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Inhabited intelligent environments

V Callaghan, G Clarke, M Colley, H Hagras, J S Y Chin and F Doctor†

There is an increasing amount of research into the area of pervasive computing, smart homes and intelligent spaces, one
example being that of the DTI-funded Pervasive Home Environment Networking (PHEN) project. Much of the current
research focuses on environments populated by numerous computing devices, sensors, actuators, various wired and
wireless networking systems and poses the question of how such computing environments might become ‘intelligent’? Often,
the proposed solution is to explicitly preprogram in the intelligence. In this paper we discuss a solution based on embedded-
agents which enables emergent intelligent behaviour by predominantly implicit processes. We describe an experimental test-
bed for pervasive computing, the iDorm, and report on experiments that scope the agent-learning characteristics in such
environments. We also introduce a more human-directed approach to programming in pervasive environments which we
refer to as task-oriented programming (TOP).

1. Introduction
In 1991 the European Community Information Society
Technologies Advisory Group (ISTAG) issued a report
entitled ‘Scenarios for Ambient Intelligence in 2010’
which became a defining statement for research into
ambient intelligence (AMI) [1]. ISTAG defines ambient
intelligence as an approach ‘... where the emphasis is
on greater user friendliness, more efficient services
support, user empowerment and support for human
interaction. People are surrounded by intelligent
intuitive interfaces, that are embedded in all kinds of
objects, and an environment that is capable of
recognising and responding to the presence of different
individuals in a seamless, unobtrusive and often invisible
way’. Such environments can even include robots [2]. In
the longer term, intelligent inhabited environments are
likely to be the key to mankind’s successful exploration
of deep space [3].

The basic AMI building block is a computer which,
with the addition of a network interface, can be
integrated into artefacts ranging in size from domestic
appliances down to nano-scale devices [4]. These can be
associated together to build both familiar and novel
arrangements to generate highly personalised AMI
environments. The widespread deployment of such
networked devices is known as pervasive computing, a
paradigm which raises numerous new scientific
challenges ranging from the underlying network
technology, through intelligent agents to user-interface

issues. A key difference between non-networked and
networked appliances is that the latter can co-ordinate
their actions to create meta functions from groups of
associated devices. Further, if users are given the
freedom to choose these combinations of devices, then
they can create unique and novel functionalities, that
could not be envisaged by the manufacturers. One
challenge, and the focus of much of the discussion in
this paper, is how to manage and configure (program)
such co-ordinated pervasive computing devices to do
the end user’s bidding, without the user incurring
prohibitive cognitive loads — a task that, without
support, could quickly become prohibitive and an
obstacle to the achievement of the pervasive home-
networking environment vision. 

2. Degrees of intelligence and autonomy
For the AMI vision to be realised in domestic
environments, people must be able to use computer-
based artefacts and systems in a way that gives them
some control over aspects of the system, while
eliminating cognitive awareness of parts of the system
they have no interest in, and are happy to leave to
automation or implicit programming processes. Where
the line between fully autonomous intelligent systems
and manual programming should be drawn is a subject
of much research (and diverse opinions). At the
University of Essex we have chosen to provide an
approach that allows the full spectrum of possibilities to
be experimented with; we have therefore developed a
range of autonomous intelligent embedded agents and
some user-centric techniques. In this paper we present,† All authors are from the University of Essex
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a review of all these techniques, although we shall start
by describing our test beds for intelligent spaces
(iSpaces), the iDorm and the new iDorm-2.

3. The iDorm 
The intelligent dormitory (iDorm) shown in Fig 1 is a real
pervasive computing test-bed comprised of a large
number of embedded sensors, actuators, processors
and networks in the form of a student bed-sitting room.
The iDorm is a multi-use, multi-user space containing
areas for different activities such as sleep, work and
entertaining. It contains the normal mix of furniture
found in a typical student study/bedroom environment,
including a bed, work desk and a wardrobe.

A common interface to the iDorm and its devices is
implemented through universal plug and play (UPnP)
which is an event-based communication middleware
that allows devices to plug and play thus enabling
automatic discovery and configuration. A gateway
server is used to run the UPnP software devices that
interface with the hardware devices on their respective
networks. Our experimental agent mechanisms are built
on top of the low-level UPnP control architecture
enabling it to communicate with the UPnP devices in
the iDorm and thus allowing it to monitor and control
these devices. Figure 2 shows the logical network
infrastructure of the iDorm.

Entertainment is one of the behaviours used as a
benchmark in the iDorm for performance assessment in
projects such as the BT-led Pervasive Home
Environment Networking (PHEN) [5] project. There is a
standard multimedia PC driving both a flat-screen
monitor and a video projector which can be used for
working and entertainment (see Fig 3). 

 Any networked computer that can run a standard
Java process can access and control the iDorm directly.
Thus any PC can also act as an interface to control the
devices in the room. Equally interfaces to the devices

could be operated from wearable artefacts that can
monitor and control the iDorm wirelessly, such as a
handheld PDA supporting Bluetooth wireless
networking or a mobile telephone shown in Fig 4. In
principle, it is possible to adjust the environment from
anywhere and at any time, subject to user and device
privileges. There is also an Internet fridge in the iDorm
(see Fig 4(d)) that incorporates a PC with touchscreen
capability, which can also be used to control the devices
in the room. Control can of course still be exerted
directly on the devices themselves via conventional
switches, buttons, etc.

There are a variety of computers in the iDorm which
are used to interface with sensors and actuators and run
agents, all of them being configured as Java
environments. At the low performance end we use TINI
[6] and SNAP [7] embedded Internet boards; these are
mainly used for sensors and actuators. There are also
more powerful processor boards capable of running
agents such as jStik [8] and ITX [9]. For experiments
where maximum flexibility is required, it is also possible
to run agents on UPnP-enabled workstations. This
allows the granularity of agent to device to be varied,
from an agent controlling an entire environment, down
to one-to-one mappings between devices and agents.

With the success of the iDorm, Essex University is
currently constructing a new test bed to support R&D in
pervasive ICT. The new facility, funded by the HE SRIF
programme takes the form of a domestic apartment and
has been called iDorm-2.

The iDorm-2 has been built from the ground up to
be an experimental pervasive computing environment
with many special structural features such as cavity
walls/ceilings containing power and network outlets
together with provision for internal wall-based sensors
and processors, etc. There are numerous networks in
place ranging from wired and power-line, through
wireless to broadband, and high-bandwidth multi-mode
fibre connections to the outside world. All the basic

Fig 1 The iDorm.
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services are electrically controlled wherever possible
(e.g. heating, water, doors). The basic layout of the flat
is show in Fig 5 (together with a picture of its current

state of build; it is due to be complete and handed over
for October 2004). When finished this will be one of the
few such facilities in the world.

Fig 2 The iDorm logical network infrastructure.

Fig 3 Entertainment and work in the iDorm.

Fig 4 PC interface.
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4. Embedded agents
The principal argument in support of utilising artificial
intelligence (AI) in support of the creation (program-
ming) and management (control) of intelligent pervasive
computing-based spaces is that much of the cognitive
load associated with using the technology (which is an
obstacle to market penetration) can be off-loaded from
the user to software processes. However, this is far from
easy as such ‘intelligent entities’ operate in a computa-
tionally complex and challenging physical environment
which is significantly different to that encountered in
more traditional PC programming or AI. Some of the
computational challenges associated with creating
systems of intelligent artefacts are discussed below. 

4.1 Embedded intelligence
Embedded intelligence can be regarded as the inclusion
of some of the reasoning, planning and learning
processes in an artefact that, if a person did it, we would
regard as requiring intelligence. An intelligent artefact
would normally contain only a minimal amount of
‘embedded intelligence’, sufficient to do the artefact
task in question. Embedded computers that contain such
an intelligent capability are normally referred to as
‘embedded agents’ [10]. Intelligent artefacts would, in
effect, contain an embedded agent. Individually, such
an embedded-agent can harness intelligence to under-
take such tasks as enhancing device functionality (i.e.
enabling the artefact to do more complex control tasks),
as well as reducing configuration or programming
complexity and costs by enabling the pervasive comput-
ing system to autonomously learn its own program rules,
or alternatively assisting the lay end user to program
rules in a non-technical way (see TOP, section 5.4).

4.2 Embedded agents and intelligent spaces
There are a variety of approaches to this problem,
perhaps the most relevant being those originating from
the context-aware and embedded-agent communities.
In embedded-agent work the goal is to utilise some
form of AI to relieve the cognitive loading associated
with setting up and running an AMI system (i.e. transfer

some of the cognitive processes from the person to the
computer). Typically researchers have employed
approaches such as neural networks, based on
traditional machine-learning theory, to control the
users’ environment. However, these approaches utilise
objective functions that either aim to derive a minimal
control function that satisfies the needs of the user
‘average’ or are aimed at optimising between a number
of competing needs (e.g. energy efficiency and user
comfort). In both cases the user has little control over
the system and has to accept some degree of
discomfort, or adapt to the conditions determined by
the AMI agents [11]. 

A contrasting agent-based paradigm is to see the
‘user as king’ and create agents that ‘... particularise
(rather than generalise) to a specific user’s needs, and
respond immediately to whatever the end user demands
(providing it does not violate any safety constraints)’
[12, 13].

Work at Essex University (as part of the EU’s
Disappearing Computer Programme and the UK
Government’s UK-Korean Scientific Fund) has
addressed this problem using behaviour-based systems
[14]) and soft-computing (fuzzy logic, neural networks
and genetic algorithms). This approach stems from our
finding that embedded agents used in pervasive
computing are equivalent to robots, experiencing
similar problems with sensing, non-determinism,
intractability, embodiment, etc [12]. Our earlier work
[13, 15, 16] was in the field of robotics, which has
allowed us to recognise the underlying similarities
between robotics and intelligent artefacts. Models in
both robotics and pervasive embedded computer
devices have proved difficult to devise, mainly because
of the intractability of the variables involved (and in the
case of modelling people, non-determinism). A principal
advantage of behaviour-based methods is that they
discard the need for an abstract model, replacing it by
the world itself, a principle most aptly summarised by
Brooks as ‘... the world is its own best model’ [14]. 

Fig 5 iDorm-2 (due to open in October 2004).
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4.3 Agent learning
Learning can be viewed as the process of gathering
information from the environment and encoding it to
improve the efficiency of a system in achieving a certain
goal. However, the difficulty that arises concerns finding
the most appropriate learning algorithm/technique to
use. Most learning algorithms use a measure of the
quality of the solution, given either by examples of the
desired behaviour of a system, or by an assessment of
the quality of the internal and/or external state. The
learning algorithm very much depends on the
characteristics of the ‘problem’ itself. The best choice of
learning algorithm can be made by comparing the
problem characteristics against the learning algorithm
characteristics. The following describes a limited
number of these characteristics.

• Problem characteristics

Dynamics — to what degree do the environment
variables change during the learning?

Complexity — is the set of all possible solutions,
search space, finite/countable?

Uncertainty — does the information regarding the
state contain noise, and are the actions performed
noisy?

Pre-acquired knowledge — can some knowledge
about the solutions be acquired before learning
starts?

Observability — is the current/past state known to
the learning algorithm?

Type of data — is the data provided discrete-
valued, real-valued, and complex-structured or
states and transitions? 

Feedback type — should the learning algorithm
respond as an immediate, on-demand, delayed or
no-response feedback?

Physical limitations — what is the processing
capability or memory size of the system where the
learning algorithm runs?

• Learning algorithm characteristics

Internal parameter type — what type of parameter
does the algorithm contain and how does it
change?

Input data — what kind of input data can the
learning algorithm deal with and can it adapt to
noisy data?

Solution/goal type — can the learning algorithm
produce approximations in real valued functions?

Dynamics — can the solutions be changed during
the environment’s execution or can the learning
algorithm only change the solutions off-line?

Parameter change — what parameters change in
each phase of the learning cycle, and do they
change all at the same time or only a small subset? 

Another important distinction in learning agents is
whether the learning is done on-line or off-line. On-line
learning means that the agent performs its tasks, and
can learn or adapt after each event. On-line learning is
like ‘on-the-job’ training and places a severe
requirement on the learning algorithm. It must not only
be fast but also very stable and fault-tolerant. Other
hotly debated issues are whether supervised or
unsupervised learning is best.

Later we present the ISL and the AOFIS as examples
of the unsupervised agent. The general challenges faced
by designers of embedded agents for such environment,
were discussed at a recent workshop on Ubiquitous
Computing in Domestic Environments [13].

4.4 Application-level emergent behaviour
In pervasive computing systems, the embedded-agent
host (frequently an appliance) has a network connection
allowing the agents to have a view of their neighbours,
thereby facilitating co-ordinated actions from groups of
embedded agents. The key difference to isolated
appliances is that those participating in groups not only
have their individual functionality (as designed by the
manufacturer), but they also assume a group
functionality that can be something that was not
envisaged by the manufacturers. In fact, if there are
only weak constraints on association of appliances, it is
possible for the user to program unique co-ordinated
actions (i.e. unique collective functionality) that were
not envisaged by the different manufacturers offering
the component appliances. This enables an application-
level emergent behaviour or functionality (something
that while enabled by the system, was not specified by
the system). This naturally gives rise to questions such
as the balance between pre-specified functionality and
emergent functionality, and what or who is responsible
for the association between devices and the
programming of the basic behaviours.

Later in this paper we discuss various approaches to
this challenge. Task-oriented programming (TOP)
provides an explicit means of directly harnessing user
creativity to generate emergent applications, while
incremental synchronous learning (ISL) and the adaptive
on-line fuzzy inference system (AOFIS) involve various
degrees of user interaction, using both supervised and
unsupervised learning paradigms to generate emergent
application-level functionality. 
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4.5 Machine-level emergent behaviour
In the behaviour based approach to AI, the equivalent to
reasoning and planning in traditional AI is produced by
arranging for an agent to have a number of competing
processes that are vying for control of the agent. The
‘sensory context’ determines the degree to which any
process influences the agent. Thus, as sensing is derived
from what is effectively a non-deterministic world, the
solutions from this process are equally non-
deterministic and result in what is termed ‘emergent
behaviour’ (behaviours or solutions that emerged but
were not explicitly programmed). Anything that affects
the context can thus have a hand in this machine-level
emergent behaviour. For example, the connections
(associations) between devices critically affect the
sensed data. Thus agent-driven associations, or user-
driven associations, will be closely associated with emer-
gent behaviour. Emergent behaviour is also sometimes
described as emergent solutions. The freedom to make
ad hoc associations is an important factor in this pro-
cess, as without them it is difficult to see how emergent
functionality could be achieved. At the University of
Essex we are researching into what we term promis-
cuous association — the freedom for agents to form
their own associations in as open a way as possible. This
approach opens up the possibility of using formally
specified ontologies of devices and groups of devices. It
is important to understand that being autonomous and
promiscuous (open to making associations with other
artefacts) does not imply undirected or unsafe behav-
iour. Agents can have basic fixed rules built into them that
prevent them taking specified actions deemed unsafe. 

4.6 Multi-agents
Our underlying paradigm for all agents is that they are
associated with actuators (they are essentially control
agents rather than information-processing agents). In
the underlying agent model, multi-agent operation is
supported via three modes. In the first, sensory and
actuator parameters are simply made available to other
agents. In the second mode, agents make a
‘compressed’ version of this information (or their
internal state) available to the wider network. In a
behaviour-based agent, such as the ISL, the
compressed data takes the form of which behaviours are
active (and to what degree). The general philosophy we
have adopted is that data from remote agents is simply
treated in the same way as all other sensor data. As with
any data, the processing agent decides for itself which
information is relevant to any particular decision. Thus,
multi-agent processing is implicit to this paradigm,
which regards remote agents as simply more sensors
(albeit more sophisticated sensors). We have found that
receiving high-level processed information from remote
agents, such as ‘the iDorm is occupied’ is more useful
than being given the low-level sensor information from
the remote agent that gave rise to this higher-level

characterisation. This compressed form both relieves
agent processing overheads and reduces network
loading. A third approach we have developed is the use
of inter-agent communication languages. Standardised
agent communication languages (e.g. KQML and FIPA)
tend to be too big to use on embedded computers
(many tens of megabytes) and are not well matched in
terms of functionality to them. We have generated
research that has looked at the problem of developing a
lightweight agent communication language and the
interested reader is referred to our description of the
Distributed Intelligent Building Agent Language
(DIBAL) [17]. Finally, in the home environment (rather
than a general unconstrained pervasive environment),
because the number of connected appliances is
relatively tractable (no more than a few hundred), a
widely adopted approach at a network level is to fully
connect all the appliances, relegating the issue of what
appliance will collaborate with any other to the
application level. This approach has been successfully
applied at the University of Essex [18, 19].

4.7 Knowledge in rule-based agents
One reason we have opted for fuzzy logic rather than
neural networks is that the knowledge acquired by the
agent is gathered in human linguistic terms. A typical
rules set from the iDorm is presented in Fig 6. It is made
up of simple, if somewhat large IF THEN ELSE rule sets.
Such rules are intrinsically well structured as they are
based on mathematical logic sets. Meta structures can
also be used. For example, at the meta level, rule sets
can also be characterised according to context such as
rule sets for Mr A relating to Context B (e.g. a
bedroom). Thus, from such rule sets it is possible to
perform meta functions such as deriving the closest rule
set for a new user — Ms C — based upon rule sets from
other users in the same context.

 Fig 6 Example of rule representation.

5. Examples of agents
We have developed a number of agents that can deal
with the problems discussed above. The main
approaches we have developed are based on fuzzy logic.
Fuzzy logic is particularly appropriate as it can describe
inexact (and analogue) parameters using human-
readable linguistic rules, offering a framework for
representing imprecise and uncertain knowledge. Thus

IF InternalLightLevel is VVLOW AND ExternalLightLevel is VVLOW AND

InternalTemperature is VVHIGH AND ExternalTemperature is MEDIUM AND

ChairPressure is OFF AND BedPressure is ON AND Hour is Evening THEN

ACTION_LIGHT1_value is VHIGH AND ACTION_Light2_value is HIGH AND

ACTION_LIGHT3_value is LOW AND ACTION_Light4_value is VVLOW AND

ACTION_Blind_state is CLOSED AND ACTION_Bedlight_state is ON AND

ACTION_DeskLight_state is OFF AND ACTION_Heater_state is OFF AND

ACTION_MSWord_state is STOPPED AND ACTION_MSMediaPlayer_state is 

RUNNING
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it is well suited for developing control on the basis of
inexact sensing and actuation which, when coupled to
behaviour-based agent architectures, can deal with the
non-determinism which sometimes characterises human
behaviour. We believe this has similarities to the way
people make decisions as it uses a mode of approximate
reasoning, which allows it to deal with vague and incom-
plete information. We have shown that fuzzy logic can
be applied well to the pervasive computing environment
[20—22] such as the iDorm [23, 24] and have developed
and tested two fuzzy-based embedded agents in the
iDorm, namely the incremental synchronous learning
agent [25] and the adaptive on-line fuzzy inference
system agent [26—28]. These agents have been run on
commercial and in-house produced hardware. The
photograph in Fig 7 shows a hardware networked agent
platform produced at the University of Essex and used
to manage the iDorm pervasive computing community.

 Fig 7 Agent prototype.

5.1 The incremental synchronous learning agent
In general terms, the ISL embedded-agent work is
broadly situated within the behaviour based architec-
ture work pioneered by Brooks at MIT, consisting of
many simple co-operating sub-control units. Our
approach differs to other work in that we use fuzzy logic
based sub-control units, arranging them in a hierarchy
(see Fig 8) and employing a user-driven technique to
learn the fuzzy rules on-line and in real time. It is well
known that it is often difficult to determine parameters
for fuzzy systems. In most fuzzy systems, the fuzzy rules
were determined and tuned through trial and error by
human operators. It normally takes many iterations to
determine and tune them. As the number of input
variables increases (iSpace agents develop large
numbers of rules due to particularisation), the number
of rules increases disproportionately, which can cause
difficulty in matching and choosing between large
numbers of rules. Thus the introduction of a mechanism
to learn fuzzy rules was a significant advance. In the ISL
agent we implement each behaviour as a fuzzy process
and then use a higher level fuzzy process to co-ordinate
them. The resultant architecture takes the form of a
hierarchical tree structure (as shown in Fig 8). This
approach has the following technical advantages: 

• it simplifies the design of the embedded agent,
reducing the number of rules to be determined (in

previous work we have given examples of rules
reduction of two orders of magnitude via the use of
hierarchies),

• it uses the benefits of fuzzy logic to deal with
imprecision and uncertainty,

• it provides a flexible structure where new
behaviours can be added (e.g. comfort behaviours)
or modified easily,

• it utilises a continuous activation scheme for
behaviour co-ordination which provides a smoother
response than switched schema.

The learning process involves the creation of user
behaviours. This is done interactively using reinforce-
ment where the controller takes actions and monitors
these actions to see if they satisfy the user or not, until a
degree of satisfaction is achieved. The behaviours, resi-
dent inside the agent, take their input from sensors and
appliances and adjust effector and appliance outputs
(according to predetermined, but settable, levels). The
complexities of learning and negotiating satisfactory
values for multiple users would depend upon having a
reliable means of identifying different users.

It is clear that, in order for an appliance-based agent
to autonomously particularise its service to an
individual, some form of learning is essential [13].  In
the ISL, learning takes the form of adapting the ‘usage’
behaviour rule base, according to the user’s actions. To
do this we utilise an evolutionary computing mechanism
based on a novel hierarchical genetic algorithm (GA)
technique which modifies the fuzzy controller rule-sets
through interaction with the environment and user. 

The hub of the GA learning architecture is what we
refer to as an Associative Experience Engine [29].
Briefly, each behaviour is a fuzzy logic controller (FLC)
that has two parameters that can be modified — a rule
base (RB) and its associated membership functions
(MFs). In our learning we modify the rule base. The
architecture, as adapted for pervasive computing
embedded agents, is shown in Fig 8. The behaviours
receive their inputs from sensors and provide outputs to
the actuators via the co-ordinator that weights their
effect. When the system fails to have the desired
response (e.g. an occupant manually changes an
effector setting), the learning cycle begins. 

When a learning cycle is initiated, the most active
behaviour (i.e. that most responsible for the agent
behaviour) is provided to the learning focus from the co-
ordinator (the fuzzy engine which weights contributions
to the outputs), which uses the information to point at
the rule set to be modified (i.e. learnt) or exchanged.
Initially, the contextual prompter (which gets a
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characterisation of the situation, an experience, from
the co-ordinator) is used to make comparison to see
whether there is a suitable behaviour rule set in the
experience bank. If there is a suitable experience, it is
used. When the past experiences do not satisfy the
occupant’s needs, we use the best-fit experiences to
reduce the search space by pointing to a better starting
point, which is the experience with the largest fitness.
We then fire an adaptive genetic mechanism (AGM)
using adaptive learning parameters to speed the search
for new solutions. The AGM is constrained to produce
new solutions in a certain range defined by the
contextual prompter to avoid the AGM searching
options where solutions are unlikely to be found. By
using these mechanisms we narrow the AGM search
space massively, thus improving its efficiency. After
generating a new solution, the system tests it and gives
it fitness through the solution evaluator. The AGM
provides new options via operators such as crossover
and mutation until a satisfactory solution is achieved.

The system then remains with this set of active rules
(an experience) until the user’s behaviour indicates a
change of preference (e.g. has developed a new habit),
signalled by a manual change to one of the effectors,
when the learning process described above is repeated.
In the case of a new occupant in the room the
contextual prompter gets and activates the most
suitable rule base from the experience bank or if this
proves unsuitable the system re-starts the learning cycle
above. The solution evaluator assigns a fitness value to
each rule base stored in the experience bank. When the
experience bank is full, we have to delete some
experiences.

To assist with this the rule assassin determines which
rules are removed according to their importance (as set
by the solution evaluator). The last experience temporal
buffer feeds back to the inputs a compressed form of
the n−1 state, thereby providing a mechanism to deal
with temporal sequences. 

Fig 8 ISL Embedded-agent architecture.
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5.2 Adaptive on-line fuzzy inference system agent 
Like the ISL agent, AOFIS is based on fuzzy logic. We
utilise an unsupervised data-driven one-pass approach
for extracting fuzzy rules and membership functions
from data to learn a fuzzy logic controller (FLC) that will
model the user’s behaviours when using iDorm-based
devices. It differs from the ISL in that it not only learns
controller rules, but it also learns membership functions
(a significant advance on the ISL which has fixed
membership functions). The data is collected by
monitoring the user’s use of the iDorm over a period of
time. The learnt FLC provides an inference mechanism
that produces output control responses based on the
current state of the inputs. The AOFIS adaptive FLC will
therefore control a pervasive computing community,
such as the iDorm, on behalf of the user and will also
allow the rules to be adapted on-line as the user’s
behaviour changes over time. This approach aims to
realise the vision of AMI and support the aims of
pervasive computing in the following ways:

• the agent is responsive to the particular needs and
preferences of the user,

• the user is always in control and can override the
agent at any time,

• the agent learns and controls its environment in a
non-intrusive way (although users may be aware of
the high-tech interface, they are unaware of the
agent’s presence),

• the agent uses a simple one-pass learning
mechanism for learning the user’s behaviours, and
thus it is not computationally expensive,

• the agent’s learnt behaviours can be adapted on-
line as a result of changes in the user’s behaviour,

• learning is life-long in that agent behaviours can be
adapted and extended over a long period of time as
a result of changes in the pervasive computing
environment.

 AOFIS involves five phases — monitoring the user’s
interactions and capturing input/output data associated
with their actions, extraction of the fuzzy membership
functions from the data, extraction of the fuzzy rules
from the recorded data, the agent control, and the life
long learning and adaptation mechanism. The last two
phases are control loops that once initiated receive
inputs as either monitored sensor changes that produce
appropriate output control responses based on the set
of learnt rules, or user action requests that cause the
learnt rules to be adapted before an appropriate output
control response is produced. These five phases are
illustrated in Fig 9.

The agent initially monitors the user’s actions in the
environment. Whenever the user changes actuator
settings, the agent records a ‘snapshot’ of the current
inputs (sensor states) and the outputs (actuator states
with the new values of whichever actuators were
adjusted by the user). These ‘snapshots’ are
accumulated over a period of time so that the agent
observes as much of the user’s interactions within the
environment as possible. AOFIS learns a descriptive
model of the user’s behaviours from the data
accumulated by the agent. In our experiments in the
iDorm we used seven sensors for our inputs and ten
actuators for our outputs with a user spending up to
three days in the iDorm. The fuzzy rules which are
extracted represent local models that map a set of
inputs to the set of outputs without the need for formu-
lating any mathematical model. Individual rules can
therefore be adapted on-line influencing only specific
parts of the descriptive model learnt by the agent.

It is necessary to be able to categorise the
accumulated user input/output data into a set of fuzzy
membership functions which quantify the raw crisp
values of the sensors and actuators into linguistic labels.
AOFIS is based on learning the particularised behaviours
of the user and therefore requires these membership
functions be defined from the user’s input/output data
recorded by the agent. A double clustering approach
combining Fuzzy-C-Means (FCM) and hierarchical
clustering, is used for extracting fuzzy membership
functions from the user data. This is a simple and
effective approach where the objective is to build
models at a certain level of information granularity that
can be quantified in terms of fuzzy sets.

Once the agent has extracted the membership
functions and the set of rules from the user input/output

capture data on
user interaction

extract fuzzy
membership functions 

from the data

extract fuzzy rules
from the data

agent control and on-line
creation/adaptation of

fuzzy rules

environment

monitored change/
user actions

controller response

Fig 9 Phases of AOFIS.
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data, it has then learnt the FLC that captures the human
behaviour. The agent FLC can start controlling the per-
vasive computing community on behalf of the user. The
agent starts to monitor the state of the pervasive com-
munity and affect actuators based on its learnt FLC that
approximate the particularised preferences of the user.
Figure 10 illustrates the FLC which consists of a fuzzi-
fier, rule base, fuzzy inference engine and defuzzifier.

In conformity with the non-intrusive aspect of
intelligence [26—28], whenever users are not happy
with the behaviour of the pervasive computing device or
community, they can always override the agent’s
control responses by simply altering the manual control
of the system. When this occurs the agent will adapt its
rules on-line or add new rules based on the new user
preferences. This process incorporates what we term
‘learning inertia’ where the agent delays adapting its
learnt rules until the user preference for changing a
particular set of actuator values has reoccurred a
number of times. This prevents the agent adapting its
rules in response to ‘one-off’ user actions that do not
reflect a marked change in the user’s habitual behaviour
(this ‘learning inertia’ parameter is user settable). As
rules are adapted it is sensible to preserve old rules so
that they can be recalled by the agent in the future if
they are more appropriate than the current rules.
Whenever the user overrides the agent’s control
outputs and overrides any of the controlled output
devices, a snapshot of the state of the environment is
recorded and passed to the rule-adaptation routine. The
AOFIS agent supports the notion of life-long learning in

that it adapts its rules as the state of the pervasive
community and the user preferences vary over a
significantly long period of time. Due to the flexibility of
AOFIS, the initially learnt FLC can be easily extended to
both adapt existing rules, as well as adding new rules.
The fuzzy nature of the rules permits them to capture a
wide range values for each input and output parameter.
This allows the rules to continue to operate even if there
is a gradual change in the environment. If, however,
there is a significant change in the environment or the
user’s activity is no longer captured by the existing
rules, the agent will automatically create new rules that
satisfy the current conditions. The agent will therefore
unobtrusively and incrementally extend its behaviours
which can then be adapted to satisfy a pervasive device
and community user. 

5.3 Benchmarking and comparative performance 
We have also implemented other soft computing agents
namely genetic programming (GP), the adaptive-neuro
fuzzy inference system (ANFIS) and the multilayer
perceptron neural network. The data set obtained from
the iDorm (see Fig 11) during the AOFIS monitoring
phase comprised of 408 instances and was randomised
into six samples. Each sample was then split into a
training and test set consisting of 272 and 136
instances respectively. The performance error for each
technique was obtained on the test instances as the root
mean squared error which was also scaled to account for
the different ranges of the output parameters. The GP
used a population of 200 individuals evolving them over
200 generations. The GP evolved both the rules and the

Fig 10 AOFIS FLC. 

 Fig 11 User gathering experimental data in the iDorm.
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fuzzy sets. Each individual was represented as a tree
composed of ‘and’ and ‘or’ operators as the internal
nodes, and triangular and trapezoidal membership
functions as terminal nodes. The parameters of the
membership functions were also evolved in parallel with
the structure. The search started with a randomly
generated set of rules and parameters, which were then
optimised by means of genetic operators. The GP-based
approach for optimising an FLC was tested with
different numbers of fuzzy sets. In ANFIS subtractive
clustering was used to generate an initial TSK-type fuzzy
inference system. Back propagation was used to learn
the premise parameters, while least square estimation
was used to determine the consequent parameters. An
iteration of the learning procedure consisted of two
parts where the first part propagated the input patterns
and estimated optimal consequent parameters through
an iterative least squares procedure. The second part
used back propagation to modify the antecedent
membership functions. We tested ANFIS with a range of
different cluster radii values. The multilayer perceptron
(MLP) back-propagation neural network was tested with
different numbers of hidden nodes in a single hidden
layer. We tested the AOFIS with different numbers of
fuzzy sets and the membership function overlap
threshold was set to 0.5 as this gave both a sufficient
degree of overlap while allowing the system to
distinguish between the ranges covered by each fuzzy
set. Tables 1 and 2 illustrate the scaled root mean
squared error (RMSE) and scaled standard deviation
(STD) for each technique averaged over the six
randomised samples, and corresponding to the values
of the variable parameter tested for each approach.

The results above show that the optimum number of
fuzzy sets for AOFIS was 7 and on average AOFIS
produced 186 rules. The GP in comparison gave a
marginally lower error for 7 fuzzy sets. Both ANFIS and
the MLP on average gave a higher error than AOFIS.
The ANFIS only learns multi-input-single-output (MISO)
FLC and had to be run repeatedly for each output
parameter. The FLC produced was therefore only
representative of a MISO system. Another restriction
with ANFIS was that it generates TSK FLCs, where the
consequent parameters are represented as either linear
or constant values, rather than linguistic variables as is
the case with Mamdani FLCs. These linguistic variables
are very important to understanding the human
behaviour. It should be noted that the AOFIS generates
multi-input, multi-output (MIMO) Mamdani FLCs
representing rules in a more descriptive human-
readable form which is advantageous for pervasive
computing communities or other ambient intelligent
systems, as they deal with people whose behaviours are
more easily described in such linguistic terms. The
iterative nature of the GP makes it highly
computationally intensive and this also applies to both

ANFIS and the MLP which are also iterative-based
approaches. AOFIS is far less computationally intensive
due to the one-pass procedure it employs, and is
therefore more favourable for an embedded agent.
Neither ANFIS nor the GP-based approach can easily be
adapted on-line as this would require their internal
structures to be re-learnt if either new rules were to be
added or existing rules were adapted. So the AOFIS
method is unique in that it can learn a good model of
the user’s behaviour which can then be adapted on-line
in a life-long mode, and in a non-intrusive manner,
unlike other methods which need to repeat a time-
consuming learning cycle to adapt the user’s behaviour.
Hence, in summary, the AOFIS agent proved to be the
best for on-line learning and adaptation, moreover it is
was computationally less intensive and better suited to
on-line learning than the other approaches compared.
Finally, at the outset of our work it was not clear how
long (if at all) it would take for such learning in this type
of environment to reach a steady state. Our initial
results (see Fig 12) indicate this is possible within a day
although we would need to conduct experiences over
much longer periods to catch other cycles, such as
annual climate-related variations.

5.4 Task-oriented programming
Finally, while autonomous agents may appeal to many
people, their acceptance is not universal. Some lay
people distrust autonomous agents and prefer to
exercise direct control over what is being learnt and
when (particularly when it is in the private space of their
home). Moreover, there are other reasons advanced in
support of a more human-driven involvement, such as
exploiting the creative talents of people by providing
them with the means to become designers of their own
systems. To explore this aspect of our inhabited
intelligent environment work we have recently opened
up a complementary strand of research which we refer
to as task-oriented programming. It is based on an
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approach that puts the user at the centre of the system-
programming experience by exchanging autonomous
learning for taught user-driven supervision. In this
approach a user defines a community of co-ordinating
pervasive devices and ‘programs by example’ the sys-
tem usage rules and co-ordinating actions for groups of
pervasive devices. Both TOP and our autonomous agent

approaches are based around the creation of linguistic
(human-readable) rule sets (generally of the form of IF
THEN ELSE rules). These rule sets are effectively the
‘program code’ which, in our TOP paradigm, are gener-
ated when a user demonstrates their desired tasks to
the system in an explicit ‘teaching session’. These rule
sets are then interpreted by a TOP engine. Figure 13

Table 1 Average scaled RMSE.

Table 2 Average scaled STD.

Average scaled root mean squared error (SRMSE) for six randomised samples of the dataset

AOFIS GA ANFIS MLP

Number of
fuzzy sets

SRMSE Number of
fuzzy sets

SRMSE Cluster
radii

SRMSE Number of
hidden nodes

SRMSE

2 0.2148 2 0.1235 0.3 1.3269 2 0.2129

3 0.1476 3 0.1156 0.4 0.9229 4 0.1718

4 0.1461 4 0.1189 0.5 0.2582 6 0.1732

5 0.1364 5 0.1106 0.6 0.1661 8 0.1571

6 0.1352 6 0.1210 0.7 0.1669 10 0.1555

7 0.1261 7 0.1193 0.8 0.1418 20 0.1621

8 0.1326 8 0.1173 0.9 0.1213 30 0.1705

9 0.1472 9 0.1202 1.0 0.1157 40 0.1667

10 0.1537 10 0.1235 1.1 0.1201 50 0.1768

11 0.1696 11 0.1110 1.2 0.1168 60 0.1711

12 0.1999 12 0.1201 1.3 0.1131 70 0.1712

13 0.2246 13 0.1169 1.4 0.1131 80 0.1770

14 0.2337 14 0.1120 1.5 0.1118 90 0.1767

15 0.2460 15 0.1089 1.6 0.1130 100 0.1924

16 0.2459 16 0.1225 1.7 0.1115 200 0.2027

17 0.2732 17 0.1146 1.8 0.1137 300 0.2258

18 0.2747 18 0.1188 1.9 0.1182 400 0.2365

19 0.2771 19 0.1159 2.0 0.1189 500 0.2424

20 0.2839 20 0.1143

Average scaled standard deviation (SSTD) for six randomised samples of the dataset

AOFIS GA ANFIS MLP

Number of
fuzzy sets

SSTD Number of
fuzzy sets

SSTD Cluster radii SSTD Number of
hidden nodes

SSTD

2 0.1896 2 0.1128 0.3 1.2839 2 0.1499

3 0.1350 3 0.1063 0.4 0.9001 4 0.1299

4 0.1354 4 0.1094 0.5 0.2440 6 0.1277

5 0.1277 5 0.1026 0.6 0.1522 8 0.1193

6 0.1280 6 0.1121 0.7 0.1518 10 0.1160

7 0.1200 7 0.1107 0.8 0.1257 20 0.1198

8 0.1266 8 0.1085 0.9 0.1038 30 0.1229

9 0.1409 9 0.1117 1.0 0.0972 40 0.1234

10 0.1472 10 0.1145 1.1 0.1007 50 0.1245

11 0.1626 11 0.1026 1.2 0.0961 60 0.1234

12 0.1912 12 0.1115 1.3 0.0920 70 0.1222

13 0.2133 13 0.1084 1.4 0.0924 80 0.1283

14 0.2218 14 0.1031 1.5 0.0906 90 0.1272

15 0.2323 15 0.1007 1.6 0.0911 100 0.1333

16 0.2318 16 0.1128 1.7 0.0891 200 0.1366

17 0.2557 17 0.1063 1.8 0.0909 300 0.1503

18 0.2568 18 0.1090 1.9 0.0951 400 0.1674

19 0.2588 19 0.1075 2.0 0.0937 500 0.1676

20 0.2646 20 0.1051
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illustrates a flow chart of the main TOP phases. Clearly,
there are more complex issues involved than this brief
introduction can discuss (that will be the focus of later
papers), but the intention of including this section is
simply to indicate one future direction of our work. We
are investigating this approach as part of the PHEN
project, where we hope to contrast this user-centric
(explicit) approach with our more (implicit) autonomous
learning paradigms.

6. Conclusions and future directions
Both the ISL and AOFIS provide life-long learning and
adaptation for pervasive devices and communities. Both
techniques were evaluated by arranging for users to live
in and use the iDorm for periods of up to five days. Both
techniques performed well in handling human behaviour
(with all the uncertainties involved), and in dealing with
complex sensors, actuators and control. The agents
operated in a non-intrusive manner allowing the user to
continue operating the pervasive computing device or
community in a normal way, while the agents learn
controllers that satisfy the user’s required behaviour. In
contrast, the TOP approach deliberately seeks to
involve the user in the learning phase, providing explicit
control of what and when the agent learns. Contrasting
these two approaches will allow us to evaluate the
arguments for and against increased agent autonomy.
In all the approaches, the underlying science is based on
methods that are practical to implement in embedded
computers.

Our work is taking a number of directions. Firstly, we
are continuing to try to develop and experiment with
new types of autonomous intelligent embedded agents.
For example, we have projects under way looking at new
type-2 fuzzy logic-based agents and new types of neuro-
fuzzy agents. We are also mindful of the role that mood
and emotions play in making decisions and have begun
a project that is seeking to enrich the decision space of
agents by adding sensed data on emotions. We have
also embarked on two projects concerned with
investigating the development of agents at a nano-
scale; one project is looking at nano agents in fluids, the

other as part of smart surfaces. Finally, to gather more
realistic and meaningful results for all our research into
pervasive environments, we need better data and so
with SRIF support we have embarked on the
construction of a new purpose-built test bed (called the
iDorm-2) for pervasive computing and ambient
intelligence work . The iDorm-2 is a full size domestic
flat built from scratch to facilitate experimentation with
pervasive computing technology. Apart from being
equipped with the latest pervasive computing
appliances, and having been constructed to facilitate
easy experimentation, the major advantage of the
iDorm-2 is that we will be able to get much longer
periods of experimentation as people will be able to stay
in the environment for weeks and months. Thus we look
forward to being able to report more interesting and
useful results when this facility comes on line in October
2004.
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