
In Proceedings of the IEEE International Conference on Fuzzy Systems, pp. 1105-1110, Budapest, 

Hungary, July 2004. 

© Essex University 2004 1

AType-2 Fuzzy Embedded Agent For Ubiquitous 

Computing Environments 

Faiyaz Doctor, Hani Hagras, Vic Callghan  
Department of Computer Science, University of Essex 

Wivenhoe Park, Colchester, CO4 3SQ, UK 

Email: fdocto@essex.ac.uk, hani@essex.ac.uk, vic@essex.c.uk 

 

 

Abstract--- In this paper, we describe a novel system for learning 

and adapting type-2 fuzzy controllers for intelligent agents that 

are embedded in Ubiquitous Computing Environments (UCE). 

Our type-2 agents learn online in a non intrusive manner and in 

a life long learning mode the user behaviours to control the UCE 

on the user’s behalf. We have performed unique experiments in 

which the type-2 intelligent agent has learnt and adapted online 

to the user’s behaviour during a stay of five days in the 

intelligent Dormitory (iDorm) which is a real ubiquitous 

computing environment test bed. We will show how our type-2 

agents deal with the uncertainty and imprecision present in UCE 

to give a very good response that outperforms the type-1 fuzzy 

agents while using a smaller number of rules.  

 

I. INTRODUCTION 

 

Ubiquitous computing also referred to as pervasive computing, 

is a paradigm in which computing technology becomes 

virtually invisible by being embedded in our environments. 

These Ubiquitous Computing Environments (UCE) will 

contain networked embedded computer artefacts that can 

interact with the users living or working within them. The 

challenge however is how to manage and configure the 

computer-based artefacts and systems present in these 

ubiquitous environments in a seamless and non-intrusive way; 

without the user being cognitively overloaded by having to 

manually configure these devices to achieve a desired 

functionality. The vision of Ambient Intelligence was 

introduced to address this challenge [2]. In this vision people 

are empowered through a digital environment that is “aware” 

of their presence and context, and is sensitive, adaptive and 

responsive to their needs [2]. One approach to achieve this 

vision of ambient intelligence is to embed intelligent agents in 

the user environments so that they can control them according 

to the needs and preferences of the user.  

    Intelligent agents in UCE are facing a huge amount of 

uncertainties as the inputs to the agents are uncertain because 

the sensors measurements are noisy and imprecise and are 

affected by the environment conditions. In addition, the 

outputs of the agents are also uncertain due to the change of 

actuator characteristics with the changing environmental 

conditions. For example there would be a difference between 

low light level on a bright sunny afternoon in late summer and 

low light level on a dim overcast afternoon in mid winter. 

Moreover, the environmental factors such as the external light 

level and temperature change and time of day (morning, 

evening...etc) can vary over a considerable long period of time 

due to seasonal variations. However, the main cause of 

uncertainty is humans occupying these environments as their 

behaviours and moods are dynamic and non-deterministic and 

change with time and season, in addition, different words 

means different things to different people.  

    The Fuzzy Logic Controller (FLC) is credited with being an 

adequate methodology for designing robust controllers that 

are able to deliver a satisfactory performance in face of 

uncertainty and imprecision, however most of the FLC 

applications use the type-1 FLC. Type-1 FLCs have the 

common problem they cannot handle or accommodate for the 

uncertainties as they use precise type-1 fuzzy sets. Type-1 

fuzzy sets handles the uncertainties associated with the inputs 

and outputs by using precise and crisp membership functions 

that the user believes capture the uncertainties [6]. Once the 

type-1 membership functions have been chosen, all the 

uncertainty disappears, because type-1 membership functions 

are totally precise [7]. 

    A type-2 fuzzy set is characterized by a fuzzy membership 

function, i.e. the membership value (or membership grade) for 

each element of this set is a fuzzy set in [0,1], unlike a type-1 

fuzzy set where the membership grade is a crisp number in 

[0,1] [6]. The membership functions of type-2 fuzzy sets are 

three dimensional and include a footprint of uncertainty, it is 

the new third-dimension of type-2 fuzzy sets and the Footprint 

Of Uncertainty (FOU) that provide additional degrees of 

freedom that make it possible to directly model and handle 

uncertainties [6,7]. Therefore FLCs that use type-2 fuzzy sets 

to represent the inputs and outputs of the FLC can handle the 

uncertainties facing embedded agents in UCE to produce a 

good performance. Moreover, using type-2 fuzzy sets to 

represents the FLC inputs and outputs will result in the 

reduction of the FLC rule base when compared to using type-

1 fuzzy sets. This is because type-2 fuzzy sets rely on 

uncertainty represented in the footprint of uncertainty to cover 

the same range as type-1 fuzzy sets with much smaller 

number of labels [6].  

    In this paper, we will present a novel system for learning 

and adapting type-2 fuzzy controllers for agents that can be 

embedded in UCE. The intelligent learning mechanism learns 

the particularised needs of the user and adjusts the agent 

controller based on a wide range of parameters in a non-
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intrusive and invisible way. It is also able to adapt online to 

changing conditions and user preferences in a life-long 

learning mode. Our technique is a one pass method which 

does not require heavy computation so it is suitable for 

embedded computers which have limited computational 

abilities. We will present unique experiments in which the 

type-2 agent have learnt and adapted to the user behaviour 

during a total stay of five days in the intelligent Dormitory 

(iDorm) which is a real ubiquitous computing environment 

test bed.  

    In Section II, we will describe our test bed for UCE; the 

iDorm. In Section III, we will describe our learning and 

adaptation techniques for the type-2 agents. In Section IV, we 

will present the experiments and results. Finally conclusions 

and future work are presented in Section V.  

 

II. THE iDorm 

    

    The iDorm shown in Fig. 1 is a real UCE test bed 

comprising of a large number of embedded sensors, actuators, 

processors and networks in a student bedroom environment. 

The iDorm is a multi-user space containing areas of different 

activities such as sleeping, working and entertaining. It 

contains the normal mix of furniture, found in a typical 

student study/bedroom environment, including a bed, work 

desk and a wardrobe. There is a standard multi-media PC that 

combines a flat screen monitor and a multi-media video 

projector which can be used for both working and 

entertainment. Any networked computer that can run a 

standard Java process can access and control the iDorm 

directly, thus this PC can also act as an interface to control the 

devices in the room. Equally the interface to the devices could 

be operated from physically portable computational artefacts 

that can monitor and control the iDorm wirelessly such as a 

handheld PDA or a mobile phone. So it was possible to adjust 

the environment from anywhere inside and nearby outside the 

room, this forms a type of “remote control” interface that 

would be particularly suitable to elderly and disabled users. 

There is also an internet Fridge in the iDorm that incorporates 

an intelligent user friendly server with touch screen capability, 

which can also be used to control the devices in the room.  

 

 
 

Fig. 1.    The iDorm 

 

    Our agent learning mechanism and interface currently 

operates from the standard multi-media PC in the iDorm. It is 

possible however for our agent to be embedded into any part 

of the environment. In terms of software the cross platform 

versatility of the Java programming language which the agent 

was written with, could allow it to be embedded onto internet 

devices. By embedding agents into such devices and 

integrating wireless communications (including wireless 

based interfaces, such as PDAs), this will lead to the kind of 

pervasive transparent infrastructure characteristic of an 

ambient intelligent system.  

    The iDorm is fitted with a liberal placement of sensors and     
actuators. The sensors and actuators in the room are concealed 

(e.g. buried in walls) with the intention that the user should be 

completely unaware of the intelligent infrastructure of the 

room which is required by the ambient intelligence vision [2]. 

The iDorm is based around three networks, Lonworks, 1-wire 

(TINI) and IP which provide a diverse infrastructure allowing 

the development of network independent solutions. 

 

III. THE LEARNING AND ADAPTATION 

TECHNIQUES FOR THE Type-2 AGENT 

 

    Type-2 FLCs using type-2 fuzzy sets have many 

advantages when compared to type-1 FLCs. For example, as 

type-2 fuzzy sets are able to handle the numerical and 

linguistic uncertainties faced by the agent operating in UCE, 

then FLCs that are based on type-2 fuzzy sets will have the 

potential to produce a better performance than the type-1 

FLCs. In addition, type-2 fuzzy sets enable us to handle the 

uncertainty associated with determining the exact membership 

functions for the fuzzy sets associated with the inputs and 

outputs of the FLC [5]. The FOU handles the rich variety of 

choices that can be made for a type-1 membership function, 

i.e. by using type-2 fuzzy sets instead of type-1 fuzzy sets, the 

issue of which type-1 membership function to choose 

diminishes in importance [8]. Moreover, using type-2 fuzzy 

sets to represents the FLC inputs and outputs will result in the 

reduction of the FLC rule base when compared to using type-

1 fuzzy sets. This is because type-2 fuzzy sets rely on 

uncertainty represented in the footprint of uncertainty to cover 

the same range as type-1 fuzzy sets with much smaller 

number of labels. As the number of inputs to the FLC increase 

the potential rule reduction as a consequence of fewer labels 

becomes significantly greater [6]. In terms of the FLC, 

uncertainty can also fire rules which are not available in type-

1 FLC [6]. Also, in type-2 FLC each input and output will be 

represented by a large number of type-1 fuzzy sets which are 

embedded within the FOU’s of the type-2 fuzzy sets. The use 

of such a large number of type-1 fuzzy sets to describe the 

input and output variables allows for greater accuracy in 

capturing the subtle behaviours of the user in the environment. 

Our technique uses an interval type-2 FLC (using interval 

type-2 fuzzy sets to represent the inputs and outputs) as 

interval type-2 FLC is computationally far less intensive than 

a general type-2 FLC, and is thus better suited for embedded 

computational artefacts. 

    The agents learn and adapt to the user behaviours in UCE 

using our type-2 Adaptive Online Fuzzy Inference System 

(AOFIS) technique which is an unsupervised data-driven one-
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pass approach for extracting fuzzy rules and membership 

functions from data, to learn a type2 FLC that will model the 

user’s behaviours. The data is collected by monitoring the 

user in the environment over a period of time. The learnt type-

2 FLC provides an inference mechanism that will produce 

output control based on the current state of the inputs. Our 

adaptive type-2 FLC will therefore control the environment on 

behalf of the user and will also allow the rules to be adapted 

online as the user’s behaviour drifts over time. AOFIS 

comprises of five phases as follows (as illustrated in Fig. 2). 

 

 
 

Fig. 2.    Flow Diagram Showing Five Phases of AOFIS 

 

A.  Capturing Input Output Data 

The agent initially monitors the user’s actions in the 

environment. Whenever the user changes actuator settings, the 

agent records a ‘snapshot’ of the current inputs (sensor states) 

and the outputs (actuator states with the new altered values of 

whichever actuators were adjusted by the user). These 

‘snapshots’ are accumulated over a period of time (three days 

in case of our experiments) so that the agent observes as much 

of the user’s interactions within the environment as possible. 

AOFIS learns a descriptive model of the user’s behaviours 

from the data accumulated by the agent. Therefore given a set 

of multi-input multi-output data pairs: 

                                                  (1) 

where N is the number of data instances,  and

. AOFIS extracts rules which describe how the k 

output variables  are influenced by the n 

input variables  based on the 

sampled data. In our experiments in the iDorm we used 7 

sensors for our inputs and 10 actuators for our outputs. The 

fuzzy rules which are extracted represent local models that 

map a set of inputs to the set of outputs without the need for 

formulating any mathematical model. Individual rules can 

therefore be adapted online influencing only specific parts of 

the descriptive model learnt by the agent. 

 

B.  Fuzzy Membership Function Extraction 

It is necessary to be able to categorise the accumulated user 

input/output data into a set of fuzzy membership functions 

which quantify the raw crisp values of the sensors and 

actuators into linguistic labels such as normal, cold or hot. 

AOFIS is based on learning the particularised behaviours of 

the user and therefore requires these membership functions be 

defined from the user’s input/output data recorded by the 

agent. In our previous work, [1] we have developed a 

technique for generating type-1 membership functions from 

data that was based on using a Double Clustering approach 

combining Fuzzy-C-Means (FCM) and agglomerative 

hierarchical clustering [1]. We used this technique to generate 

type-1 membership functions and then we added to each fuzzy 

set its footprint of uncertainty to generate an interval type-2 

membership function.   

 

C.  Fuzzy Rule Extraction 

The defined set of interval type-2 membership functions are 

combined with the existing user input/output data to extract 

the rules defining the user’s behaviours. The fuzzy rule 

extraction approach used by the type-2 AOFIS is based on an 

Enhanced version of the Mendel Wang (MW) method [9, 1] 

developed by L.X. Wang and by Mendel [6]. This is a one 

pass technique for extracting fuzzy rules from the sampled 

data. The fuzzy sets for the antecedents and consequents of 

the rules divides the input and output space into fuzzy regions.   

    The type-2 AOFIS extracts multi-input multi-output rules 

which describe the relationship between y=(y1,..,yk) and  

x=(x1,…,xn)
T
, and take the following form: 

IF is  … and  is THEN  is  … and  

 is                                                                              (2) 

, where M is the number of rules and l is the 

index of the rules. There are  fuzzy sets  

defined for each input . There are fuzzy sets 

 defined for each output  where

. AOFIS now extracts rules in the form of 

Equation (2) from the data.  

    To simplify the following notation, the method for rules 

with a single output is shown, as the approach is quite easily 

expanded to rules with multiple outputs. In the following steps 

we will show the different steps involved in rule extraction: 

Step 1: For a fixed input-output pair  in the 

dataset, (t=1,…N), compute the upper and lower membership 

values and for each fuzzy set q=1,…V, 

and for each input variable s Find q* {1,…V } 

such that  

                                      (3) 

for all q=1,…V, where is the centre of 
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gravity of the interval membership of  at  as 

follows [6]: 

         (4) 

Let the following rule be called the rule generated by 

 

IF is  … and  is THEN  is centred at   (5)             

For each input variable  there are  fuzzy sets , q= 

1,..V to characterise it; so that the maximum number of 

possible rules that can be generated is V
n
. However given the 

dataset only those rules among the V
n
 possibilities whose 

dominant region contains at least one data point will be 

generated. In step 1 one rule is generated for each input –

output data pair, where for each input the fuzzy set that 

achieves the maximum membership value at the data point is 

selected as the one in the IF part of the rule, as explained in 

Equations (3),(5).  

    This however is not the final rule which will be calculated 

in the next step. The weight of the rule is computed as 

                                            (6) 

The weight of a rule  is a measure of the strength of the 

points  belonging to the fuzzy region covered by the rule.  

Step 2: Step 1 is repeated for all the t data points from 1 to N 

to obtain N data generated rules in the form of Equation (5). 

Due to the fact that the number of data points is quite large, 

many rules are generated in step 1, that all share the same IF 

part and are conflicting, i.e. rules with the same antecedent 

membership functions and different consequent values. In this 

step rules with the same IF part are combined into a single 

rule. The N rules are therefore divided into groups, with rules 

in each group sharing the same IF part. If we assume that 

there is M such groups. Let group l have  rules in the 

following form: 

IF is … and  is THEN  is centred at  (7) 

Where  and  is the index for the data points in 

group l. The weighted average of all the rules in the conflict 

group is then computed as 

                                                  (8) 

We now combine these  rules into a single rule of the 

following form: 

      IF is and … and  is THEN  is    (9) 

Where the output fuzzy set  is chosen based on the 

following. Among the  output fuzzy sets  find 

the such that 

                                           (10) 

for is chosen as , where  

is the centre of gravity of at  as in Equation (4).                     

    As mentioned above AOFIS deals with input-output data 

pairs with multiple outputs. Step 1 is independent of the 

number of outputs for each rule. Step 2 is simply expanded to 

allow rules to have multiple outputs where the calculations in 

Equations (8) and (10) are repeated for each output value. 

 

D.  Agent Controller 

Once the agent has extracted the membership functions and 

the set of rules from the user input/output data, it has then 

learnt the type-2 FLC that captures the human behaviour. The 

agent FLC can start controlling the environment on behalf of 

the human according to his desires. The agent starts to 

monitor the state of the environment and affect actuators 

based on its learnt type-2 FLC that approximate the 

particularised preferences of the user. Fig. 3 shows a block 

diagram of the interval type-2 FLC which consists of a 

fuzzifier, rule base, fuzzy inference engine, centre of sets 

type-reducer and defuzzifier, more information about this real 

time type-2 FLC can be found in  [3]. 

 
 

Fig. 3.    Block diagram of a type-2 FLC 
 

E.  Online Adaptation and Life Long Learning 

In the previous steps we have shown how our agent can learn 

an FLC that approximates the user’s behaviour. However, the 

user may need to make adjustments to tune the system or their 

behaviour might change as the user requirements change over 

time. So our agent needs to adapt to the user’s behavioural 

changes in a non intrusive manner and in a short time interval.  

    In realising the non-intrusive aspect of ambient intelligence 

[2] whenever the user is not happy with the agent’s actions, he 

can always override the agent’s control responses by simply 

altering the manual control of the system. When this occurs 

the agent will adapt its rules online or add new rules based on 

the new user preferences.  

    Whenever the user overrides the agent’s control responses 

and actuates any of the controlled output devices, a snapshot 
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of the state of the environment is recorded and passed to the 

rule adaptation routine. Each input parameter in the input 

vector x is compared to each of the antecedent sets  of a 

given rule in the rule base to determine its upper and lower 

membership values. The weight of the rule is then calculated 

to determine if the product of the input membership function 

(degree of firing of the rule) in Equation (6) , 

meaning that the rule fired, and would therefore have 

contributed to the overall control response generated by the 

agent’s FLC. The consequent membership functions that give 

the highest membership values to the user defined actuator 

values are selected to replace the consequent sets of all fired 

rules in the rule base. The memberships are calculated as in 

equation (4) by calculating centre of gravity of the interval 

membership. 

                                                     (11) 

for  The is chosen as . Where 

c=1,2..,k. The fired rules are therefore adapted to better reflect 

the user’s updated actuator preferences given the current state 

of the environment.  

    If none of the existing rules fired, new rules are added 

based on forming rules from the input fuzzy sets. For each 

input parameter  the fuzzy sets that give a membership 

value where  are identified. This leads to a 

grid of identified fuzzy set(s) for each input parameter. From 

this grid new rules are constructed based on each unique 

combination of consecutive input fuzzy sets. The consequent 

fuzzy sets for each of the new rules are determined using 

Equation (11). This allows new rules to be gradually added to 

the rule base. The agent will also add new rules when the 

currently monitored environmental state is undefined by the 

existing rules in the rule base; i.e. none of the existing rules 

fired. In this case the agent will create new rules where the 

antecedent sets reflect the current input states of the 

environment and the consequent fuzzy sets are based on the 

current state of the actuators.  

    The agent adopts life long learning where it adapts its rules 

as the state of the environment and the preferences of the user 

change over a significantly long period of time.  

 

IV. EXPERIMENTS AND RESULTS 

    We have performed unique experiments in which a user 

lived in the iDorm for a total period of five days. During the 

monitoring phase which lasted for three consecutive days in 

late summer early autumn (early September), the agent 

recorded the user interactions with the environment. Seven 

input sensors were monitored which are: internal light level, 

external light level, internal temperature, external temperature, 

chair pressure, bed pressure and time measured as a 

continuous input on an hourly scale. Ten output actuators 

were controlled consisting of the four variable intensity spot 

lights, the desk and bed side lamps, window blinds, the heater 

and the two PC based applications comprising of a word 

processing program and a media playing program. The 

outputs thus covered the spectrum of physical devices and 

computer based applications found in a typical study bedroom 

environment. 

 

A. Offline Experiments 

The data from the iDorm that was captured during the 

monitoring phase was initially used to compare the offline 

performance of the type-1 AOFIS with three other soft-

computing based techniques which are Genetic Programming 

(GP), the Adaptive-Neuro Fuzzy Inference System (ANFIS) 

and the Multi-Layer Perceptron Neural Network [1]. The 

dataset comprised of 408 instances and was randomised into 

six samples. Each sample was then split into a training and 

test set consisting of 272 and 136 instances respectively. The 

offline performance error for each technique was obtained on 

the test instances as the Root Mean Squared Error which was 

also scaled to account for the different ranges of the output 

parameters. From our previous work it was found that for the 

type-1 AOFIS, the optimum number of type-1 fuzzy sets for 

AOFIS is 7 [1]. The type-1 AOFIS had outperformed the 

ANFIS and MLP and gave a comparable result to the GP. The 

iterative nature of the compared approaches made them more 

computationally intensive than the one pass type-1 AOFIS 

technique which makes it suitable for embedded agents. The 

other approaches cannot easily be adapted online as this 

would require their internal structures to be re-learnt every 

time either new rules were added or existing rules were 

adapted. So our method is unique in that it can learn a good 

model of the user’s behaviour which can then be adapted 

online in a life long mode in a non intrusive manner.  

    We then proceeded to determine if our type-2 AOFIS 

would produce a better performance than the type-1 AOFIS 

using the same data samples. The training instances in each 

data sample were used as before to generate the type-2 agent 

parameters. 7 type-1 sets were used to represent the input and 

output parameters of the type-1 agents as this was shown to be 

the optimum number of sets from the previous results. Five 

interval type-2 sets were empirically derived from the 7 type-

1 sets for each parameter to form an interval type-2 FLC. The 

interval type-2 fuzzy sets therefore covered the same ranges 

as the type-1 fuzzy sets such that the type-1 sets were 

approximately embedded within the type-2 sets. It was found 

that the type-2 agent produced an average scaled error of 

0.1255 and a scaled standard deviation of 0.1138. While the 

type-1 agent produced a scaled average error of 0.1324 and a 

scaled standard deviation of 0.1257. So the type-2 agent had 

produced smaller error (i.e. captures better the human 

behaviour) than the type-1 agent. The type-2 agent generated 

121 rules from the 272 training instances compared with the 

type-1 FLC that produced 153 rules.   
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B. Online Experiments 

The online performance of the agent was evaluated on how 

well the type-2 AOFIS could model the user’s behaviour from 

their observed activity that had been recorded over the initial 

three days of monitoring in early September. The performance 

of the learnt type-2 FLC could then be gauged online in its 

ability to control the environment and satisfy the preferences 

of the user when the environmental conditions were 

significantly different such that uncertainties between the 

original user dataset and the current conditions would be far 

higher. In this way we could determine if the type-2 agent 

adapted better to the new environmental conditions than a 

traditional type-1 agent. The dataset accumulated during the 

monitoring phase was used to learn the type-1 and type-2 

FLC’s. Both agents were then each separately run online for 

two days in mid winter (mid December) during which they 

monitored the environment and user’s activities, and produced 

the appropriate control responses based on their learnt FLC’s. 

During this time the user could override and adapt the agent’s 

learnt control responses, if it was necessary to modify and 

tune them further. The agent could also autonomously add 

new rules to its rule base. The online performance of the 

agents could be measured by monitoring how well it adjusted 

the iDorm environment to the user’s preferences such that the 

user intervention was reduced over time.  

 

 
 

Fig. 4.    Number of Online Rule Adaptations 

 

    Fig. 4 plots the number of online rule adaptations against 

time measured in minutes that occurred over the course of the 

two days for both the type-1 and type-2 FLC’s. From Fig. 4 

we can see that the type-2 agent required significantly less 

user interaction than the type-1 agent. This is because the 

type-2 agent had modelled better the user behaviour as it can 

handle the linguistic and numerical uncertainties facing 

embedded agents in UCE. 

     Both plots show the user intervention was initially high but 

then stabilised by the end of the first day. The type-2 agent 

initially learnt 121 rules from the user dataset. Over the 

subsequent two days 92 new rules were created by the agent. 

In comparison the type-1 FLC initially learnt 153 rules and 

the agent created 341 new rules over the two days. 

    Both agents were therefore able to learn and adapt in a non 

intrusive way to the user’s preferences over the duration of the 

two days. The type-2 FLC however was able to adapt better to 

the new environmental conditions with less user interaction 

and a fewer number generated of rules.  

III. CONCLUSION 

 

    In this paper we presented a novel system for learning and 

adapting type-2 fuzzy controllers for agents that can be 

embedded in UCE. Our agent learnt a FLC that modelled the 

user’s particularised behaviour and it was adaptive as it 

allowed the learnt behaviours to be modified and extended 

online and in a life-long learning mode as the user’s activity 

and environmental conditions changed over time.  

   We carried out unique experiments in which a user stayed in 

the iDorm for a total stay of five days. The offline and online 

performance of the type-2 agent showed that the type-2 FLC 

outperformed a type-1 FLC at both learning the behaviours of 

a user and adapting and tuning its rules online to meet the 

user’s preferences when the environmental conditions had 

significantly changed. The type-2 FLC had also used less 

number of rules than the type-1 FLC. The type-2 FLC was 

therefore able model and minimise the effects of uncertainties 

to produce a better over all performance of the system. 

    In our future work we propose to design an automated 

process for generating type-2 fuzzy sets directly from data.   
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