces 

six sets of perception signatures, containing 

approximately 16000 signatures each.  An instance of a 

perception model is tested with data from subsequent 

explorations.  We collect three sets of test data, from three 

separate explorations, each producing six sets of 

perception signatures, which contain approximately 5000 

signatures each.  

Table 1. Fixed parameters for the perception module classifiers 

Classifier Fixed Parameters 

Leader  

K-Means  

Growing Cell  

Fuzzy C-Means  

 

Three perceptual area maps are generated from a trained 

perception space module, one for each test data set.  A 

10% random set of locations is chosen from within each 

perceptual map, and localisation paths calculated, 

.  These localisation paths are used to evaluate 

the usefulness of the perception module using the lost 

metric benchmark described below.  

 

6. Experimental results 
 

Twenty-four implementation methods are created from 

the six perception signature types and the four perception 

module types.  We describe how the lost metric is used to 

evaluate the usefulness of these twenty-four methods.  

6.1. The lost metric benchmark 
  

A lost metric value, based on a chosen set of lost metric 

criteria, is computed for each localisation path and the 

Root Mean Square Error is calculated, equation (4).  This 

RMSE value is the perception modules benchmark value.  

A RMSE value of 0 represents the best case and a value 

of 1 the worst case. 

 

 

 
(4) 

 

6.2. The benchmark results 
 

The aim of an implementation, or model in general, is to 

minimise the lost metric RMSE benchmark value.  In this 

case, we wish to find the instance of the perception space 

module that does this.  We have fixed all parameters 

associated with the four types of module, Table 1, and 

allow the classes to vary.  A search is conducted within 

the class space to find the instance that minimises the 

RMSE benchmark value.  The procedure applied to each 

implementation method is illustrated in Figure 8.  The lost 

metric criteria values we used are , , 

, , , .  Localisation area is 

expressed in robot areas units, is set to an area of 1.5 

times the robot areas.  The area of the Pioneer robot is 

418cm
2
. 

 

 

Figure 8. Searching the space of classifiers.  

The results from the evaluation are recorded in Table 2.  

The table shows the instances of all the methods that have 

produced the minimum RMSE values, N is the number of 

classes in the perception module.  

Table 2. Minimum RMSE values for the specified criteria  
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Using the information presented in Table 2 we are able to 

select the best method, which is the module implemented 

with the K-Means classifier and the intensity perception 

signatures, under the given set criteria.  The perceptual 

inference map from one of the test runs for this method is 

overlaid onto a stylised plan view of the target 

environment, Figure 9.  The perceptual map in Figure 9 

shows that the perception areas appear to be reasonable. 

 

 
Figure 9. The Perceptual Area Inference Map generated by the 

K-Means module and the intensity signature, RMSE = 0.462, 

under the criteria of , , , , 

, .  The inference map has been scaled and 

overlaid, matching the starting points, onto a stylised plan view 

of the target environment, Figure 6.   
It can be seen that the perception space module with the 

smallest RMSE had a value of 0.462.  In future work we 

will extend the search space to include all the classifier 

parameters in Table 1 and employ a genetic algorithm [6] 

search to attempt to reduce this value further.  

 

The perception signatures describe above are sufficient 

for the purposes described here.  However, they throw 

away much of the information in the original vision frame 

and are limited in the descriptive information they 

convey.  We will further the research by investigating 

knowledge rich perception signatures [9], for example. 

  

7. Conclusions 
 

The biologically inspired model described in this paper 

was used to demonstrate how a new metric could be used 

to benchmark a range of implementations of the model.  

The lost metric is a useful tool that is used to express the 

usefulness of a model in terms pertinent to the navigation 

task, that of localisation. Moreover, where a model is 

defined by many parameters, the methods described here 

offer a method for automatically searching for the best 

solution. We feel this methodology and metric could be 

especially useful to robot constructors who need a method 

of optimising design parameters for particular 

applications We hope this metric will be adopted more 

widely, thus enabling quantitative comparisons to be 

drawn between the many spatial integration models that 

currently exist today.    
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