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Abstract

In this paper we present our novel Fuzzy–Genetic techniques for the online learning and adaptation of an
intelligent robotic navigator system. Such a system could be used by autonomous mobile vehicles navigating
in unstructured and changing environments. In this work we focus on the online learning of the obstacle
avoidance behaviour, which is an example of a behaviour that receives delayed reinforcement. We show how
this behaviour can be co-ordinated with other behaviours that receive immediate reinforcement (such as goal
seeking and edge following) learnt during our previous work to generate an intelligent reactive navigator that
can deal with unstructured and changing outdoor environments. The system described uses a life long learning
paradigm whereby it is able to dynamically adapt to new environments and update its knowledge base.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The control of autonomous intelligent mobile robotic agent operating in unstructured changing
environments includes many objective di8culties. One major di8culty concerns the characteristics
of the environment. In outdoor environments, such as the agricultural environment (which is one
of the application benchmark for this work), the inconsistency of the terrain, the irregularity of the
product and the open nature of the working environment result in complex problems of identi:cation,
sensing and control. Such problems can range from the e;ects of varying weather conditions on the
robot sensors and traction performance, through to the need to deal with the presence of unauthorised
people and animals. Another major challenge for autonomous mobile robotic agents operating in
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changing unstructured environments is the large amounts of uncertainty that characterises these real-
world environments. On the one hand, it is not possible to have exact and complete prior knowledge
of these environments: many details are usually unknown, the position of people and objects cannot
be predicted a priori, passageways may be blocked, and so on. On the other hand, knowledge
acquired through sensing is a;ected by uncertainty and imprecision. Sensor noise, the limited :eld
of view, the conditions of observation, and the inherent di8culty of the perceptual interpretation
process can all inAuence the quality of the sensor information.
Online learning and adaptation and life long learning using real robots are desirable traits for

any robot learning algorithm operating in changing and unstructured environments where the robot
explores its environment to collect su8cient samples of the necessary experience. Online learning is
useful for producing intelligent machines for inaccessible environments such as underwater and Aying
robots or where reprogramming the robots would be di8cult or expensive. In these environments it is
required to perform online learning through interaction with the real environment and performing any
adaptation within short time intervals. In our work we will implement online learning and show how
such an approach both saves money and increases reliability by allowing the robot to automatically
adapt without further programming to the changing user and environment needs it will experience
throughout its lifetime.
In this work we will focus on learning the obstacle avoidance behaviour. This is an example of

a behaviour that would receive delayed reinforcement when used in autonomous intelligent mobile
robotic agents. These are behaviours where the reinforcement is not given during each control cycle,
but at a later time. Hence the term delayed reinforcement. The obstacle avoidance behaviour can then
be co-ordinated with other behaviours that receive immediate reinforcement (such as goal seeking
and edge following) learnt in our previous work [12–16] to generate an intelligent reactive navigator.
Such a navigator is then capable of operating in changing and unstructured environments. A life long
learning paradigm is used, allowing the acquired experience to be accumulated in a knowledge base
and reused when adapting to the new environments. Our life long learning technique gives the robot
the ability to navigate in changing outdoor environments like the agricultural environment where it
adapts itself to the changing environment and robot conditions by tuning the controller rules that
did not perform well.
In the remaining subsections of Section 1 we explain what is meant by intelligent autonomous

robotic agents and why we aim to use online learning using real robots. We then present some
methods used to learn robotic agents and then we introduce reinforcement learning and show when
delayed reinforcement is required. In Section 2 we introduce the idea of hierarchical fuzzy logic
controllers. Section 3 introduces our hierarchical fuzzy genetic systems for online learning and we
illustrate how it can be used to learn the obstacle avoidance behaviour. In Section 4 we introduce our
online adaptation technique and the life long learning strategy. Section 5 presents our experimental
results. In Section 6 we introduce a study of complexity of our system and comparison to other
related work. Finally, conclusions are presented in Section 7.

1.1. Intelligent autonomous embedded agents and online learning

According to Kasabov [20] an intelligent agent system (IAS) should be able to learn quickly
from large amounts of data. He also states that an intelligent system should be able to adapt in
real time and in an on-line mode as new data is encountered. The system should also be able
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to accommodate, in an incremental way, any new problem solving rules as they become known. It
should be memory-based, plus possess data and exemplar storage and retrieval capacities. In addition,
he says that an IAS should be able to learn and improve through active interaction with the user and
the environment. It should have parameters to represent short and long term memory, age, forgetting,
etc. Finally he states it should be able to analyse itself in terms of behaviour, error and success. To
our knowledge, no system in the :eld of robotic agents operating in unstructured environments such
as outdoor robots had satis:ed these criteria [16].
Broadly speaking this work situates itself in the recent line of research that concentrates on

the realisation of arti:cial agents strongly coupled with the physical world. A :rst fundamental
requirement is that agents must be grounded in that they must be able to carry on their activities in the
real world, in real time according to the above de:nition of robotic agents. Another important point
is that adaptive behaviour cannot be considered as a product of an agent considered in isolation from
the world, but can only emerge from strong coupling of the agent and its environment [7]. Despite
this, many embedded agent researchers regularly use simulations to test their models. However,
the validity of such computer simulations to build autonomous robotic agents is often criticised and
the subject of much debate. Even so computer simulations may still be very helpful in the training
and testing of robotic agents models. However as Brooks [5] pointed out “it is very hard to simulate
the actual dynamics of the real world”. This may imply that e;ort will go into solving problems
that simply do not come up in real world with a physical robot and that programs which work
well on simulated robots will completely fail on real robots. There are several reasons why those
using computer models (simulations) to develop control systems for embedded agents operating in
unstructured and changing environments may encounter problems [27]:

(a) Numerical simulations do not usually consider all the physical laws of the interaction of a real
agent with its own environment, such as mass, weight, friction, inertia, etc.

(b) Physical sensors deliver uncertain values, and commands to actuators have uncertain e;ects,
whereas simulative models often use grid-worlds and sensors that return perfect information.

(c) Physical sensors and actuators, even if apparently identical, may perform di;erently because of
slight variations in the electronics and mechanics or because of their di;erent positions on the
robot or because of the changing weather or environmental conditions.

Even where researchers are using real robots in the real world to learn behaviours, these behaviours
if learnt successfully are usually frozen within the robot. Thus if some of the robot dynamics or the
environmental circumstances are changed, the robot must repeat a time-consuming learning cycle to
relearn the behaviours [27]. From the above discussion it is clear that using computer simulations for
developing robot controllers has signi:cant disadvantages which are best illustrated by the fact that
when transferring the learnt controllers from the simulated world to the real world these controllers
will usually fail [27].
In this work we will refer to any learning carried out with user intervention and in isolation

from the environment using simulation as o5ine learning. In our case learning will be done through
interaction with the actual environment in a short time interval and we will call this online learn-
ing. Evolving the robot controllers online enables the learnt controller to adjust to the real noise
and imprecision associated with the sensors and actuators. By doing this we can develop rules
that take such defects into account, producing a realistic controller for autonomous robotic agents,
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grounded in the physical world that emerge from strong coupling of the robotic agent and its
environment not in simulation. These robotic agents are grounded in the real world (situated,
embodied and operating in real time), as adaptive behaviours cannot be considered as a product
of an agent in isolation from the world, but can only emerge from strong coupling of the agent and
its environment.

1.2. Methods used to develop robotic agents

The navigation of a mobile vehicle can be considered as a task of determining a collision free
path that enables the vehicle to travel through an obstacle course from an initial con:guration to a
goal con:guration.
Fuzzy sets and systems constitute one of the most fundamental and inAuential computational

intelligence tools [38]. Given the uncertain and incomplete information an autonomous robotic agent
has about the environment, fuzzy rules provide an attractive means for mapping sensor data to
appropriate control actions in real time. The fuzzy logic approach seems quite promising in tackling
the problem of robot navigation, as it deals with various situations without requiring to construct
an analytical model of the environment. In complex unstructured environments even if a human
expert can help in the speci:cation of such a complex system, improper solutions maybe produced,
since there is a high probability of neglecting some important aspects and overemphasising others.
Also as the number of inputs variables increases (which is the case of mobile robots) the number
of rules increase exponentially which creates much di8culty in determining large numbers of rules.
In the case of navigating the mobile vehicle in complex environments, it is di8cult to consistently
construct the rules since there are many situations to be handled; and it is time consuming to tune
the constructed rules using human experience [42]. That is why automatic design of fuzzy systems
represents a very promising and challenging research area [6] where our techniques will be used.
Evolutionary algorithms constitute a class of search and optimization methods guided by the

principles of natural evolution and genetics. It is the case that genetic algorithms (GA) have been
successfully applied to solve a variety of di8cult theoretical and practical problems by imitating the
underlying processes of evolution such as selection, recombination and mutation. GA are problem
independent not based on gradient information and therefore has no requirement on continuity or
convexity of the solution space, caring nothing of the problem being solved, asking only that the
solution be rated according how well it solves the problem [21].
The design of a fuzzy system can be formulated as a search problem in high dimensional space

where each point represents a rule set, membership functions, and the corresponding system be-
haviour. Given some performance criteria, the performance of the system forms a hyper-surface in
the space. Developing the optimal fuzzy system design is equivalent to :nding the optimal location of
this hyper-surface. The hyper-surface as described by Shi et al. [37] has the following characteristics:

• The hyper-surface is in:nitely large since the number of possible fuzzy sets for each variable is
unbounded.

• The hyper-surface is nondi;erentiable since changes in the number of fuzzy sets are discrete and
can have a discontinuous e;ect on the fuzzy system’s performance.

• The hyper-surface is complex since the mapping from a fuzzy rule set to its performance is indirect
and dependent on the evaluation method used.
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• The hyper-surface is multi-modal since di;erent fuzzy rule sets and=or membership functions may
have similar performance.

• The hyper-surface is deceptive since similar fuzzy rule sets and membership functions may have
quite di;erent performances.

These characteristics seem to make evolutionary algorithms such as GA better candidates for search-
ing the hyper-surface than conventional methods such as hill climbing search methods [6,37]. There
is much work reported in the literature on designing fuzzy controllers using GA [2,3,4,9,17,24,26,38].
However virtually most of this work was undertaken using simulation as in conventional GA, it takes
a large number of iterations to develop a good controller. Thus it is not feasible for a simple GA
to learn online and adapt in real-time. The situation is worsened by the fact that most evolutionary
computation methods developed so far assume that the solution space is :xed. That is, the evolution
takes place within a pre-de:ned problem space and not in a dynamically changing and open one,
thus preventing them from being used in real-time applications [20]. Hence prior to our work it
was not considered feasible for a simple GA to online learn and adapt a robotic controller [25] in
unstructured outdoor environments [16].

1.3. Reinforcement learning

Reinforcement learning (RL) is a learning strategy that can be applied to an agent that must learn
its behaviour through trial and error interactions with a dynamic environment. RL is de:ned not
by characterizing a learning problem, any algorithm that is well suited for solving the problem can
be considered when using a reinforcement learning approach [8]. There are two main strategies for
solving reinforcement learning problems. The :rst is to search the space of all possible behaviours
in order to :nd one that performs well within the chosen environment. This is the approach normally
taken by work involving genetic algorithms and genetic programming and will be the approach used
in this paper. The second is to use statistical techniques and dynamic programming methods to
estimate the utility of taking particular actions in various world states [20]. This approach has been
used to learn fuzzy systems for mobile robots in [1,9,47].
The problem of statistical reinforcement learning is that it learns over time by systematic trial

and error in which the reinforcement learner must explicitly explore its environment. Also reinforce-
ment learning has theoretically limited learning ability as it requires heavy learning phases and in
some cases it might not be able to capture the di;erent features of complex environments, such as
an unstructured outdoor environment. There are a variety of reinforcement-learning techniques that
work e;ectively on a variety of small problems, but very few of these techniques scale well to
larger problems [19]. Of these, Q learning is the most popular and seems to be the most e;ective
model-free algorithm for learning using delayed reinforcement, it updates the expected discounted
reinforcement by taking action a in state s. It does not, however address any of the issues involved
in generalising over large state and=or action spaces. In addition, it may converge quite slowly to a
good policy [8]. Shwartz [35] examined the problem of adapting Q learning to an average frame.
An approach which he called R learning. Using the R learning approach the agent is supposed to
take actions that optimise its long-run average reward. Several researchers have found that the aver-
age reward criterion is closer to the true problem than the discounted criterion and therefore prefer
to use R learning over Q learning [19]. It is di8cult to use R learning to generalise to di;erent
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environments [19] as R learning does seem to exhibit convergence problems and is quite sensitive
to the choice of exploration strategy.
All the previous statistical methods has tacitly assumed that it is possible to enumerate the

state and action spaces and store tables of values over them. This can only be possible in very
small environments due to impractical memory requirements. It also makes ine8cient use of
experience [19].
The behaviours that receive delayed reinforcement in autonomous robots are the behaviours where

reinforcement is not given at each control cycle, but only at a later time (delayed reinforcement).
The robot has to be able to learn from delayed reinforcement: it may take a long sequence of
actions, receiving insigni:cant reinforcement, then :nally arrive at a state with high reinforcement.
The robot must be able to learn which of its actions are desirable based on a reward that can
take place arbitrarily far in the future. In some applications, reinforcement is available only when
the performing system achieves a given state. For instance, this may be the case where an au-
tonomous robotic agent is attempting to reach a moving target; it might be desired to reinforce it
only when it catches the prey. The state of the performing system where its performance is evaluated
is called a reinforced state. The action brings the performing system from a state to another, possibly
di;erent state. If the achieved state is a reinforced state, the action may directly receive reinforce-
ment otherwise it may receive a discounted reinforcement only when one of the future actions
brings the performing system to a reinforced state. This makes sense, since the achievement of a
reinforced state may not depend only on the last action, but also on the state from where it has been
applied, i.e. on the actions done before. Also the delayed reinforcement is suitable for behaviours
where at each step the system does not perform optimally, but on average reaches an optimal
state [2].
In addition, some systems need time to express certain behaviours, as is the case for the ob-

stacle avoidance behaviour. For example, a robot blocked in a corner should maneuver to escape.
It should apply the obstacle avoidance behaviour for a given period, to be able to demonstrate its
ability. Only at the end of this period may it receive a reinforcement that judges its performance.
If this is evaluated too early, the system will never discover how to escape, since the intermediate
states are not desirable per se, but only as part of the escaping behaviour. The only possibility is
to evaluate the robot’s performance when it succeeds in escaping, and when it is stuck or in a
collision [2].

2. Hierarchical fuzzy logic controllers (HFLC)

Most commercial fuzzy logic control (FLC) implementations feature a single layer of inferencing
between two or three inputs and one or two outputs. For autonomous vehicles, however the number
of inputs and outputs are usually large and the desired control behaviours are more complex. The
vehicles we have being using in our indoor and outdoor experiments typically have eight sensor
inputs (7 sonar inputs and a bearing sensor) and two control outputs (left and right wheel speed in
case of indoor robots and steering and velocity in case of outdoor robots). If we assume that each
input will be represented by three fuzzy sets and each output by four fuzzy sets, using a single layer
of inferencing will lead to determining 38 = 6561 rules which would be di8cult, if not impossible
to determine.
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However, by using a fuzzy hierarchical approach the number of rules required can be signi:cantly
reduced. For example, the experimental system can be divided into four co-operating behaviours,
obstacle avoidance, left and right edge following and goal seeking. Each individual behaviour will
then only require a subset of the total number of available inputs. If, as before, the behaviours
represent each input using three fuzzy sets then obstacle avoidance, using three forward facing
sensors, produces 33 = 27 rules. The left edge following, using two side facing sensors, produces
32 = 9 rules, right edge following is the same and goal seeking, using a single location sensor,
has one input (more accurately represented by seven fuzzy sets) produces 7 rules. Thus the to-
tal number of rules now required is 27 + 9 + 9 + 7=52 rules which is much easier to be de-
termined. To use such a hierarchical mechanism, a coordination scheme is required to combine
these behaviours into a single action. Many proposals in the literature use an on-o; subsumption
system where in each situation, one behaviour is selected and is given complete control of the
e;ectors [5]. This simple scheme may be inadequate in situations where several criteria should be
taken into account.
Sa8otti [33] has suggested a fuzzy context rule combination method to perform the high level co-

ordination between such behaviours. The context dependent rules are characterised by each behaviour
generating preferences from the perspective of its goal. Each behaviour has a context of activation,
representing the situations where it should be used. The preferences of all behaviours, weighted
by the truth value of their contexts are fused to form a collective preference. One command is
then chosen from the collective preference. Context depending blending has been used by several
researchers like [3,11,33].
We will use a method similar to the methods suggested by Sa8otti [33] and Tunstel [44] to

apply fuzzy logic to implement both the individual behaviour elements and the necessary arbitration
(allowing both :xed and dynamic arbitration policies to be implemented) [12,13]. We achieve this
by implementing each behaviour as an independent FLC with a small number of inputs and a small
number of outputs which can manage simple tasks (e.g. edge-following or obstacle-avoidance). We
used a FLC to implement the basic behaviours, as it excels in dealing with the imprecise and
uncertain knowledge that is associated with robot’s sensors and actuators.
The outputs of each fuzzy behaviour are fused according to a plan supplied by a high-level planner,

which may be a person. The fusion process de:nes how outputs from the di;erent behaviours are
mixed together in a fuzzy way to give a coherent output. We had chosen fuzzy processes to co-
ordinate the outputs of the di;erent behaviours because it facilitates expressing partial and concurrent
activation of behaviours, allowing more than one behaviour to be active to di;ering degrees. By doing
this we can avoid the drawbacks of the binary (i.e. on-o;) architectures (such as the subsumption)
that allow only one behaviour to be active at a time and thus cannot deal with situations where
several criteria need to be taken into account. Also, using fuzzy co-ordination processes allows a
smooth transition between behaviours providing a smoother output response, which is superior to
binary switching schema [33]. As mentioned earlier, using a hierarchical strategy results in fewer
rules (i.e. a much simpli:ed design problem) [33]. In addition, it allows Aexible design where new
behaviours can be added easily. Also, the system is capable of performing completely di;erent tasks
using the same basic behaviours by changing the co-ordination parameters. The system is totally
reactive and is able to satisfy a high level objectives.
In the following design each behaviour will be a FLC using singleton fuzzi:er, triangular member-

ship functions, product inference, max-product composition and height defuzzi:cation. The selected
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Fig. 1. (a) The behaviour co-ordination system. (b) The membership function for the co-ordination parameters.

techniques are chosen due to their computational simplicity and due to real time considerations. The
standard fuzzy equation that maps the system input to output is given by

Yt =

∑M
p=1 yp

∏G
i=1 Aip

∑M
p=1

∏G
i=1 Aip

; (1)

where M is the total number of rules, yp is the crisp output for each rule,
∏

Aip is the product of
the membership functions of each rule inputs and G is the number of inputs. For information about
fuzzy logic please see [22,23].
In our HFLC architecture, a fuzzy operator is used to combine the preferences of di;erent be-

haviours into a collective preference. Accordingly, command fusion can be decomposed into two
steps: preference combination and decision making. In Fig. 1(a) each behaviour is treated as an
independent fuzzy controller and then using fuzzy behaviour combination we obtain a collective
fuzzy output which is then de;uzzi:ed to obtain a :nal crisp output. By using fuzzy meta-rules
or context rules, the proposed system enables more :exible arbitration policies to be achieved.
These rules have the form IF context THEN behaviour [33] which means that a behaviour should
be activated with a strength determined by the context (i.e. a fuzzy-logic formula). When more than
one behaviour is activated, their outputs have to be fused and each behaviour output scaled by the
strength of its context.
In the normal case, where fuzzy numbers are used for preferences, product-sum combination and

height defuzzi:cation, the :nal output equation, according to Sa8otti [33], is shown below:

Yht =

∑
i(mm∗

yyt)∑
i mmy

; (2)

where i represent the behaviours activated by context rules which can be right=left edge-following
behaviour, obstacle-avoidance, goal-seeking. Yt is the behaviour command output. These vectors have
to be fused in order to produce a single vector Yht to be applied to the mobile robot. mmy is the
behaviour weight.
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Fig. 2. (a) A robot trying to achieve a goal by avoiding an obstacle which can be equally avoided from the left or the
right. (b) The Obstacle avoidance and goal seeking behaviour outputs which causes behaviour conAicts.

The behaviours implemented in this system are the minimum set of behaviours we need to
demonstrate this architecture working in an outdoor environment. The behaviours are goal-seeking,
obstacle-avoidance, right edge-following and left edge following.
In behaviour co-ordination there are a few parameters that must be calculated in the root fuzzy

system. These parameters are the minimum distance of the front sensors which is represented by d1,
the minimum distance of the left side sensors which is represented by d2, the minimum distance of
the right side sensors represented by d3. The minimum of the fuzzy MF of d1; d2; d3 represented
by d4, reAects how obstacle free the robot path is. After calculating these values, each is matched to
its membership function as shown in Fig. 1(b). These fuzzy values are used as inputs to the context
rules which are: IF d1 IS LOW THEN OBSTACLE AVOIDANCE, IF d2 IS LOW THEN
LEFT WALL FOLLOWING, IF d3 IS LOW THEN RIGHT WALL FOLLOWING, IF d4 IS
HIGH THEN GOAL SEEKING.
The context rules determine which behaviour is :red, and to what degree. The :nal output is

calculated using Eq. (2). The behaviour weights are calculated dynamically taking into account
the situation of the mobile robot. For example, the obstacle avoidance behaviour weight needs to
increase as the obstacle comes closer. This can be done by calculating the minimum distance of
the front sensors d1 and then calculating the weight of the obstacle avoidance behaviour using
the membership functions in Fig. 1(b). Then, by using the context rules we can determine which
behaviours are active and apply Eq. (2) to obtain the :nal output.
In mobile robot navigation we are often faced with behaviour conAicts. For example consider

the situation in which the robot objective is to navigate to a speci:ed goal however its direct path
is blocked by an obstacle which can be equally avoided from left or right as shown in Fig. 2(a).
If the goal seeking and the obstacle avoidance were designed separately then the goal seeking will
urge the robot to go straight ahead as the goal is aligned with the robot and the obstacle avoidance
behaviour will suggest going left or right. The light lines in Fig. 2(b) shows the behaviour fuzzy
output before being scaled according to its activation which is demonstrated by the thick lines and the
Grey shading. If we aggregate and defuzzify these recommendations using common defuzzi:cation
techniques (e.g. centre of gravity, mean of maxima or height defuzzi:cation) the result would be to
proceed straight, thus leading to collision with the obstacle. This will occur even if a higher degree
of activation was assigned for obstacle avoidance [44]. A common solution is to select a designated
default alternative, or randomly select one action from the set of conAicting recommendations [44].
Some authors [46] have addressed this problem by de:ning di;erent defuzzi:cation schemes. Others
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put the responsibility on the behaviour designer; the rationale for this is that inconsistencies and
ambiguities in a rule set should be prevented by careful design rather than corrected by arbitrary
mathematical manipulation [29]. Goodridge [11] take a somehow balanced position as the occurrence
of an undesirable defuzzi:ed value is permitted, but it is reported to the higher level reasoning
modules which are responsible for analysing the problem and breaking the tie.
As it is di8cult to predict the interaction between the di;erent behaviours especially when large

number of behaviours are involved. We must control a priori the behaviour generation to be com-
patible with the combination e;ects, we do this not by dictating the robot what to do by assigning
a default rule or random direction that can be contradictory to other behaviours. Instead we give the
robot high level objectives and we allow the robot to learn rules in its coordinated behaviours that
will satisfy the overall high objectives rather than the isolated objectives of the individual behaviours.
For example in the problem faced in Fig. 2(a) we coordinate the goal seeking and obstacle avoidance
behaviours and the rules in both behaviours are learnt online using the real robot to achieve a high
level objective which is achieving a goal safely by avoiding any obstacles in its way. As will be
shown later in the experiments section in Fig. 11 the robot will learn rules in the obstacle avoidance
behaviour which states than when the obstacle is very near the robot has to turn sharply to the right
and when it is at a medium distance from the obstacles to turn slightly right and the resulting path
is smooth. Therefore, the robots had learnt rules which could be supplied by the human designer
in the form of a default turning direction, but the robot had learnt this by itself through interaction
with the environment. As a result we do not have to worry about the behaviour conAicts that can
happen during the fuzzy combination of the behaviour outputs as the robot by trial and error and by
using our online learning will generate rules in the di;erent coordinated behaviours that will avoid
such conAicts, thus relieving the designer from detailed designs of the individual behaviours that can
work for some robots and fail for the others.

3. Hierarchical fuzzy genetic systems for online learning and adaptation

To achieve a high-level behaviour via the manipulation of rule-bases using a GA, it is necessary
to :rst develop low level competence, which can then be modi:ed and enhanced to produce an
emergent high-level behaviour. This can be done at a low level by manipulating the individual
behaviours, and at a higher level by manipulating combinations of the lower-level behaviours (the
latter occurring once a reasonable degree of pro:ciency has been attained, to form a controller
capable of performing a higher-level task). For this, a simple objective function is su8cient, as the
controllers would already have a degree of competence for the behaviour desired. Such a solution
can be achieved by implementing a hierarchical learning procedure [9].
In our hierarchical learning procedure we start learning using a set of working (but not necessarily

optimum) :xed membership functions. We then commence learning general rules for each individual
behaviour by relating the input sensors to the actuator outputs. In this phase the membership values
are not important as the agent learns general rules such as, if the obstacle is close then turn left.
However in order to achieve a sub-optimal solution for the individual behaviour (a subset of the
large search space) we next need to :nd the most suitable membership functions for the newly learnt
rules, as explained in [15]. After :nding a sub-optimal solution for each behaviour we can combine
these behaviours and learn the best co-ordination parameters that will give a “good enough” solution
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for the large search space to satisfy a given mission or plan, as explained in [16]. After learning
the system parameters, the controller then operates in its environment where if the controller fails to
maintain the desired states, the online adaptation technique modi:es the poor rules in the relevant
behaviours to adjust the robotic agent to di;ering environmental and kinematics conditions. This is
termed life long learning, where the agent can adapt itself to any new situation and can update its
knowledge about its environment.
Our learning and adaptation techniques are inspired from Nature as in biology, most scientists

agree that the remarkable adaptation of some complex organisms comes as a result of the interaction
of two processes, working to di;erent time scales: evolution and life long learning. Evolution takes
place at the population level and determines the basic structures of the organism. It is a slow process
that works by stochastically selecting the better individuals to survive and to reproduce. Life long
learning is responsible for some degree of adaptation at the individual level. It works by tuning the
structures, built in accordance with the genetic information, by a process of gradual improvement
of the adaptation to the surrounding environment [32]. Also condensed learning scenarios over short
periods of time di;er drastically from continuous learning or life long learning, as life long learning
presents the agent with very di;erent perceptual stimuli than learning over a condensed period of
time [28]. We emulate the natural process by using evolution and online learning to develop a
good enough controller of the robot and we use our patented Fuzzy–Genetic system (the Associative
Experience Engine) described later to speed the slow evolution process. An online adaptation tech-
nique is then used to implement the life long learning where the robotic agent is always updating
its knowledge and gaining experience and is able to adapt to the changing environment.
This hierarchical procedure results in a fast learning time for :nding a solution for learning

and adaptation in changing unstructured environments. Also our learning techniques produce general
controllers that can be applied to di;erent robots having the same sensor con:guration and performing
the same mission after applying a relatively short adaptation cycle. Thus removing the need to
generate a new controller for each di;erent vehicle.
Fig. 3 provides an architectural overview of our techniques, which we term an Associative Ex-

perience Engine. This forms the learning engine within the control architecture and is the subject
of our British patent application 99-10539.7. The behaviours are represented as parallel fuzzy logic
controllers (FLC) and form the hierarchical fuzzy control architecture presented in the previous
section. Each FLC has two modi:able parameters, the rule base (RB) for each behaviour and the
membership functions (MF). The behaviours receive their inputs from sensors. The output of each
FLC is then fed to the actuators via the coordinator, which weights their e;ect.
The learning cycle performed is dependent upon the Learning Focus, which is supplied by the

coordinator according to a higher-level plan. For example, if the Learning Focus is to learn the MF
for individual behaviours, then the input membership functions of each behaviour are learnt alone.
When learning or modifying the rule bases, the learning cycle is sub-divided into local situations.

This reduces the size of the model to be learnt. The accent on local models implies the possibility
to learn by focusing on a small part of the search space at each step. The interaction among local
models, due to the intersection of neighboring fuzzy sets causes the local learning to reAect on global
performance [3]. Also in an online GA, it is desirable to achieve a high level of online performance
while, at the same time reacting rapidly to any process changes requiring new actions. Hence it
is required that the population size should be kept su8ciently small, so that progression towards
near-convergence can be achieved within a relatively short time. This is achieved in our case by
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Fig. 3. Architectural overview of associative experience learning engine (British patent No 99-10539.7).

dealing with local models in the form of set of rules rather than dealing with the larger global model
in the form of rule bases. Similarly the genetic operators should be used in a way that achieves
high-:tness individuals in the population rapidly [25].
As GA are randomised parallel search algorithms that search from a population of points [10]. The

starting population is typically randomly intialised so that the GA can proceed from an unbiased
sample of the search space. However we often confront sets of similar problems. It makes little
sense to start a problem solving search attempt from scratch with a random initial population when
previous search attempts may have yielded useful information about the search space [42]. Instead,
seeding a GA initial population with solutions to previously solved problems can provide information
(a search bias) that can reduce the time taken to :nd a quality solution. In this case the GA does
not have to waste time exploring unpromising subspaces because these starting cases provide good
building blocks for solutions to the current problem [41]. As randomly initialised population has
maximum capacity for exploration [41] we expect that starting from previous experiences which
were solutions to similar problems to have a higher :tness than randomly generated individuals.
Since the GA focuses search in the areas de:ned by high :tness individuals, we expect this to
increase exploitation. The increased concentration or exploitation of a particular area can cause the
GA to get stuck on a local optimum. Thus, we need to balance exploration of the search space versus
exploitation of particular areas of the space through the crossover and the mutation probabilities [41].
As mutation serves to create random diversity in the population and as we are using small population
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size, mutation appears to be e;ective [39]. This is why it is necessary to use a high mutation rate to
allow for a wider variation in the search and hence the ability to jump out of any local optimum. Thus
we use a high mutation probability to introduce new genetic material without reducing the search
process to a random process. It is also desirable that as the system :tness improves the mutation
probability is decreased so as not to lose the genetic material that caused the improvement [25].
As the reduced crossover lowers the productivity of the GA, since there is less recombination
between individuals and hence it takes a longer time to obtain a good solution, so as in [25] we set
the crossover probability to 1.0 to guarantee fast convergence. In this way we speed up the search
by starting from the best found point in the search space rather than starting from random and at
the same time we avoid being trapped in a local optima by using the appropriate crossover and
mutation probabilities.
We implement the above concepts of using the previous experiences to further reduce the search

space and speeding up the search as follows. The system determines if it had encountered similar
situations before by checking for stored experiences in the Experience Bank. There is a queue of
experiences associated with each behaviour. The robot tests the di;erent solutions from the Experi-
ence Bank by transferring the “remembered” experiences into the appropriate FLC. If any of these
experiences show success, then they are used by the FLC and we avoid generating a new solution
for our system. An Experience Assessor assigns each experience solution a :tness value to indi-
cate the importance of this solution. When the Experience Bank becomes full it is the role of the
Experience Survival Valuer to determine which parameters are retained and which are discarded,
according to the parameter importance. If the use of past experiences did not solve the situation,
we use the highest :tness experience as a starting point for a new learning cycle. We then :re an
adaptive genetic algorithm (AGA) mechanism using crossover and adaptive mutation, which help
to speed the search for new solutions and avoid local minimum. The AGA is constrained to produce
new solutions in a certain range de:ned by the Contextual Constraints supplied by sensors and
de:ned by the coordinator according to the Learning Focus. This avoids the AGA searching places
where solutions are not likely to be found. By doing this we narrow the AGA search space to
where we are likely to :nd solutions. The AGA search converges faster as it started from a good
point in the search space supplied by the experience recall mechanism and it used adaptive learning
parameters to avoid searching regions where solutions are not likely to be found. The new solution
is then tested by the system and given a :tness by the Solution Evaluator, to be discussed in the
next section. The AGA continues to generate new solutions until a satisfactory solution is reached.
The online learning mechanism, in addition to the fuzzy behaviours, is also organised as a hierarchy

thus leading to one description of this architecture as being a “double-hierarchy”. The online learning
mechanisms can be regarded as a hierarchy because there is a tiered set of actions. At the highest
level a population of solutions are stored in the Experience Bank and tested in a queue. If one of
these stored experiences leads to a solution then the search ends, if none of these stored experiences
leads to a solution then each of these experiences acquires a :tness by the Experience Assessor
depending how well each solution performed in the situation. The highest :tness experience is used
as a starting position to the lower level GA that is used to generate new solutions to the current
situation. This hierarchy preserves the system experience, and speeds up the genetic search by starting
the genetic algorithm from the best found point in the space.
In this paper we will focus on learning the rule base for the obstacle avoidance behaviour which

is an example of behaviours that receive delayed reinforcement. For more information about learning
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the rule bases for behaviours that receive immediate reinforcement please refer to our previous work
[12,13,16]. For more information about learning the membership functions for each behaviour please
refer to our work in [14]. For more information about learning the co-ordination parameters online,
please refer to our work in [15].

3.1. Our patented techniques used to learn the obstacle avoidance behaviour

We will :rst give a brief overview of steps used and the needed parameters for the online learning
of the rule base for the obstacle avoidance behaviour

(1) If the robot collides or gets close to an obstacle, the learning cycle starts. The system does
not learn the whole rule base at once as in the Pittsburgh approach, but it learns a series of
episodes and situations, each including learning of a small amount of rules and then relying
on the intersection of neighbouring fuzzy sets causes the local learning to reAect on the global
performance.

(2) The robot uses its short term memory (STM) to return to its pre failure position according to
Section 3.1.1 to :nd the rules responsible for failure and correct them to generate a solution
to the current failure. The system backs :rst to a distance su8cient to satisfy the minimum
safe distance W from the front and X from the sides of the vehicle as will be explained in
Section 3.1.1 this is called the :rst backing (FB). The vehicle then backs to double the FB
distance which we call the second backing (SB). These two distances allow the discovery of
the blamed rules for failure which if corrected could solve the situation.

(3) The system :nds the two most e;ective rules at SB with the biggest values of StotSB using
Eq. (7) which are the two most e;ective rules contributed from the beginning of the episode
till the FB position as these rules are the rules that if their actions was correct they could
helped the robot early to take the right actions. The system also :nds the two most e;ective
rules at FB with the biggest values of Stot using Eq. (6) as will be explained in Section 3.1.2
these rules contributed mostly through the episode and were responsible for the :nal failure.

(4) The system then replaces the actions of the two most e;ective rules at the FB and the two most
e;ective rules at SB by rules stored in the Experience Bank which represents past experiences
that had solved a similar situation that the robot had solved in past as will be explained in
Section 3.1.3.

(5) The Experience Bank solutions are tested one by one in a pre speci:ed order starting from
the most successful rule clusters over the past experiences according to Section 3.1.3. If one
of the experiences solves the situation then the learning ends and the rule base continues with
this memorised experience with no need to generate new solutions.

(6) If all the solutions from the Experience Bank fail, the system allocates each experienced
solution a :tness value according to how well it performed in the environment. The GA starts
its search from the experienced solution with the best :tness as evaluated by the Experience
Assessor in Section 3.1.3. Thus we do not start our learning from random but from the best
point in search space, this action helps to speed up the search.

(7) In order to prevent good rules to be punished by being associated and :red by bad rules we
replace :rst the actions of the two most e;ective rules at SB with the highest values of StotSB
as these rules will be responsible later to :re the other rules that could be good rules but could
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be punished by the bad actions of these e;ective rules till FB and cannot recover from their
bad e;ect. The GA population will consist of all the active rules actions from the beginning
of the episode till the FB. We will use a roulette wheel selection to select the parents of the
new solution. The GA will use a crossover probability of 1.0 and adaptive mutation probability
given by Eq. (10) as will be explained in Section 3.1.4.1 and the rule :tness will be calculated
according to Eq. (8). The system will also use the Contextual Constraints explained in Section
3.1.4.2 to narrow the search space.

(8) The vehicle will move to test the solution. If it solves the situation by satisfying the ending
criteria given by Eq. (11) in Section 3.1.5, this is assumed as a solution and the learning cycle
ends and it stores this solution in the Experience Bank. If the robots fails and the number of
iterations is less than or equal 3 the vehicle returns to SB through FB and returns to step 7,
if the number of iterations is bigger than 3 and the robot fails go to step 9.

(9) If the robot does not :nd a solution within a certain number of iterations, chosen empirically
to be three iterations, the robot begins modifying the rules actions of the two most e;ective
rules at FB and the two most e;ective rules at SB. This means that modifying the SB rules is
not su8cient to produce a solution in this situation and the FB rules also need to be taken into
consideration. We will call this second replacement (SR). The GA population will consist of
all the active rules during the episode. The rule :tness will be calculated according to Eq. (8),
we will use roulette wheel selection and a crossover probability of 1.0 and adaptive mutation
probability given by Eq. (8) as will be explained in Section 3.1.4.1. The system will also use
the Contextual Constraints explained in Section 3.1.4.2 to narrow the search space.

(10) The vehicle then starts moving with the modi:ed rules. If the vehicle moves a distance greater
than the distance needed for the ending criteria in Eq. (11) to apply to this situation, this
will be considered a solution and the learning cycle ends and it stores this solution in the
Experience Bank. If it fails and the number of iterations is less than or equal to 6 the vehicle
returns to SB through FB and returns to step 9. If the robot fails number of iterations is bigger
than 6 go to step 11.

(11) If the number of iterations exceeds a maximum number chosen empirically to be six without
a solution being found then we decrease the situation ending criteria to half the distance. This
means that this situation cannot be learnt as a single situation and must be split into two
smaller situations. If distance moved is bigger then half the distance needed for the ending
criteria then a solution for the situation is found and this ends the learning for the current
situation and it is saved in the Experience Bank If not go to step 9.

Fig. 4 shows a Aow chart of the steps used to learn online the obstacle avoidance behaviour.

3.1.1. Backing to identify the poorly performing rules
The movement of an autonomous vehicle can be described by a series of movement vectors

(we term each movement vector a control step) {m(0); m(1); m(2); : : : ; m(n)}. The application of
these vectors may cause the vehicle to get very close to or to collide with an obstacle, potentially
resulting in the failure of the behaviour to act correctly. In the case of obstacle avoidance behaviour,
failure is said to have occurred when the vehicle becomes too close to an obstacle as sensed by low
range sonar or bumper switches. The series of the control steps that ends by colliding or getting very
close to any obstacle is called an episode. To avoid a reoccurrence of such failures should the mobile
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Has the robot failed again 
and is the number of 

iterations less than or equal 3 

Has the robot failed again 
and is the number of 

iterations less than or equal 6 

Number of Iterations> 3 

Number of Iterations> 6

Robot uses STM to return to FB &SB to identify the two 
most effective rules at FB & SB

The system replaces the 2 most effective rules at FB and 
SB by experienced solution from the Experience Bank 

The GA starts its search from the best memorised solution & it starts by 
replacing the two most effective rules at SB

Learning Cycle for a situation starts 
when a robot gets very close or 

collides with an obstacle  

Is a solution found using 
memorised experiences  

Did the vehicle satisfy the 
ending criteria 

The robot returns to SB through FB & the AGA generates a new 
solution and the vehicle moves & test the solution

The robot returns to SB through FB & the AGA generates new consquents for 
the two most effective rules at FB &SB & the vehicle moves to test the solution 

Did the vehicle satisfy the 
new ending criteria 

Did the vehicle satisfy the 
ending criteria 

Decrease the ending criteria to half 

End of the learning cycle for this situation & the robot continues with 
the learnt rules & they are stored in the Experience Bank as a solution 

End of the situation by using the memorised Experience  

Yes

Yes

Yes

Yes

Yes 

Yes 

No

No

No

No 

No

No

Fig. 4. A Aow chart of steps used to learn online the obstacle behaviour using our Fuzzy–Genetic system.
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robot navigate a similar environment, the rules that contributed mostly to generate the previous
control actions must be corrected [1].
The on-line learning algorithm is used to generate new set of rules to face the future occurrences

of this failure. As with classi:er systems, in order to preserve the system performance the GA is
only allowed to replace a subset of the rules. The worst m rules are replaced by m new rules created
by the application of the GA on the population. The new rules are tested by the combined action of
the performance and apportionment of credit algorithms [7]. In our case, only 4 rule consequences
will be replaced (2 most e;ective at the :rst backing and 2 most e;ective at the second backing),
these are the rules which contributed mostly to the failure situation (collision).
These rules can be found by using the vehicle’s short term memory (STM). This is composed

of the last n actions taken by the robot before the failure occurred. The vehicle can then replay the
last n actions from the STM to move backward along the original path. The distance backed at this
step will be used as the starting point for all the solutions proposed by the algorithm.
It is easy to make computations related to the vehicle dimensions so that when moving from a

small to a large vehicle, the algorithm only requires parameters relating to the vehicle’s dimensions
to be changed. Thus making our algorithm robot independent. Other relevant features which discrim-
inate among robots are manoeuvrability, speed, mass, etc. However we will only consider the robot
dimension to keep computations simple and we will leave to the learning and adaptation modules
the task to learn the controllers for di;erent robots of di;erent masses, speeds and manoeuvrability
as will be shown in the experiments section.
The :rst step in avoiding an obstacle is to determine the minimum distance possible between the

vehicle and the obstacle if the vehicle is to avoid hitting the obstacle when the maximum steering
angle is applied to the vehicle. We de:ne W to be the minimum safe distance between the front
of the vehicle and the obstacle. This is the minimum distance at which the vehicle can apply the
maximum steering angle and is still able to avoid hitting the obstacle. If we assume that when
the maximum steering angle is applied the vehicle rotates about a front corner, the opposite corner
would traverse an arc, as shown in Fig. 5(a). If the vehicle is operating in a con:ned space, such
as a corridor, it must also determine that there is su8cient clearance to the left and right sides to
safely perform the turn. We further de:ne X to be the minimum safe distance between the sides
of the vehicle and any obstacles. This can be satis:ed by specifying the minimum distance from
the left and right wall as X . Thus, if the vehicle rotates as described above, the rear corners of the
vehicle will not impact with any obstacles during rotation.
The second step is to utilise the information stored in the Short Term Memory together with the

safe distances described above to identify the badly performing rules. The vehicle replays the actions
stored in the STM until it has backed away from the obstacle su8ciently to satisfy the minimum
distances W and X . We will call this distance the :rst backing (FB) distance. This location represents
the point where the maximum steering angle must be applied to avoid the obstacle, if the vehicle
were to back further away, less steering angle could be applied to avoid the obstacle. This is similar
to a driver near an end of a corner tries maximum steering to get out of this situation, while if
he backed more he can easily get out of this situation. Thus to make the manoeuvring easier, the
vehicle continues to back away until the distance from the obstacle is double the FB distance. We
call this distance the second backing (SB) distance. The :rst and second backing distances represent
waypoints where the vehicle should be taking action to avoid the obstacle. This technique is bene:cial
when encountering dead ends or when the space is too tight for the vehicle to manoeuvre.
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Fig. 5. (a) The vehicle turning distances. (b) The position estimation using the 3 infrared beacons.

In robotic learning using evolutionary computation, a central point is the ability of the robot to
go back to its starting position to compare di;erent solutions as the robot evolve new solutions and
try them and assign :tness according the performance of each solution. So it is always necessary to
start the evaluation from the same point so that all solutions are evaluated in a fair way. Also if the
distance travelled before failure will be used to measure :tness then a reliable way will be needed to
measure distance. In simulation and oPine learning it is very easy to determine exactly, the distance
the robot had moved, and always return the robot back to same position to begin assessing a new
solution as the whole learning cycle is implemented using a computer simulation program. When
learning in simulation, usually researchers neglect the time the robot takes to go back to its initial
position to try a new solution [27]. However in real world it is di8cult to precisely measure the
distance travelled by the robot and to exactly return it pack to same starting point due to the noise
and uncertainty in sensors and actuators.
In the lab experiments to determine this distance we have used three infrared beacons placed at

right angels and at known distances a; b, and the infrared scanner sensor mounted on the robot gives
bearing of the robot w.r.t. to three beacons, the system con:guration is shown in Fig. 5(b). In the
outdoor environment we perform this by using an electronic compass or a GPS sensors and three
known positions for triangulation. The distance of the robot from a point O (beacon number zero)
is given by [18]:

r =
b sin(� + �)
sin(�)

; (3)

where

� is given by; � = tan−1((c sin(�)− cos())=(sin()− c cos(�))) and

C is given by (b sin()=a sin(�)):
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When the robot fails to ful:l its desired behaviour (being very near or colliding with an obstacle),
the robot performs both the FB and the SB. At the end of the SB, it calculates its distance r from
point O, which will be the original point for any solution evaluation. This distance is denoted by r0
and �0. If the robot moves a new distance r1, then dnew which is the distance moved by the robot
after applying the new rule-base will be equal to

dnew =
√
(r1 sin(�1)− r0 sin(�0))2 + (r1 cos(�1)− r0 cos(�0))2: (4)

In our case in order to return back to the starting position we will use a Short Term Memory
(STM). This is composed of the last n actions taken by the robot before the failure occurred. Each
memory entry is the actuators actions and how far did the robot travel using these actions measured
by the wheel encoders. The vehicle can then replay the last n actions from the STM to move
backward along the original path. When the robot :nishes playing back its actions there will be an
accumulative drift as a result of errors associated with the encoders. This will be corrected by using
the triangulation information explained above which tells the robots its relative position relative to
triangulation points (infrared beacons indoors and GPS points outdoors). We will then use a low
level pilot fuzzy logic controller in which one input to the controller will be the set point which
is the coordinates of the starting point, the other input will be the actual value which is the robot
drifted coordinates after replaying the STM actions and the fuzzy controller output is to tune the
robot actuators so that it will restart again from the original starting position. Given that we are
dealing with imprecise sensors and actuators there will be a drift anyway. However what really
matters is that the drift is small enough so that each time we trigger the same fuzzy rules. We
are able to achieve this, as the drifts are very small not exceeding 2 cm in any direction thanks to
our STM and triangulation and the pilot fuzzy logic controller that gets the robot back to the same
starting position.
As mentioned previously, we cannot replace all the rules in the population, so we must choose

which part of the population to replace. We choose to replace the actions of the two rules at each
backing location that contributed most to the failure of the behaviour. At each backing position the
rules that were used are evaluated and the contribution of each rule to the :nal action is determined.
The greater the contribution the more the rule will be blamed for the failure and is punished by
reducing its initial :tness with respect to other rules.

3.1.2. Fitness determination and credit assignment
The :tness of the system is generated by the Solution Evaluator. In the case of obstacle avoidance,

:tness can be determined as a function of the distance moved by the vehicle [48].
In this paper, we are concerned with making the robot learn online and adapt the rules necessary

for the task of avoiding obstacles. Introducing the robot to di;erent situations, such as corridors,
obstacles and walls could do this, thereby allowing the robot to discover the rules needed in each
situation. The learning session consists of learning di;erent situations or episodes. The model to be
learnt is small and so is the search space. The accent on local models implies the possibility to learn
by focusing at each step on small parts of the search space only, thus reducing useless interaction
among partial solutions. The interaction among local models, due to the intersection of neighbouring
fuzzy sets causes that local learning to reAect on global performance [3]. Moreover, the smooth
transition among the di;erent models implemented by fuzzy rules implies robustness with respect to
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data noise. So we can have global results coming from the combination of local models and smooth
transition between close models.
In the case of the obstacle avoidance behaviour, reinforcement is available only when the per-

forming system collides or escapes from collision after an ending criteria. The only possibility is to
evaluate the robot’s performance when it succeeds in escaping, or when it is collides or gets close
to an obstacle. We evaluate the performance of a robot after a sequence of control steps called
episodes ending with the robot colliding or getting very close to an obstacle. Thus the number of
control is step per episode is not constant and varies from one episode to the other. At the end
of each episode, the reinforcement program re-evaluates the vehicle’s performance and distributes
the corresponding reinforcement values to the rules that have contributed to control actions during
the episode. This evaluation strategy averages the e;ects of the single rules, and in general has a
stabilising e;ect [2].
In the following actions we choose not to use the bucket brigade algorithm for apportionment

of credit assignment. As discussed in [19], the bucket-brigade algorithm may loose e;ectiveness as
action sequences get longer and as we are using the FLC system we will have long chains of rules.
In addition, the bucket brigade algorithm does not appear to handle partially observed environments
robustly [19]. So we will only apply credit assignment to the rules that contributed during the
episode, as it will be shown that modifying the most e;ective rules is su8cient to :nd a solution
and there is no need for backward chaining.
Each rule p output (Yp) contributes a variable amount to the crisp output Yt given in Eq. (1).

If there are N output variables, then we have Yt1, Yt2; : : : ; Ytn outputs. Therefore the normalised
contribution of each rule p output (Yp1; Yp2; : : : ; Ypn) to each of the outputs Yt1; Yt2; : : : ; Ytn can be
denoted by Sr1; Sr2; : : : ; Srn. Where Sr1; Sr2; : : : ; Srn are given by

Sr1 =
Yp1

∏G
i=1 Aip=

∑M
p=1

∏G
i=1 Aip

Yt1
; Sr2 =

Yp2
∏G

i=1 Aip=
∑M

p=1

∏G
i=1 Aip

Yt2
; : : : ;

Srn =
Ypn

∏G
i=1 Aip=

∑M
p=1

∏G
i=1 Aip

Ytn
: (5)

In the case where we have only two outputs, which could represent left and right wheel velocities
in the indoor robots and the speed and the steering in the outdoor robots. The contribution made
by rule p to each output will be given by Sr1 and Sr2. We can calculate the contribution made by
a rule to the :nal action given a crisp input vector as Sc(n)= (Sr1 + Sr2)=2. Given that during the
episode each rule will match K crisp input vectors to di;erent degrees then the contribution of each
rule during the episode is given by:

Stot =
∑K

k=1 Sc(k)∑M
m=1 SF(m)

; (6)

where SF(m) is the contribution of all the triggered rules which matched M crisp inputs vectors
during the whole episode. Eq. (6) helps to calculate the rule contribution at the FB as they are
related more to the rules that contributed through the episode and was responsible for the :nal
failure. However at the SB we calculate the contribution of the rules that contributed from the
beginning of the episode till the FB position as these rules are the rules that if their actions was
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correct they could helped the robot early to avoid the obstacles, their contributions is calculated as
follows

StotSB =
∑Ks

k=1 Sc(k)∑Ms
m=1 SF(m)

; (7)

Ks is the number of matched crisp input vectors from the beginning of the episode till the FB.
SF(m) is the contribution of all the triggered rules which matched Ms crisp inputs vectors from the
beginning of the episode till FB.
The rules that contributed most to the actions at the FB or SB positions are those rules with the

greatest values of Stot and StotSB. In order to prevent good rules to be punished by being associated
and :red by bad rules we replace :rst the actions of the two most e;ective rules at SB with the
highest values of StotSB as these rules will be responsible later to :re the other rules that could be
good rules but could be punished by the bad actions of these e;ective rules till FB and cannot
recover from their bad e;ect. We will call this the :rst replacement (FR). If the robot does not :nd
a solution within a certain number of iterations, chosen empirically to be three iterations this means
that modifying the SB rules is not su8cient to produce a solution and we still need to modify the
most e;ective rules during the whole episode as their actions were bad as well. In this case the
robot will modify the two most e;ective rules at FB with the highest values of Stot and the two most
e;ective rules at SB with the highest values of StotSB we will call this second replacement (SR).
As we are using delayed reinforcement at the end of the episode then the rules contribution which
will be calculated according to Stot.
If there was an improvement in the distance travelled by the vehicle, the rules that contributed

most will be given more :tness to boost their actions. If there is no improvement then by reducing
their :tness w.r.t the other rules we punish these rules and we begin examining those solutions that
proposed small contributing actions.
The :tness of each rule is supplied by the Fitness Evaluator and is given by

Srt = Constant + (dnew − dold) : Stot : (1− F) : V; (8)

where dnew is the distance moved by the vehicle after producing a new rule-base using the online
algorithm, dold is the distance moved by the vehicle during the previous iteration, dnew − dold is the
distance improvement or degradation caused by the adjusted rule-base produced by the algorithm. F
is the normalised steering value. V is the normalised average speed of the vehicle. This maximises Srt

by increasing the distance moved by the vehicle at higher speeds with minimum steering adjustments.
The variable V was introduced to favour those rules with faster speeds and F was introduced to
penalise instant large steering variations and zigzag paths.
In the :rst population of GA, as there is no distance moved yet, we blame only those rules that

have contributed most to the action of collision. The :tness of each rule is given by

Srt = Constant − Stot : (9)

In this way the rules that have contributed most to this failure action will have a lower :tness
value than those rules that have contributed less. Thus the GA can be directed away from bad actions
that are considered ‘bad’ and encouraged to explore other ‘good’ actions.
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3.1.3. Experience bank application
Zhou [49] presented a CSM (classi:er system with memory) system that addresses the problem of

long-term versus short-term memory, i.e. how to use past experiences to reduce the problem solving
activity in novel situations. Zhou’s approach is to build a system in which a short and long term
memory are simultaneously present.
We propose a similar system using what we term an Experience Bank. Initially the vehicle has

acquired no previous experience and the Experience Bank is empty. As it begins learning by GA,
it begins :lling the memory with clusters of rules. Each rule cluster consists of the rules and the
actions (consequences) that were learnt using the GA. The rule clusters are stored in a queue based
on recent experience, hence the term Experience Bank.
Each time the vehicle is presented with a situation to solve, it begins checking if the rules to

be modi:ed are present in the memory clusters or not, thus it will experiment with the memory
clusters which have rules that are currently selected for replacement. The system replaces the two
most e;ective rules actions at the FB and the two most e;ective rules actions at SB by rules stored
in the Experience Bank which represents past experiences that had solved a similar situation that
the robot had solved in past If, for example, we have rules 1, 2, 3, 4 to be replaced and the
:rst cluster has the consequences of rules 1, 3, 6, 7. Then the consequences of rules 1, 3 will be
changed and rules 2, 4 will remain the same. The vehicle then begins moving using the modi:ed
rule-base. If it survives and gets out of this situation without any collisions or failures, the rules
are kept in the rule-base of the controller. In this way we have saved the process of learning a
solution to this problem from the beginning by using the memorised experience which was devel-
oped for di;erent environmental conditions. If the robot again fails (collides with an obstacle), it
measures the distance it had moved to determine the :tness of the solution proposed by this memory
cluster (supplied from the Experience Bank). The role of the Experience assessor is to determine
the :tness of each memory cluster solution based on the distance it moved before collision and
then proposing the solution with the highest :tness to act as a starting point for the GA search.
As the experienced memory clusters are recalled in many situations and always assigned :tness
according to how well they performed in each situation. The Experience assessor also averages the
memory clusters :tness values over the number of iterations and then it ranks the memory clus-
ters so that when a similar situation is encountered it starts with the memory cluster that had the
biggest average :tness amongst the other memory clusters. This will save time as it will allow
the system to experiment :rst with the memory clusters which performed better than the others
and this can cause the robot to :nd a memorised solution that can solve the situation faster than
going and searching through the whole Experience Bank in a nonorganised manner. However if
none of the memory clusters o;ers a solution the robot will still experiment with all the relevant
memory clusters and in case none of them o;er a solution to the current problem the robots picks
the best performing memory cluster (according to its :tness) to serve as a starting point for the GA
search.
Starting the GA search from the best found experienced solution can be justi:ed as follows as

we often confront sets of similar problems. It makes little sense to start a problem solving search
attempt from scratch with a random initial population when previous search attempts may have
yielded useful information about the search space [42]. Instead, seeding a GA initial population with
the best found solution to previously solved problems can provide information (a search bias) that
can reduce the time taken to :nd a quality solution. In this case, the GA does not have to waste
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time exploring unpromising subspaces because these starting cases provide good building blocks for
solutions to the current problem [41].
After all the memory clusters have been examined, if the robot still collides, the best solution

proposed according to its :tness as determined by the Experience Assessor is transferred to the
robot controller. This is used as the starting position for the GA search instead of starting from a
random point. The Experience Bank actions, which act as a long-term memory, will thus serve to
speed up the search.
A problem occurs as the system begins to accumulate experience that exceeds the physical memory

limits of the Experience Bank. This implies that we must remove some of the stored experience
information as the amount of acquired experience increases. In order to ensure that the most valuable
experiences are not lost, we employ the following mechanism. To every rule cluster we attach a
diAculty counter to count the number of iterations taken by the vehicle to :nd a solution to a given
situation, we also attach a frequency counter to count how often the rule cluster has been retrieved.
The degree of importance of each rule cluster is calculated by the Experience Survival Valuer and
is given by the product of the frequency counter and the diAculty counter. This approach tries to
keep the rules that required a lot of e;ort to learn (due to the di8culty of the situation) and also
the rules that are used frequently.
When there is no more room in the Experience Bank, the rule cluster that had the least de-

gree of importance is selected for replacement. If two rule clusters share the same importance
degree, tie breaking is resolved by a least-recently used strategy. The rule that has not been used for
the longest period of time is replaced. Thus an age parameter is also needed for each rule cluster.
The value of the age parameter increases over time, but is reinitialised whenever the associated
cluster is accessed. The limit for the memory clusters is set to 2000 rule clusters (limited by the
memory capability of our vehicles). When we exceed this limit the Experience Survival Valuer
begins using the degree of importance and the age operator to optimise the Experience Bank.
Our techniques are inspired from nature and Psychology theorems as it is similar to human learning

where humans are born with basic information and they start learning from the best experience
available in their community rather than starting to learn from scratch [36]. As in human societies,
culture can be viewed as a vehicle for the storage of information that is globally accessible to
all members of the society and that can be useful in guiding their problem solving activities [31].
Also humans tend to use experience to solve problems that they encounter by trying to recall their
previous experience and if they need to learn a new experience they start trying to re:ne and tune
their previous experience to solve the problem they are facing [34,36].

3.1.4. Producing new solutions by AGA
The adaptive genetic algorithm (AGA) is the rule discovery component for our system (as in

the classi:er system). The AGA is applied to learn a new solution for a certain situation, after all
the solutions stored in the Experience Bank have failed. The AGA initialised with the best found
solution from the Experience Bank starts to search for new consequences for the blamed rules. As
was mentioned earlier, the AGA starts by modifying the actions of the most two dominant rules
at the Second Backing position, we will call this the :rst replacement (FR). If the robot does not
:nd a solution within a certain number of iterations, chosen empirically to be three iterations, the
robot begins modifying the rules actions of the two most e;ective rules at FB and the two most
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Fig. 6. (a) The robot is in a situation composed of two sub-situations, a right turn followed by a left turn. (b) Three
obstacles con:guration used to experiment with di;erent mutation and crossover probabilities.

e;ective rules SB. This means that modifying the SB rules is not su8cient to produce a solution in
this situation and the FB rules also need to be taken into consideration. We will call this Second
Replacement (SR). The population of the GA during the FR will be the actions of all the rules
that have contributed to the SB from the beginning of the episode till FB (which is usually a small
population depending on the situation). While in the SR the population will be consisting of all the
rules that contributed during the whole episode. The :tness of each rule in the :rst population is
proportional to its contribution during the whole episode according to Eq. (9). The parents of the new
solution are chosen proportional to their :tness using the roulette-wheel selection process and the
genetic operations of crossover and mutation are applied to produce new solutions. After the AGA
generates a new solution, the vehicle tries the controller using the modi:ed rule-base. If the vehicle
moves a distance greater than the distance needed for the ending criteria without colliding or getting
very close to an obstacle, this will be considered a solution this means that the robot had learnt this
particular situation. The robot keeps this solution in the rule-base and in the Experience Bank. If
the robot collides again with an obstacle it goes back to the SB through the FB and calculates the
:tness of each rule according to their performance during the whole episode according to Eq. (8)
and then the AGA generate a new solution, which is then tried. If the number of iterations exceeds
a maximum number chosen empirically to be six without a solution being found then we decrease
the situation ending criteria to half the distance. This means that this situation cannot be learnt as
a single situation and must be split into two smaller situations. An example is shown in Fig. 6(a).
Splitting this situation into two sub-situations is essential for producing a solution.

3.1.4.1. Choice of the crossover and mutation probabilities. The crossover and mutation proba-
bilities play a major role in the fast convergence of the GA. The crossover probability Pc controls
the rate at which the solutions are subjected to crossover. The higher the value of Pc, the quicker
the new solutions are introduced into the population. As Pc increases, the solutions can be disrupted
faster than selection can exploit them. The choice of mutation probability Pm is critical to the GA
performance. While the use of large values of Pm transforms the GA into a purely random search
algorithm, some mutation is required to prevent the premature convergence of the GA to sub optimal
solutions.
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The reduced crossover lowers the productivity of the GA, since there is less recombination between
individuals and hence it takes a longer time to obtain a good solution, so as in [25] we set the
crossover probability to 1.0 to guarantee fast convergence.
The traditional role of mutation has been that of restoring lost or unexplored genetic material into

the population to prevent the premature convergence of the GA to sub optimal solutions. However
recent investigations have demonstrated that high levels of mutation could form an e;ective search
strategy when combined with conservative selection methods [40]. As we are using a small population
size and small chromosome size, it is necessary to use a high mutation rate to allow for a wider
variation in the search and hence the ability to jump out of any local minima without reducing the
search process to a random process [39]. It is also desirable that as the system :tness improves
(distance traveled increases), the mutation rate is decreased so as not to lose the genetic material
that caused the improvement.
Therefore, we vary the mutation probability from one generation to another depending on the

distance improvement achieved. In the :rst few iterations we want to use a high mutation probability.
If there is an improvement in the distance, we will linearly reduce the mutation until the improvement
reaches a maximum value and the mutation probability reaches 0. If the distance improvement was
the same or was less than the previous trials, then the mutation probability is increased again to a
high value to :nd new genetic materials that might aid in :nding a solution. Thus, the mutation
probability can be written as

pm = H − H (dnew − dold)
robot length

if dnew ¿ dold ;

Pm = 0 if (dnew − dold)¿ robot length;

pm = H otherwise: (10)

So what we want is to :nd the best value for H that will help to speed the convergence without
causing the search to end by a random search or being trapped in a local minima. As all the
algorithm parameters are related to the vehicle dimensions thus we have related the maximum
distance improvement to the robot length. This choice will be veri:ed through practical experiments.
In order to :nd the best value for H we had performed practical experiments with real robots

having di;erent sizes and kinematics using the experimental set-up in Fig. 6(b). As the obstacle
avoidance behaviour cannot be employed as an independent behaviour (asking the robot to wander
randomly and not to collide). The obstacle avoidance behaviour can be regarded as a safety behaviour
associated with other behaviours. In the following experiments, we will coordinate the obstacle
avoidance behaviour with the goal seeking behaviour whose rule-base was obtained from our previous
work [12,13,16]. In the :rst set of experiments we wanted to verify our choice for the crossover
probability and :nd the best H value for the adaptive mutation probability in Eq. (10). For each
experiment, we experimented with a value for the crossover values and a value for H for the adaptive
mutation in Eq. (10).
We tried six di;erent values of crossover probability starting from 0 to 1 with a step of 0.2, each

with a value for H varying from 0 to 1 with values equal to 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0. We
kept the robot length parameter :xed in these sets of experiments however, we will verify later its
choice. For each crossover probability value and H value (which is related to the mutation value)
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Fig. 7. (a) The convergence rate speci:ed by the number of iterations plotted against the crossover probability for di;erent
H values. (b) The rule genotype and an example of GA processes in our system in which rule 5 and rule 7 (which were
selected due to their higher :tness values) are generating new consequent for rules 1,2 of the SB reversal. The same will
happen with two FB rules.

we tried many experiments with the three experimental con:gurations shown in Fig. 6(b). We had
performed 5 experiments for each con:guration shown in Fig. 6(b) starting from di;erent random
points and changing the sizes of the obstacles and the dimensions of the con:guration and using
di;erent sizes of robots with di;erent kinematics. We recorded the number of iterations taken by
the robot to :nd a solution for each experiment and we calculated the average number of iterations
over the :ve experiments. We compared the results for the three con:gurations and we found that
they all gave the same patterns shown in Fig. 7(a).
It was noted that at zero H value and thus zero mutation probability no solution could be found

because of the lack of genetic material, the same was true for a value of H value of 0.1. At an H
of 0.3, the fastest convergence was after 16 iterations with crossover value of 1.0. At an H value
of 0.5, we have the fastest convergence after 8 iterations with a crossover rate of 1.0. The same
convergence rate was noted for H values of 0.7. At H value of 0.9 the system more or less performs
a random search and the best performance is at crossover probability of 1.0 after 6 iterations. The
H value of 1.0 leads to no solutions at all. This is because starting with most of the genetic material
the same, any mutation will lead to an inversion of the binary material and thus will degenerate to
a random search as no new material will be introduced.
From Fig. 7(a) it is obvious that as the crossover probability increases, the convergence rate

also increases with an optimum value achieved at a crossover probability of 1.0. It also shows that
optimum H value to be either 0.5 or 0.7, but we will choose 0.5 to be the upper bound to decrease
the risk of ending in a randomised search.
We conducted another series of experiments to investigate the optimum parameters in the base of

Eq. (10). We used the same three experimental con:gurations shown in Fig. 6(b). We had performed
:ve experiments for each con:guration shown in Fig. 6(b) starting from di;erent random points and
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changing the sizes of the obstacles and the dimensions of the con:guration using di;erent sizes of
robots with di;erent kinematics. We recorded the number of iterations taken by the robot to :nd a
solution for each experiment and we calculated the average number of iterations over the :ve experi-
ments. We tried various lengths relative to the robot length such as half or double its original length.
These experiments will determine if the robot length in the base of Eq. (10) was the best value?.
We used the best values found from Fig. 7(a) where H =0:5 and the crossover probability = 1:0. It
was found that the original robot size had produced the fastest convergence whilst any other length
did not produce the same fast convergence. So by substituting with best found H values Eq. (10)
can be written as

pm = 0:5− 0:5(dnew − dold)
robot length

if dnew ¿ dold ;

Pm = 0 if (dnew − dold)¿ robot length;

pm = 0:5 otherwise:

We use binary coding in the AGA chromosomes. If we again use the case where there are two
actions for each rule in this case the actions represent left and right wheel velocities in case of
indoor vehicles and speed and steering in case of outdoor vehicles. Assuming we have 4 output
membership function, we can decode each action by two bits as follows, Very Low as 00, Low as
01, Medium as 10, High as 11. By doing this we have a chromosome length of 4 bits.
Fig. 7(b) shows a description of the AGA operations with the rules genotype in which rule

number 5 of the obstacle avoidance and rule number 7 are chosen for reproduction by roulette wheel
selection due their high :tness. They have been identi:ed as having contributed most to the :nal
action. The crossover probability of 1.0 was applied to both chromosomes and the adaptive mutation
as well. The resultant o;springs were used to replace the consequents of rules 1 and rule 2 which
were mostly blamed at SB. The same technique can be used to replace the consequents of the two
dominant rules in the FB.

3.1.4.2. Contextual constraints. The incorporation of evolutionary computation (EC) and
knowledge-based mechanisms can considerably improve the EC performance when common knowl-
edge is used to bias the problem solving process [30,31,43]. The knowledge, such as using some
constraints can be used to guide the generation of candidate solutions, promote more instances of
desirable candidates, and reduce the number of less desirable candidates in the population. Using
constraints is a known technique to narrow the search space and speed up the search for GA [31,43].
Using the Contextual Constraints will not reduce the signi:cance of the learning approach as the
system can still learn without Contextual Constraints but it will take longer time, however in on-
line learning in unstructured environments (e.g. outdoor environments) we want to use all means to
speed up the search to a good solution. In order to speed up the search we will use the Contextual
prompter Constraints. This uses sensor information in order to narrow the GA search space to make
it avoid regions which will not provide any solutions. For example, it is not a good idea to turn left
when the sensors detect that the left end is blocked or that there is larger space to turn right. It was
found through practical experiments that when the algorithm is not using Contextual Constraints the
system needs on average :ve times the amount of time required when using Contextual Constraints.
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This is due to the system searching through the whole search space and not only in the regions
where solutions are likely to be found.
The Contextual Constraints also contains basic knowledge that prevents generating dangerous

rules that can damage the robots or the environment thus also ensuring the safety of the generated
behaviour. For example the Contextual Constraints will avoid generation of rules that will allow
the robot to go with maximum speed when there is an obstacle in its way and very close to it.

3.1.5. Ending criteria
At the SB the vehicle is at a minimum distance of 2W from the front obstacle and at a min-

imum distance of X from the left and right obstacles. If it is assumed that the vehicle moves
a distance W without taking any correct action and at the position of FB it makes a maximum
turn. This will cause the vehicle to rotate in some how a quarter of a circumference of the circle
with a radius W making the robot move &W=2. In order to make sure it is out of this situation
without colliding, the vehicle should further travel a distance of X . Therefore the total distance
moved by the vehicle to get out safe of a situation without hitting an obstacle can be
given by

W +
&W
2

+ X: (11)

So the vehicle can calculate the distance moved, if this distance exceeds the distance given by
Eq. (11), then the vehicle has successfully found a solution to this situation. If the number of
generations exceeds 6 without successfully producing a solution, the distance given by Eq. (11)
is reduced by half. This sub-divides the problem allowing each situation to be solved
separately.

3.2. Online adaptation of the learnt controller and life long learning

In the previous sections we described how, using the obstacle avoidance behaviour as an example,
behaviour rule bases that receive delayed reinforcement can be learnt online. In this section we
discuss how the vehicle can adapt to environmental changes and how a life long learning scheme
of the coordinated behaviours can be implemented, which allow the robot to add to or update its
knowledge when encountering new situations. Thus the coordinated rule bases used by the vehicle
becomes dynamic, allowing rules to be added, deleted or modi:ed according to the situations that
are encountered. This approach is useful in prototyping as we can learn the robotic controller on
a prototype robot in a controlled environment and then we transfer it to the big robot running in
the real environment where we only run a short adaptation cycle [16]. As the algorithm parameters
are vehicle independent, the algorithm can easily be moved between the prototype and the real
vehicle requiring only minimal changes. This procedure is useful in learning controllers for vehicles
which might involve dangerous manoeuvres using small and cheap prototype robots in a controlled
environment, thus avoiding the risks associated with online learning using heavy and expensive
vehicles. Also these techniques produce general controllers that can be applied to di;erent types of
vehicle having the same sensor con:gurations and performing the same mission after applying a short
adaptation cycle. Thus saving the need to generate a new controller for each di;erent vehicle. Perhaps
more importantly, this adaptation session is important in the case where environmental or vehicle
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kinematics changes occur and the vehicle needs to rapidly adapt to these changed circumstances.
We will validate these techniques through our experiments in challenging environments such as the
agricultural environments.
Although fuzzy logic allows a degree of imprecision to exist within the environment, signi:cant

environmental or robot di;erences will prevent the rule sets from operating correctly. One solution
to this problem is to provide a new rule set for each of the di;erent environments, although prior
knowledge of the di;erent environments would be needed (which could be di8cult, if not impossible,
for some environments). An alternative solution is to allow the existing coordinated rule set to be
adapted to compensate for the environmental di;erences. This latter approach only requires a basic
rule set to be present in the prototype controller and does not require any prior knowledge of the
possible environments.
We start the adaptation using the HFLC that best :ts the current situation, instead of starting

from a random point. If the system were started using a random rule base, the modi:cation of the
actions would take approximately six times longer than starting from a known ‘good’ rule base
containing some inappropriate rules for the new environment. This :gure was found by practical
experimentation.
In our case the adaptation is performed by modifying rules in (in di;erent behaviours) that, if

modi:ed, would lead to the vehicle adapting to its new environment. Whilst it might seem a good
idea to modify the coordination parameters or the membership functions of the individual behaviours
to adjust the robot behaviour when it fails, this is not the best approach. This can readily be illustrated
by considering a case where the rules in the individual rule bases become inappropriate, it is obvious
that changing the coordination parameters in these circumstances would never correct the vehicle
behaviour (as was proved by experimentation). Also changing the MF is a di8cult task, as this
needs to be done for each individual behaviour, necessitating that the robot be taken away from its
environment for MF calibration. However, our method allows the poorly performing rules for each
behaviour to be found and corrected, online, modifying only the actions of a small number of rules
that performed poorly.

3.2.1. Summary of the steps and parameters used in online adaptation of the coordinated
behaviours
In this section we give an overview of the steps and parameters used for online adaptation of the

co-ordinated behviours.

(1) The robot mission is composed of many tasks, each task has a measure of success attached
to it. If one or more of tasks in the robot mission fails down, the adaptation cycle starts.
The failures of tasks like obstacle avoidance is triggered when it collides or gets very close
to an obstacle, while the performance of behaviours that receive immediate reinforcement are
evaluated over a distance equivalent to twice the robot length and if their performance falls
below their speci:ed target, then the failures of these task (s) is triggered. The system does not
need to relearn the whole rule bases to adapt to this failure, it will adjust rules in the di;erent
coordinated behaviours that if adjusted will cause the robot to recover from the failure situation
The system can adapt any time when it fails. This leads to a life long learning approach, where
the coordinated rule bases used by the vehicle becomes dynamic, allowing rules to be added,
deleted or modi:ed according to the situations that are encountered.
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(2) The robot uses similar STM as explained in Section 3.1.1 to return to its pre failure position
to :nd the rules in the di;erent coordinated behaviours responsible for failure and correct them
to generate a solution to the current failure. If one of the failing tasks is obstacle avoidance
the system backs :rst a distance which is maximum of the distance equivalent to the robot
length and the distance su8cient to satisfy the minimum safe distance W from the front and X
from the sides of the vehicle as explained in Section 3.1.1. If none of the failing tasks is the
obstacle avoidance it backs a distance equivalent to the robot length. This is called the FB and
then backs to double the FB distance called the SB. These two distances allows to discovery
of the blamed rules for failure which if corrected could solve the situation.

(3) The system :nds the two most e;ective rules at SB with the biggest values of StotcSB using
Eq. (15) and the two most e;ective rules at FB with the biggest values of Stot using Eq. (14)
as explained in Section 3.2.2.

(4) The system then replaces the two most e;ective rules (which can belong to di;erent behaviours)
at the FB and SB by rules stored in the Experience Bank which represents past experiences
that had solved a similar situation encountered in past.

(5) The Experience Bank solutions are tested one by one in a pre speci:ed order starting from
the most successful rule clusters over the past experiences. If one of the experiences solves the
situation then the learning ends and the rule base continues with this memorised experience
with no need to generate new solutions.

(6) If all the solutions from the Experience Bank fail, the system allocates each experienced
solution a :tness value according to how well it performed in the environment. The AGA
starts its search from the experienced solution with the best :tness as evaluated by Experience
Assessor. Thus we do not start our learning from random but from the best point in search
space, this action helps to speed up the search.

(7) In order to prevent good rules to be punished by being associated and :red by bad rules we
replace :rst the actions of the two most e;ective rules at SB (which can belong to di;erent
behaviour) with the highest values of StotcSB as these rules will be responsible later to :re
the other rules that could be good rules but could be punished by the bad actions of these
e;ective rules till FB and cannot recover from their bad e;ect. We will call this the First
Replacement (FR). The AGA population will consist of all the active rules from the beginning
of the episode till the FB. We will use AGA to generate new solutions, the rule :tness will
be calculated according to Eq. (16). The system will aim to recover the failed tasks while still
achieving the other tasks objectives (that were active during the episode) according to their
level of activation during the episode. The system will also use the Contextual Constraints
explained in Section 3.1.4.2 to narrow the search space.

(8) The vehicle will move to test the solution. If it solves the situation by satisfying the ending
criteria by recovering the failed tasks and achieving the goals of the other activated tasks
during the episode. This is assumed as a solution and the learning cycle ends and it stores this
solution in the Experience Bank. If the robots fails and the number of iterations is less than
3 the vehicle returns to SB through FB and returns to step 7. If the number of iterations is
bigger than 3 and the robot fails goto step 9.

(9) If the robot does not :nd a solution within a certain number of iterations, chosen empirically
to be three iterations, the robot begins modifying the rules actions of the two most e;ective
rules at FB and the two most e;ective rules SB. This means that modifying the SB rules is
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not su8cient to produce a solution in this situation and the FB rules also need to be taken into
consideration. We will call this SR. The population will consist of all the active rules during
the episode. The rule :tness will be calculated according to Eq. (16). The AGA will be used
to generate new solutions and we will use Contextual Constraints explained in Section 3.1.4.2
to narrow the search space.

(10) The vehicle then starts moving with the modi:ed rules. If the vehicle satis:es the ending cri-
teria this will be considered a solution and the learning cycle ends and it stores this solution
in the Experience Bank. If it fails the vehicle returns to SB through FB and returns to step 9.

Fig. 8 show a Aowchart of the steps used for online adaptation and life long learning.

3.2.2. The techniques in details
In robot navigation the designer will de:ne a high level mission which will be a mixture of di;erent

tasks such as achieve goals while avoiding obstacles, each task will have a measure of success
attached to it. If any of the tasks fails down, their failure will trigger the adaptation cycle to recover
from this failure. The failures of tasks like obstacle avoidance is triggered when it collides or gets
very close to an obstacle, while the performance of behaviours that receive immediate reinforcement
are evaluated over a distance equivalent to twice the robot length and if their performance falls
below their speci:ed target, then the failures of these task (s) is triggered. The robot Performance
(P) is a weighted function, in which robot is trying to achieve the various tasks according to their
importance. The failed tasks performances will be the most important for the robot to satisfy and
recover from failure and thus they will be weighted by one, while the other tasks performances will
be weighed by how much they were activated during the whole episode. The robot overall :tness
function is maximised by improving the robot performance (P).
When one or more tasks of the robot mission fail down the adaptation cycle is activated. The

robot uses similar STM as explained in Section 3.1.1 to return to its pre failure position to :nd the
rules in the di;erent coordinated behaviours responsible for failure and correct them to generate a
solution to the current failure. The robot :rst performs the FB as follows: If one of the failing tasks
is obstacle avoidance the system backs :rst a distance which is maximum of the distance equivalent
to the robot length and the distance su8cient to satisfy the minimum safe distance W from the front
and X from the sides of the vehicle as explained in Section 3.1.1. If none of the failing tasks is
the obstacle avoidance it backs a distance equivalent to the robot length. The robot then backs to
double the FB distance called the SB.
At the FB the robot :nds the two most dominant rules (which can belong to two di;erent be-

haviours) that contributed mostly through the episode and were responsible for the :nal failure. It
then returns to the SB position and :nds the two most dominant rules (which can belong to di;erent
behaviours) from the beginning of the episode till the FB position as these rules are the rules that
if their actions was correct they could helped the robot early to avoid failure. The contribution of
each rule to the :nal output in a given situation as follows: Apply Eq. (2) and substitute Yt from
Eq. (1). Then we can write the crisp output Yht as

Yht =

∑B
y=1mmy(

∑M
p=1 yp

∏G
i=1 Aip=

∑M
p=1

∏G
i=1 Aip)

∑B
y=1 mmy

; (12)
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when one or more of robot tasks fails 
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Fig. 8. Flow chart of steps used in online adaptation and the life long learning strategy.

where M is the total number of rules, Yp is the crisp output for each rule,
∏

Aip is the product of
the membership functions of each rule inputs. G is the number of the input variables, mmy is :ring
strength of each of the four behaviours. B is the number of the activated behaviours.
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If we have N output variables, then we have Yht1; Yht2; : : : ; Yhtn. The contribution of each rule p
in the behaviour y to the total output Yht1; Yht2; : : : ; Yhtn is denoted by Sra11; Sra22; : : : ; Srann, where
Sra11; Sra22; : : : ; Srann are given by

Sra11 =
(mmy=

∑B
y=1 mmy):(Yp1

∏G
i=1 Aip=

∑M
p=1

∏G
i=1 Aip)

Yht1
;

Sra22 =
(mmy=

∑B
y=1 mmy):(Yp2

∏G
i=1 Aip=

∑M
p=1

∏G
i=1 Aip)

Yht2
;

Srann =
(mmy=

∑B
y=1 mmy):(Ypn

∏G
i=1 Aip=

∑M
p=1

∏G
i=1 Aip)

Yhtn
: (13)

We then calculate each rule’s contribution to the :nal action Sac1 by

Sac1 =
Sra11 + Sra22 · · ·+ Srann

N
:

In the case where there are only two output variables, we have Sac1 = (Sra11 + Sra22)=2. Given that
during the episode each rule in each coordinated behaviour will match K crisp input vectors to
di;erent degrees then the contribution of each rule during the episode is given by

Stotc =
∑K

k=1 Sac1(k)∑M
m=1 SaF(m)

; (14)

where SaF(m) is the contribution of all the triggered rules in the di;erent coordinated behaviour
which matched M crisp inputs vectors during the whole episode. Eq. (14) helps to calculate the
rule contribution at the FB as they are related more to the rules that contributed mostly through the
episode and was responsible for the :nal failure. However at the SB we calculate the contribution
of the rules that contributed mostly from the beginning of the episode till the FB position as these
rules are the rules that if their actions was correct they could helped the robot early to avoid the
obstacles, their contributions is calculated as follows:

StotcSB =
∑Ks

k=1 Sac1(k)∑Ms
m=1 SaF(m)

; (15)

Ks is the number of matched crisp input vectors from the beginning of the episode till the FB.
SaF(m) is the contribution of all the triggered rules in the di;erent coordinated behaviours which
matched Ms crisp inputs vectors from the beginning of the episode till FB.
The rules that contributed most to the actions at the FB or SB positions are those rules with the

greatest values of Stotc and StotcSB.
In order to implement life-long learning the vehicle utilises its Experience Bank explained before,

which is composed of all the experiences encountered previously and the solutions generated. The
Experience Bank is the same as explained above apart from that each cluster will contain the rules
and which behaviours they belong to and their learnt actions. These clusters represents how the agent
has adapted to the di;erent changing environments and situations, i.e. in two di;erent rule clusters
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we can :nd the same rule having di;erent consequents which means that each environment should
have di;erent actions.
The robot matches the two most e;ective rules during the FB and the two most e;ective rules

during the SB against the sets of rules stored in the Experience Bank. If, for example; rules 1,
2 from the obstacle-avoidance rule base, rule 3 of the left edge-following behaviour and rule 4 of
the right edge following need to be replaced (most e;ective rules in FB and SB), AND the :rst
rule cluster in the Bank contains the consequences of rules 1 of obstacle avoidance; rule 3 of left
edge following and rules 6, 7 of right edge following, then the consequences of rules 1 for obstacle
avoidance and 3 for left edge following will be changed and rule 2 for obstacle avoidance and 4 for
right edge following will remain the same. Then the robot starts operating with this modi:ed rule-
base taken from the Experience Bank. If it survives and gets out of this situation with no failures,
then these rules are kept in the rule-base of the controller. In this way we have saved the process
of learning a new solution to this problem by using an experience that had previously worked in
di;erent environmental conditions. This is the same as in nature, where the agent tries to recall its
previous experiences in an attempt to solve similar situations [36]. If none of the experiences had
solved this situation, the vehicle assigns a :tness value to each experience indicating how well it
performed using the Experience Assessor as explained in Section 3.1.2. The vehicle then chooses the
consequents of the rule clusters that have given the highest :tness and keeps them in the controller
rule-base. These then serve as a starting position for the adaptive genetic algorithms (AGA) search
instead of starting from a random point. As explained above in Section 3 this action helps to speed
up the genetic search as it starts the search from the closest point in the search space.
As the robot mission is composed of various tasks and each task will have a measure of success

attached to it. The robot performance function (P) is a weighted function, in which robot is trying
to achieve the various tasks according to their importance in inAuencing and improving the robot
performance. The tasks that failed and triggered the adaptation cycle will be the focus of the robot
to adapt and recover them thus their performance will be weighted by one as it is very important
for the robot to improve its performance for the failing task. The other tasks performances will
be weighed by how much they were activated during the whole episode. For example suppose a
robot had the high level mission of following an irregular edge and achieving a goal at the end
of this edge while avoiding obstacles, if the robot collided with obstacles then the overall robot
performance function (P) will be composed of the normalised distance moved before collision and
the weight for this is one. Depending how the edge following behaviour and the goal seeking were
activated during the whole episode their performances will be taken into consideration according
to their average level of activation during the episode so the collective performance function (P)
can be written as P is the normalised distance moved before failure, ∗1 the normalised deviation
from a goal, ∗mmgoal—normalised deviation from the desired edge following distance ∗mmfollowing,
where mmfollowing is the average activation level of the edge following behaviour during the whole
episode and mmgoal is the average activation level of the goal seeking behaviour during the whole
episode. This makes the Performance maximised by maximising the normalised distance the robot
moves before failure to improve the obstacle avoidance behaviour. Also the performance is max-
imised by decreasing the Normalised deviation from the goal and from the edge to improve the goal
seeking and the edge following behaviours respectively. The + and − signs were used to symbolise
how the performance is maximised by maximising some parameters (when using the + sign) and
minimising other parameters (when using the − sign). In case what triggered the adaptation cycle
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was that the robot had failed to follow the edge for a speci:ed distance within a pre speci:ed
range then the robot overall performance function (P) will be composed of the deviation from the
edge and this will be multiplied by a weight of one and the distance from obstacles and this will
be multiplied by the activation level of the obstacle avoidance behaviour and the deviation from the
goal multiplied by the activation level of the goal seeking behaviour during the whole episode.
The vehicle calculates the :tness value of the solution as follows if there is an improvement in

the Performance function (P) produced by the modi:ed rule base, then the rules that contributed
most must be given increased :tness to boost their actions. If there is no improvement then the
rules that contributed most are punished by reducing their :tness and the solutions that had small
contributing actions are examined. The :tness of each rule is supplied by the Solution Evaluator
and is given by

Srat 1 = Constant + (Pnew − Pold):Stotc:(1− F):V; (16)

where Pnew is the new performance function of the vehicle using the modi:ed rule base, Pold is
the old performance function of the vehicle before modifying the rule base, Pnew − Pold is the
performance improvement or degradation caused by the adjusted rule-base produced by the algorithm.
F is the normalised vehicle steering. V is the normalised average speed of the vehicle. This makes
Srt maximised by improving the vehicle performance at higher speeds and with minimum adjustments
to the steering. The variable V was introduced to favour those rules that produced faster speeds and
F was introduced to penalise instant large steering variations and zigzag paths. In the :rst population
of the AGA, because there is no performance assessed yet, we blame the rules that have contributed
most to the behaviour failure. The :tness of each rule is given by

Srat = Constant − Stotc: (17)

The rules that contributed most to the actions at the FB or SB positions are those rules with the
greatest values of Stotc and StotcFB. In order to prevent good rules to be punished by being associated
and :red by bad rules we :rst replace using the AGA the actions of the two most e;ective rules at
SB with the highest values of StotcSB as these rules will be responsible later to :re the other rules
that could be good rules but could be punished by the bad actions of these e;ective rules till FB
and cannot recover from their bad e;ect. We will call this the FR. If the robot does not :nd a
solution within a certain number of iterations, chosen empirically to be three iterations this means
that modifying the SB rules is not su8cient to produce a solution and we still need to modify the
most e;ective rules during the whole episode as their actions were bad as well. In this case the
robot will modify the two most e;ective rules at FB with the highest values of Stotc and the two
most e;ective rules at SB with the highest values of StotcSB we will call this SR. As we are using
delayed reinforcement at the end of the episode then the rules contribution which will be represented
by Stotc.
The parents of the new solution are chosen proportional to their :tness using the roulette-wheel

selection process and the genetic operations of crossover and adaptive mutation are applied. The
:tness of each rule in the :rst population is proportional to its contribution during the whole episode
according to Eq. (17). Binary coding is used in coding of the chromosomes. The population of
the GA during the FR will be the actions of all the rules that have contributed to the SB and were
active from the beginning of the episode till FB (which is usually a small population depending on
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the situation). While in the SR the population will be consisting of all the rules that contributed
during the whole episode.
If for example rule number 5 of the obstacle avoidance and rule 7 of the left wall following are

chosen for reproduction by roulette wheel selection due their high :tness. This implies they have
either contributed more with their actions to the :nal collective action that caused improvement, or
contributed less with their actions to :nal action that caused degradation. Then we apply adaptive
crossover and mutation operators to both chromosomes. The resultant o;spring will be used to
replace the consequent of rules 1 and 2 for obstacle avoidance that were largely blamed for the
robot failure. The AGA is constrained to produce o;spring according to the Contextual Constraints
according to Section 3.1.4.
After the AGA generate new consequents using the AGA for the blamed rules, it tests the new

solution for a certain time interval in which the robot performance is measured in order to recover
from the failure situation. The robot succeeds in solving the situation and recovers from failure
when it recovers the failing task(s) and satisCes the other activated task objectives. In this case
the robot keeps this solution in the rule-base and in the Experience Bank. If the robot fails again
it goes back to the SB through the FB and calculates the :tness of each rule according to their
performance during the whole episode according to Eq. (16) and then the AGA generate a new
solution and it tries it. However, a problem occurs as the system begins accumulating experience
that exceeds the physical memory limits. We are going to use the same technique used for the
Experience Survival Evaluator mentioned in Section 3.1.3.

4. Experiments and results

We have used di;erent vehicles to conduct our experiments, a small indoor robot steered via its
driving wheels and two large outdoor robots with a conventional steering system. The indoor and
the outdoor robots will have the same sensors. Each robot is equipped with three forward-looking
sensors for obstacle avoidance which are the left front sensor (LFS), the middle front sensor (MFS)
and the right front sensor (RFS). There are two sonar sensors on each side of the robot for edge
following which are right side front (RSF) sensor and right side back (RSB) sensor for the right
edge following behaviour and left side front (LSF) sensor and left side back (LSB) sensor for the left
edge following behaviour. In most of the experiments the sonar sensors will be represented by three
membership (which are near, medium, far) as this was found to be the least number of membership
function to give a satisfactory result. Also the robots have sensors to measure the bearing from
the goal, which will be infrared scanners in the indoor robots and GPS and electronic compass in
the outdoor robots. Each bearing sensor is represented by seven memberships (which are very very
negative, very negative, medium negative, zero, medium positive, very positive, very very positive)
as this was found to be the least number of membership functions to give a satisfactory result. The
output membership functions in most experiments will be represented by four membership functions
(which are very low, low, medium and high). For the outdoor vehicles, in case of the steering the
very low and low will turn left while the medium will be go straight ahead and the high will be
turning right.
In other work based on simulation [24,26], the problem of the robot returning to the same position

is completely ignored because the physical process is by-passed. While in training a real robot, the
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majority of the time is consumed by moving along the geometrical structure and applying the STM
and triangulation and applying the pilot fuzzy controller to bring the robot to approximately to the
same starting situation each trial and testing new solutions, while generating new solutions takes less
that 5% of the whole learning time. Thus, when comparing our work with that of other researchers,
we compare the number iterations needed to :nd a solution.
In experimenting with real robots it is very hard to estimate the deviation from desired values

using real robots especially in outdoor environment which involves dealing with irregular edges
whose borders cannot be de:ned with big precision. However we use the data returned from the
sonar sensors and then cross validate the data by comparing the acquired data with robot response.
The indoor robot response was drawn using a paint bottle :xed to the right back corner of the robot
while for the outdoor robots the robot response was drawn using a tape :xed under the left back
wheel. If for example we wanted to measure the robot deviation from a certain edge (wither the
robot wanted to avoid this edge or follow it) we can record the average deviation reading from the
edge as measured by the sonar over the whole trial and then we cross validate these values with
the values we get from drawing the robot path related to the edge. Although this doesn’t give us
precise values but it gives an idea about how the robot had performed its mission.
For experiments learning the obstacle avoidance behaviour the preliminary input membership func-

tion (MF) are supplied by the designer. The optimum value of these MFs was learnt in [15]. The
robot can learn the obstacle avoidance rule-base by encountering di;erent situations (local solutions)
while it navigates as was explained in Section 3. Then the interaction among local models, due to
the intersection of neighbouring fuzzy sets causes the local learning to reAect on the global perfor-
mance. Thus the robot does not need to learn special situations, but rather it learns general rules,
such as if the right sensor is low and the medium sensor is low and the left sensor is high then
go left. By encountering many di;erent situations the robot can :ll its rule-base. So the training
environment should be as complex as possible to supply the robot with as many di;erent learning
situations as possible. In addition the robot only learns when it is necessary. For example, if the
robot was launched into a corridor, it will learn the rules needed to navigate in this corridor, these
rules can then be generalised, as will be shown later, to allow the robot to navigate in di;erent
shapes of corridors. However, when the robot is introduced to a more complicated situation, such
as a maze, it must learn additional rules in order to survive. This also means that if after learning
a complete rule-base the robot kinematics or the ground conditions change, the robot can still adapt
itself to the environment by adjusting only a small subset of the rules.
The problem with using the obstacle avoidance behaviour is that it cannot be employed as an

independent behaviour (asking the robot to wander randomly and not to collide). The obstacle
avoidance behaviour can be regarded as a safety behaviour associated with other behaviours. For
example, the robot can be asked to reach a target while avoiding obstacles or following an edge while
avoiding obstacles. In the learning experiments that follow we will co-ordinate the obstacle avoidance
behaviour with the goal seeking behaviour whose rule-base was obtained from our previous work
[12,13,16]. Throughout the experiments dealing with learning the rule base for the obstacle avoidance
behaviour the co-ordination context rule will be reduced to: IF the Minimum Front Distance (d1)
IS LOW THEN OBSTACLE AVOIDANCE, IF the surrounding is obstacle free (d4) IS HIGH
THEN GOAL SEEKING. The obstacle avoidance rule-base is initialised randomly (but safely) to
move the robot forward (in any direction), this action is important in order to ensure that the robot
is moving and does not remain stationary.
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Fig. 9. (a) The robot learning cycle. (b) The robot path after learning. (c) Two di;erent robots paths with two learnt
rule-bases.

The robot learning cycle and the experimental set-up with the triangulation beacons are shown
in Fig. 9(a). In this example the robot moves and fails, it then returns to the FB and then SB.
After trying the Experience Bank solutions which fail, it then tries other solutions generated by the
AGA and :nally it generates a modi:ed set of rules to solve the situation. It can then pass safely
until other rules fail again, when the learning cycle will be repeated. The robot was then introduced
to the complicated geometrical structure shown in Fig. 9(b). This contains many di;erent general
situations, such as how to navigate in a corridor, how to do a left turn, how to do a right turn, and
how to navigate in wide areas with dead ends.
After an average of 44 iterations (episodes) over 10 experiments (as it was found that the average

is almost the same for values greater than 10 experiments) using random starting positions and with
di;erent initial rule-bases, the robot succeeded in getting out safely. The number of actions modi:ed
during the learning process was on average 15 rules in the obstacle avoidance behaviour. This shows
that the algorithm has optimised the rule-base. Thus, instead of having to :ll 33 = 27 rules, the robot
has found that it only needed 15 rules to complete the mission resulting in an overall rule reduction.
Although the experiment lasts for about 25 mins, most of the time is spent moving backward and
forward as this takes a long time due to the low speed of the robot. The control cycle lasts for
200 ms using a 20 MHz MC68020 microprocessor. We have tried the robot without an Experience
Bank and have found that the robot gives the same solution after 80 iterations. This justi:es the
idea of Experience Bank as, besides preserving the system experience, it also speeds up the GA
search by starting the GA from the best point found in the space and not from a random point. In
addition, during the 10 experiments the robot did not get stuck in a local minimum because of our
use of the adaptive genetic parameters.
Table 1 shows the best learnt rule-base which produced the fastest time to get out of the maze

and with least normalised steering and minimum absolute average deviation from the desired safe
distance (embedded in the MF) and maximum speed. The robot response for this best learnt rule-
base is shown in Fig. 9(b). For this learnt rule base the :rst 6 rules were randomly initialised with
left velocity assigned to medium and right velocity assigned to medium and rules 7; 8; 9 and 10 were
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Table 1
The best learnt rule base of the obstacle avoidance behaviour for Fig. 9(b)

LFS MFS RFS Left Right
velocity velocity

Near Near Med High Very low
Near Near Far High Very low
Near Med Med High Low
Near Med Far High Very low
Near Far Med High Very low
Near Far Far High Low
Med Near Near Very low High
Med Near Med High Very low
Med Med Low Very low High
Med Far Low Very low High
Med Far Med Very low High
Far Near Near Very low High
Far Near Med Very low High
Far Med Near Very low High

assigned so that left velocity is medium and right velocity is very low and the rest of the rules were
assigned so that the left velocity is medium and the right velocity is very low.
After the robot had successfully found the obstacle avoidance rules to navigate in geometrical

structure shown in Fig. 9(b), we placed it in di;erent starting positions to test the repeatability
and stability for 10 experiments. The robot had shown to be robust and its path is repeatable as it
followed the same path produced during learning cycle with an average deviation of 1:8cm showing
that the path is repeatable. The system is also stable as it didn’t crash into the original obstacles.
This implies that the robot had not learnt a speci:c path starting from a certain point. We have also
conducted the same experiments with two robots (di;erent kinematics and sensor positions). Each
robot has produced an average of 15 rules over 10 experiments starting from di;erent positions and
with di;erent initial rule-bases. The robot response using the best performing rule-base after learning
is plotted in Fig. 9(c). It can be seen that they are almost the same. It is noted that each robot has
developed a slightly di;erent rule-base to compensate for the di;erence in characteristics between the
robots. This demonstrates that di;erent robots are able to adapt themselves to their environments.
This supports the argument that it is better to learn online rather than in simulation where it is
assumed that all the robots have the same characteristics (Table 1).
Fig. 10(a) introduces the problem tackled by Bonarini [4] and Leitch [24] which is the conventional

corridor tracking problem and achieving a goal at the end of the corridor. We will compare the results
:rst with Bonarini in which he placed a 60 cm wide robot in a 3 m wide corridor before moving
it to 4 and 2 m wide corridors, then to the complicated corridor shown in Fig. 10(d). We have
conducted our experiments with a 25cm wide robot preserving the same ratios with our corridors as
Bonarini, starting with 1:25m and then moving to 1.67 and 0:83m corridors to test the portability of
the rule bases [2]. In these experiments we destroyed the rules in the obstacle avoidance behaviour
by setting all the rule consequences to “go right”, thus causing the robot to collide with walls in
the corridor.
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Fig. 10. Leitch and Bonarini corridor experiments: (a) Tight corridor. (b) Wide corridor. (c) Our algorithm. (d) Bonarini’s
method.

Table 2
The modi:ed rules for the experiment in Fig. 10(c)

LFS MFS RFS Left Right
speed speed

Obstacle Near Far Near Med Med
avoidance Med Near Near Very low High

Med Med Near Low High
Med Far Near Low Med
Far Near Near Very low High
Far Med Near Low High
Far Far Near Very low Med

We started the learning using the corridor shown in Fig. 10(c). It took the robot 16mins (including
reversing time) to get out of the corridor and to modify the obstacle avoidance rule bases. It needed
to modify only 7 rules in the obstacle avoidance behaviour. It learnt these rules in an average of
20 iterations (episodes) over 4 experiments, after learning it produced the path shown in Fig. 10(c).
The modi:ed rules are shown in Table 2. It is worth saying that in our episodes the number of
control steps per episode are variable as the episode ends with the robots colliding or getting very
close to an obstacle. The robot was started from 8 di;erent positions in the corridor and followed the
same path with a high degree of repeatability and stability. The robot did not crash at all (note the
smooth response of the robot). The robot was then tried in the tight corridor and the wide corridor
in Figs. 10(a) and (b) and the robot produced a smooth response and followed the centre-line of
the corridors with an average deviation of 1:2 cm and a standard deviation of 0.7.
Leitch [24] only experimented with simple corridor-following in simulation using context depen-

dent coding and succeeded in producing a solution after 40 generations (his rule-base would need
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Fig. 11. Comparison to Ho;mann’s work: (a) Ho;mann’s method. (b) Our method with target to the right. (c) Our
method with the target to the left.

Table 3
The learnt rule base for the obstacle avoidance behaviour in Fig. 11

LFS MFS RFS Left Right
speed speed

Obstacle Near Near Med High Low
avoidance Near Near Near High Vely low

Med Med Far High Low
Med Med Med High Med
Med Near Near Very low High
Far Med Med Med High

to be modi:ed to solve the problem of Fig. 10(c). Bonarini used his algorithm with a simulated
robot before transferring his controller to a real robot. To solve the problem in Fig. 10(d) Bonarini
needed 471 leaning episodes (iterations) [4] while we needed only 20.
Ho;mann [17] introduced his method of incrementally tuning fuzzy controllers by means of an

evolutionary strategy. In the benchmark problem of Fig. 11(a) where the target can be reached
equally from left and right, so if the obstacle avoidance rules were learnt alone and not taking into
consideration the other behaviours we will have the problem of conAicting outputs of the di;erent
behaviours explained in Section 2. Ho;mann has succeeded in :nding a solution after 50 iterations
with a rule base of 9 rules. In his previous work he used a messy-GA to learn the fuzzy controller. In
this experiment the rule base was initialised so that all their actions go left. After 18mins (including
low robot speed and reversing) the robot successfully achieved its goal in an average of 21 iterations.
It learnt 6 rules in the obstacle avoidance behaviour. As shown in the rule base shown in Table 3
the robot had learnt rules in the obstacle avoidance behaviour that when the obstacle can be avoided
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Fig. 12. Comparison to Ho;mann’s work. (a) Ho;mann’s method. (b) Our method. (c) The robot response starting from
a di;erent position.

from left or right i.e. when all sensors MF is medium or near, it favours turning to the right. This
shows the importance of learning online using real robots rather than simulation as learning online
enable the robots to choose rules that suits their capabilities. So when the robot is approaching the
obstacle and it is far from the obstacle, the goal seeking behaviour that was learnt in our previous
work [16] will inAuence more the motion of the robot that when the goal is aligned with the starting
point of the robot it will go straight ahead till the obstacle approaches and the obstacle avoidance
activation level increases as the robot approaches the obstacle and thus it inAuences more the robot
motion turning it right to avoid the obstacle. This results in smooth response, also the robot path
is robust as when the target is moved to the right the robot avoids the obstacle from the right as
shown in Fig. 11(b) and when the target is placed to the left the robot avoids the obstacle from the
left as shown in Fig. 11(c). These experiments proofs that our system can deal with problems of
behaviour conAicting outputs as the robot learn online behaviour rules that takes into considerations
its capabilities and the interaction with the other behaviours which are di8cult for a human designer
to estimate, thus leading to complementary behaviour outputs rather than contradictory outputs. The
robot was subjected to 8 further trials to test its repeatability and stability. It followed the given
path with high repeatability and stability.
The same controller from the previous experiment was applied to the problem in Fig. 12(a).

In this experiment, the robot moves through a tight corridor into a wide area where it encoun-
ters a dead end before turning back to reach its goal outside the structure. We conducted this
experiment with the previous controller to test its generality. The robot successfully completed the
required task; the system response is shown in Fig. 12(b). This supports the generality of the learnt
rules.
Fig. 12(c) shows the robot with the behaviours learnt from the previous experiment in Fig. 11 and

applied to a di;erent geometrical structure. Again the robot displays a good response escaping the
structure and achieving its goal. In these experiments the robot showed a robust response reacting



H. Hagras et al. / Fuzzy Sets and Systems 141 (2004) 107–160 149

Fig. 13. (a) The robot after learning its controller using a bigger search space. (b) A robot with di;erent kinematics
adapting the robot controller learnt in Fig. 9(b). (c) The electrical outdoor robot learning the obstacle avoidance behaviour
in outdoor environment. (d) The diesel tractor with its cutting edge.

to di;erent geometrical structures di;erent from the ones encountered during learning, which shows
that our system had learnt general rule bases.
In the previous experiments in learning the obstacle avoidance behaviour rules online each sensor

was represented by three MF and the output MF for the two actuators was represented by 4 MF. In
order to demonstrate that our techniques can scale easily to big search spaces. We had performed
the experiments in Fig. 13(a) in which we have tried :rst to increase the MF for the input sonar
sensors to :ve and as we have three sensors this leads to a possible rule base of 5 ∗ 5 ∗ 5=125
rules and we increased the output MF to 7. We were able to :nd a successful rule base after an
average of 50 iterations over 5 experiments starting from di;erent starting points and di;erent initial
rule bases. The robot learnt a rule base of 24 rules. We then increased the number of input MF to
7 for each input sensor this leads to a possible rule base of 7 ∗ 7 ∗ 7=343 rules and we increased
the number of the output MF to 9. We were able to :nd a successful rule base after an average 56
iterations over 5 experiments starting from di;erent starting points and di;erent initial rule bases.
The robot learnt a rule base of 28 rules. Fig. 13(a) shows the robot response after learning this rule
base. Although the response is smoother when increasing the MF but the path is almost the same as
the smaller search spaces. These experiments had demonstrated that our system could still function
as we scale up the search space.
In all the above experiments, we performed the statistical t-Test for matched (paired) samples over

the worst and best rule-bases (in terms of maintaining the desired safe distance from obstacles). We
found that the t-Test showed that the two solutions are statistically similar showing that our system
can :nd a good solution and that the di;erence between the best and the worst rule-base is small.
For example in Fig. 9(b), the best rule-base produced an absolute average deviation for the desired
safe distance of 5 cm, while the worst rule-base produced an absolute average deviation of 8:5 cm.
This is still much better than the manually designed rule-base which produced an absolute average
deviation of 15cm while using more rules. In addition, the learnt rule-base performed at faster speeds
and used less steering deviation than the manually designed one.
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In Fig. 13(b) we have coordinated the obstacle avoidance rule base learnt for the robot in
Fig. 9(b) whose learnt rules are shown in Table 1 with the goal seeking and the left and right
edge following behaviours that had been learnt in our previous work [11,12,16]. We have also learnt
the best MF and coordination parameters for this HFLC in other work [14,15]. In order to proof that
a short adaptation cycle can adapt a robot controller to another robot performing the same mission
with di;erent dynamics and kinematics. We have moved the learnt HFLC for the robot in Fig. 9(b)
to another robot which has the same sensors con:guration and the same actuators but it has di;erent
kinematics as it biased to the left so as the robot is applying steering by the di;erence in speed
between the two wheels and as the robot dynamics are biased to the left this means that if both
speeds are the same the robot will be drifted to the left.
In Fig. 13(b) the robot was given the high level mission of following the centre of the corridor

while avoiding obstacles and achieving the goal. As the robot is operating with a controller that did
not suit its capabilities it begun to collide with obstacles and deviate from the centre of the corridor
(evaluated over a distance equivalent to twice the robot length as explained in Section 3.2.2). By
applying our adaptation techniques explained in Section 3.2.2 the robot did not have to relearn the
whole controller from the beginning, it just needed to tune di;erent rules in di;erent behaviours that
if corrected will give the desired response. It took the robot 16 mins (including reversing time) to
get out of the corridor and to modify the rule bases of the coordinated behaviours. It modi:ed 8
rules in the obstacle avoidance behaviour, 4 rules in the left wall following behaviour, 3 rules in the
right wall following behaviour and 3 rules in the goal seeking behaviour (i.e. 18 rule). It learnt these
rules in an average of 20 iterations (episodes) over 4 experiments, and after learning it produced
the path shown in Fig. 13(b). The modi:ed rules are shown in Table 4. In the obstacle avoidance
behaviour the system had introduced new rules not present for the controller developed in Table 1
which are If LFS is Near and MFS is Far and RFS is Near then the Left speed is High and the
Right speed is Med, Human generated rules would have suggested that both wheel speeds be the
same to pass between the closely located obstacles, but as the robot is biased to the left so turning
it slightly to the right will help to compensate for the left bias and will cause the robot to go in
a straight line. Also the robot had learnt a new rule which is if LFS is Far and MFS is Far and
RFS is Near then robot turns sharply left to avoid collision. For the rest of the behaviours rules
the system had tuned the rules that are a;ected by the bias so that the robot will give the desired
response. This experiment proofs that our system is able to adapt a controller that was developed on
a robot to another robot with the same sensor con:guration doing the same mission in a relatively
short time interval with no need to relearn the controller from the beginning. The system can add,
delete and adapt rules according to its requirement. The robot was started from 8 di;erent positions
in the corridor and followed the same path with a high degree of repeatability and stability. The
robot did not crash at all (note the smooth response of the robot). The robot produced a smooth
response and followed the centre-line of the corridor with an average deviation of 1:2 cm and a
standard deviation of 0.7 and was always able to achieve its goals when placed in di;erent locations
outside the corridor.
Fig. 13(c) shows the outdoor electrical robot learning the obstacle avoidance behaviour in out-

door unstructured environment. The robot converged to a solution after an average of 16 iterations
taking 8 mins of robot time (this robot is faster than the indoor robot). The robot response is
robust and can deal with di;erent sizes of obstacles. We have experimented starting from dif-
ferent starting positions with di;erent rule initial rule bases. Table 5 shows the best learnt rule
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Table 4
The modi:ed rules for the experiment in Fig. 13(b)

LFS MFS RFS Left speed Right speed

Obstacle Near Near Med Med Very low
avoidance Near Near Far Med Very low

Near Med Med Med Low
Near Med Far Med Very low
Near Far Med Med Very low
Med Near Med Med Very low
Near Far Near High Med
Far Far Near Very low High

Left edge LSF LSB Left speed Right speed
following Med Near Low Med

Far Near Very low High
High Med Med High
High High Med High

Right edge RSF RSB Left speed Right speed
following Near Near Very low High

Low Med Low High
Low High Very low High

Goal Bearing Left speed Right speed
seeking Very very negative Very low High

Very negative Med High
Med negative Med Med

Table 5
The learnt rule base for the electrical outdoor robot in Fig. 13(c)

LFS MFS RFS Speed Steering

Near Near Med Low High
Near Near Far Low High
Near Med Med Med High
Near Far Med Med Med
Near Far Far High High
Med Near Near Low Low
Med Near Med Med Very low
Med Far Near Med Med
Med Far Med High Med
Far Near Near Med Very low
Far Med Near High Low

base for the obstacle avoidance behaviour for the electrical wheel chair robot navigating in outdoor
environments.
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Table 6
The adapted rule base for the diesel tractor

LFS MFS RFS Speed Steering

Obstacle Near Near Med Med High
avoidance Near Near Far Med High

Near Med Med High High
Near Far Med High Med
Med Near Near Med low
Med Near Med High Very low
Med Far Near High Med
Far Near Near High Very low
Far Med Near High Low

Right edge RSF RSB Speed Steering
following Far Near Med High

Far Med Med High
Far Far High High

Goal Bearing Speed Steering
seeking Very very negative High Very low

Very negative High Low
Med negative Med Low

After learning the obstacle avoidance behaviour for the electrical outdoor robots, it was then co-
ordinated this with other behaviours that receive immediate reinforcement, such as edge following
and goal seeking. Using the techniques described in [12–16] the Membership Functions for each
behaviour and the required coordination parameters were learnt in [14,15]. So we have learnt online
a robot controller for outdoor navigation using a medium size electrical robot in a controlled envi-
ronment. The same robot controller will be ported to another outdoor diesel tractor robot having the
same sensor con:guration as the outdoor electrical robot but with di;erent shape and kinematics.
The diesel robot actuators are pneumatic activated by the computer signals to control the speed and
the steering of the robot. The diesel robot will perform the same function as the electrical robot of
following a crop edge to cut it while avoiding obstacles and achieving a goal at the end of the edge
which can be a station to empty the cultivated crop [12]. The robot and its cutting edge are shown
in Fig. 13(d) So rather than having the diesel tractor perform the whole learning cycle online we
have developed the robot controller on the electrical wheel chair robot and then moved it to the
diesel tractor.
After about 19 iterations, the diesel robot had adapted the ported controller according to its

objectives and its capabilities. As shown in Table 6 the robot had adjusted 9 rules in the obstacle
avoidance behaviour and 3 rules in the right edge following behaviour and 3 rules in the goal seeking
behaviour. It is worth noting that the robot did not activate the left edge following behaviour as it
is not needed for its mission. As the diesel robot is slow then it had modi:ed the rules consequents
to go to a higher fuzzy output MF, this is obvious in the Obstacle avoidance behaviour where the
robot had used the same steering values from Table 5 which had the learnt the obstacle avoidance



H. Hagras et al. / Fuzzy Sets and Systems 141 (2004) 107–160 153

(a)   (b)      (c)                   (d) 

The robot 
path

Fig. 14. (a) The diesel robot after adaptation follows an irregular hay crop. (b) The diesel robot after adaptation follows
a tree hedge. (c) The robot performing life long learning during day time. (d) The robot performing life long learning
during night-time.

behaviour for the electrical outdoor robot but it had raised the speed consequents to give a higher
speed and thus improving the robot performance. The same applied for the goal seeking behaviour.
In the right edge following behaviour when facing corners the electrical wheel chair actions were
slight modi:cation however in the diesel tractor when turning around a corner (when RSF is far
and RSB is Near or Med) the robot should try maximum steering to move the heavy weight of the
vehicle and achieve the desired response. In case the robot gets lost from the edge that is should
follow to cut (RSF is Far and RSB is FAR) the robot will also apply maximum steering to recover
back and follow the edge. We have tested the robot starting from di;erent positions and following
di;erent edges as shown in Fig. 14(a) and (b) and the robot was always able to produce the same
path and the robot response was robust as it reacted to various crop edges and dealt with moving
object like humans and animals. The :nal result gave a small average deviation of 3 cm and a
standard deviation of 2 for the edge following, and average deviation of 4cm and standard deviation
of 2 for the obstacle avoidance safe distance. While the robot was always able to achieve its goal
placed at di;erent positions.
These experiments shows that our algorithm can easily be moved between the prototype and

the real vehicle requiring only minimal changes. This procedure is useful in learning controllers
for vehicles which might involve dangerous maneuvers using small and cheap prototype robots in
a controlled environment, thus avoiding the risks associated with online learning using heavy and
expensive vehicles. This saves the need to generate a new controller for each di;erent vehicle.
As we are involved in a big project concerning autonomous vehicle navigation in outdoor un-

structured and dynamic environments [12]. One requirement is that the robot will implement a life
long learning approach as it will be able to navigate autonomously in the outdoor agricultural en-
vironments unattended for long times. So the robot should have the ability to adapt its controller
online in a short time interval with no human intervention to any environmental or robot kinematics
changes it might encounter.
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To show that our system is capable of implementing the life long learning strategy we have tried
our electrical outdoor robot coordinating the left edge following and obstacle avoidance behaviour
to follow an irregular square metallic edge in outdoor environment continuously for 4 h. The robot
initial performance for the speci:ed operation was a very good response giving an average deviation
of 3cm and a standard deviation of 0.9 for the edge following and an average deviation of 4cm and
standard deviation of 0.9 for the obstacle avoidance safe distance. The experiments ran continuously
for 4h during the day as shown in Fig. 14(c) and during the night as shown in Fig. 14(d) and during
sunshine, rain, etc. As it rained, the ground became more slippery and the edge following rules had
to be adjusted so that the robot will not slip. The robot had adapted all the steering consequents so
that it does not take any harsh decisions so all the Very Low were changed to Low consequents
so the robot did slight changes to keep the desired objective without slipping, also all the speed
consequents were dropped to Low. For the Obstacle avoidance behaviour the same happened where
all the Very Low actions in steering were replaced with Low and the speed of the robot was slowed
down. These same actions were going to be taken by a human driver driving in rainy condition
which shows that our techniques are close to the human way of thinking, learning and adaptation.
After the rain had :nished and the ground had dried a little bit, the robot speeded up but still
the steering actions were the same as the ground was damp and it was night time. Although it is
di8cult to assess the robot performance for 4 h in outdoor open environment however we estimate
from the average robot path that the robot had followed the same path with a small deviation.
So our robot is implementing a life long learning strategy where it is acquiring information and
experience along its life not only during the learning and training sessions. These online adaptation
and lifelong experiments show that our technique is valuable for such an outdoor changing and
dynamic environment like the agricultural environment.
It is worth saying that these experiments were performed using di;erent indoor and outdoor

robots with di;erent sizes and kinematics operating in di;erent environments. This had given us
the opportunity to check the robustness of all the algorithm parameters such as the Experience
Bank, ending criteria, mutation and crossover probabilities. As shown from the above experiments
the system had performed robustly with these parameters using di;erent robots operating in di;erent
indoor and outdoor environments which shows that our algorithm parameters have not been designed
for a speci:c robot navigating in certain environment but they were general so that the algorithm
can be applied to di;erent robots operating in di;erent environments.

5. Complexity of our method and comparison with other work

In this section we will just study the complexity of our method and compare it with other work.
In learning the rule bases the design of our system does not learn the whole controller on one go

like the Pittsburgh approach but the learning cycle is sub-divided into local situations. This reduces
the size of the model to be learnt. The accent on local models implies the possibility to learn by fo-
cusing on a small part of the search space at each step. The interaction among local models, due to the
intersection of neighbouring fuzzy sets causes the local learning to reAect on global performance [3].
This action reduces the learning time as we apply the divide and conquer strategy instead of at-
tacking the whole problem for a global solution as other researchers have done [26,48]. Also as the
fuzzy classes overlap they produce desirable e;ects on the produced controller, such as robustness,



H. Hagras et al. / Fuzzy Sets and Systems 141 (2004) 107–160 155

and smoothness of action [2]. However in order to achieve a sub-optimal solution for the individual
behaviour (a subset of the large search space) we next need to :nd the most suitable member-
ship functions for the newly learnt rules, as explained in [15]. After :nding a sub-optimal solution
for each behaviour we can combine these behaviours and learn the best co-ordination parameters
that will give a “good enough” solution for the large search space to satisfy a given mission or
plan, as explained in [16]. After learning the robot controller if the robot or environment condition
changes the robot does not to repeat a time consuming oPine learning cycle like other researchers
[26,48]. Instead the online adaptation technique modi:es the poor rules in the relevant behaviours
to adjust the robot to di;ering environmental and kinematics conditions. This is termed life long
learning, where the robot can adapt itself to any new situation and can update its knowledge about
its environment. This hierarchical approach enable us to learn online through interaction with the
environment and using real robot controllers that are good enough to do the required mission.
In this paper we have concentrated on leaning the rule bases of behaviours that receive delayed

reinforcement like the obstacle avoidance behaviour. We have learnt the rule base online and through
interaction with the environment and using di;erent robots with di;erent shapes, sizes and kinemat-
ics and operating in indoor and in outdoor unstructured environment. Also our system was able to
operate in real time implementing a life long learning approach in unstructured and changing envi-
ronments. According to the author’s knowledge our evolutionary techniques are the :rst evolutionary
techniques that can operate a mobile robot and online learn its controller in real outdoor unstruc-
tured environment like the agricultural environment and adapt the robot online it to its changing
environments.
For learning the obstacle avoidance behaviour the system operates through learning steps detailed

in Section 3 and its Aowchart is given in Fig. 4. These learning steps are simple and can be easily
reproduced by other researchers as all the system parameters are related to the robot dimensions so
that they can be applied easily to di;erent robots. In order to validate our system we have learnt the
robotic controller for di;erent robots of di;erent sizes and shapes and they all had given very good
results as shown in the experiments section. Also our algorithm is not computationally expensive
and can be used by vehicles with modest onboard computers (68040 with 4 Mbyte of RAM).
We do not claim that our system can :nd optimum controllers but they :nd controllers that are

good enough to do the required job as in unstructured environments it is di8cult to de:ne what
is optimum as what can be optimum in certain conditions will not be optimum if the environment
changes which is a characteristic of unstructured environments such the outdoor agricultural environ-
ment. Also in outdoor navigation it is required to adapt the robot to any changes it might encounter
with no need to repeat a time consuming cycle. The learnt controller is learnt online so it takes into
consideration the sensors and actuators uncertainty and imprecision and it can adapt in relatively
short time interval to any changes with no need to repeat a time consuming learning cycle.
Some researchers have tried to develop their controllers in simulation and then download them

to real robots navigating in simple indoor environments. For example, Matellan et al. [26] have
designed a GA to :nd the optimum obstacle avoidance rule base needed for indoor robot navigation.
Their method optimised populations of rule-bases, rather than populations of rules as in our case.
As their system tries to optimise the robot controller as a whole using a Pittsburgh approach to
produce populations of rule bases rather population of rules as in our case. Their system takes a
lot of iterations to converge to a solution which makes it not suitable for online learning. Moreover
they test the system in simulation and then downloaded it to the real robots. As explained above in
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Section 1.2 that using computer simulations for developing robot controllers has signi:cant disad-
vantages which are best illustrated by the fact that when transferring the learnt controllers from
the simulated world to the real world these controllers will usually fail [27]. Also if the robot has
to operate in outdoor unstructured and dynamic environments and any robot or kinematics changes
happen the system has to repeat a time consuming learning cycle which has to be repeated each
time the environment changes.
Similarly Leitch [24] has used his genetic context dependent coding method to learn individual

behaviour like edge following and obstacle avoidance. Again his algorithm evolved populations
of rule bases oPine and in simulation and it took long time to converge, while our system had
developed complete controllers online and through interaction with the environment and was able to
operate in life long learning mode where it adapted the robot to any changes with no need to repeat
the whole learning cycle.
Ho;mann [17] introduced his method of incrementally tuning fuzzy controllers by means of an

evolution strategy. In his previous work he used a messy-GA to learn the fuzzy controller. In his work
he developed his robot controller in simulation and then transferred it to the real robots operating in
indoor environments. It took him 50 generation ∗ 20 populations of controllers (trials) which needs
1000 iterations of the robot moving to test the solution. Again as explained above this will su;er
from the problem associated with simulations. In the experiments section we have compared the
robot response with his response in Fig. 11.
Bonarini [3] has produced an evolutionary technique for anytime learning and adaptation of struc-

tured fuzzy behaviours. In his technique he used his approach to adapt the behaviours learned in
simulation to real environments and agents. It has a simulated model where his ELF learning takes
place. The simulation model is updated by a monitor module, which continuously updates a set of
tables representing the mapping from the control actions to their actual values. His techniques had
been tested in indoor environments but not for outdoor changing and dynamic environments which
we have achieved. In the experiments section we have compared our performance with Bonarini’s
ELF in Fig. 12.
There have been other work done in learning robot controllers not using evolutionary methods.

Zhang [48] had produced a method for learning behaviours of mobile robots based on B-spline fuzzy
controllers. He learnt online robot behaviours such as obstacle avoidance using a small Khepera
robot. His system was only restricted to one output value (steering) and not general for multi-output
system such as our system. His system took about 90mins to learn the obstacle avoidance behaviour,
while our system had taken shorter time to learn the same behaviour rule base. Also his system
exhibits a problem where an obstacle could be avoided by passing to either side. His solution is
to arbitrary choose which side to pass the obstacle, possibly causing conAicts when coordinated
with other behaviours and leading to longer paths. The approach suggested in this paper not only
converges more quickly, but also produces a solution that does not conAict with other behaviours.
Other researchers have also tried developing autonomous robots that learn the fuzzy controllers

using reinforcement learning. Yung [47] needed 350 iterations to learn a controller in simulation.
Faria [8] used a modi:ed R-learning method to learn the obstacle avoidance behaviour which needed
10000 iterations in simulation. It can be seen that these times are very slow and thus cannot easily
be applied to online learning.
Another approach is to use Neuro-fuzzy systems. Wang [45] has developed a self-adaptive

Neuro-fuzzy system in which he used in simulation to develop a controller for underwater vehicles.
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However, this requires training data, which will not be available in an online learning situation.
In addition, Kasabov [21] has developed a system for evolving connectionist and fuzzy systems.
He has successful applied this approach to the online learning of certain problems, such as speech
recognition. However, because of the number of trials required before achieving a satisfactory result,
it is not clear whether this approach would be appropriate to autonomous mobile robots.
Nehmzow [28] has carried out some work on life-long learning, but this was limited to building

a map of an indoor environment.
In all the above methods none have tried his evolutionary algorithms to outdoor robots navigating

in outdoor and unstructured environment like our case.

6. Conclusions and future work

In this paper, we have presented our novel Fuzzy–Genetic techniques for online learning, control
and adaptation of an intelligent navigator for autonomous mobile robotic agents operating in unstruc-
tured and changing environments. These techniques are based on a newly patented double hierarchical
Fuzzy–Genetic system which is able to learn and adapt the complex behaviours of intelligent robots
in a short time interval without human intervention and implementing life long learning. We have
focused in this paper on the learning of the obstacle avoidance behaviour, which is an example of
behaviours receiving delayed reinforcement. The robot learns the obstacle-avoidance rule-base by
:rst learning di;erent situations (local solutions). Due to the intersection of neighbouring fuzzy sets,
the local learning reAects on the global performance. This action reduces the learning time as we
apply the divide and conquer strategy instead of attacking the whole problem for a global solution as
other researchers have done. Also we use an Experience Bank, which besides preserving the system
experience, also speeds up the GA search by starting the GA from the best found point in the space,
not from a random point. In addition, we employ Contextual Constraints using the system’s sensors
so that the system will not have to search through the whole search space, but only in regions where
the solutions are likely to be found. In addition, we used adaptive GA parameters in addition to
simple but e;ective ending criteria. All of the algorithm parameters are robot size independent, not
been designed for a speci:c kind of robot and thus are easily moved between di;ering robots. All of
these techniques have resulted in fast convergence, learning the desired behaviour online via inter-
action with the environment in a relatively short time (bounded only by the robot speed). The learnt
rule-base also has the ability to generalise when moved to other geometrical shapes not encountered
during training. The system is Aexible and can add rules or delete them in the case of changing
environment or robot kinematics.
Evolving the robot controllers online enables the learnt controller to adjust to the real noise and

imprecision associated with the sensors and actuators. By doing this we can develop rules that take
such defects into account, producing a realistic controller for autonomous robotic agents, grounded
in the physical world that emerge from strong coupling of the robotic agent and its environment not
in simulation. These robotic agents are grounded in the real world (situated, embodied and operating
in real time), as adaptive behaviours cannot be considered as a product of an agent in isolation from
the world.
After developing a good controller in either the real robot or a prototype, the controller can then

be moved to the target robot operating in a di;erent environment. The target robot utilises a fast
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adaptation procedure to modify the learnt controller to the changing kinematics and environment.
The principal advantage of using a prototype robot is that it avoids the problems associated with
software simulation. It allows controllers to be learnt using small and cheap prototype robots in
a controlled environment, thus avoiding the risks associated with online learning using heavy and
expensive robots. Our life-long learning scheme, where the robot gains experience through its life-
time, helps to continually re:ne the controller without the need for retraining or human intervention.
Our experiments have shown that over 4 h of continuous operation the robot was able to navigate
continuously in rainy conditions adapting its controller and maintaining almost its path irrespective
of changes in the ground conditions and robot kinematics. The robot had implemented a life long
learning technique thus stepping beyond being a robot with a pre programmed controller or a con-
troller that had been learnt under static conditions and that needs relearning from the beginning if
any change occurs.
Our techniques had been veri:ed in di8cult domains which are di8cult to solve using the cur-

rent learning and adaptation techniques, such as robots navigating in unstructured environments (in
particular the agricultural environment).
Advancing the state of knowledge in the :eld of online learning has potential bene:ts for a wide

set of embedded control systems such as vehicles, factory machinery, telecommunication medical in-
strumentation and emerging areas such as intelligent-buildings and Aying robots. It is also particularly
appropriate to situations where modelling or reprogramming are di8cult or costly (e.g. inaccessible
environments such as underwater, outer space or environments where one agent is required to ac-
complish a variety of tasks). In such environments it is necessary to perform rapid online learning
through interaction with the real physical world. Such an approach both saves money and increases
reliability by allowing the agent to automatically adapt without further programming to the changing
user and environment needs it will experience throughout its lifetime.
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