
To appear in: "Fusion of Soft Computing and Hard Computing for Autonomous Robotic Systems" (Eds.: Changjiu

Zhou, Dario Maravall and Da Ruan), "Studies in Fuzziness and Soft Computing Series , Physica-Verlag (mid 2002)

1

Online Learning and Adaptation for Intelligent Embedded

Agents Operating in Domestic Environments

Hani Hagras, Victor Callaghan, Martin Colley, Graham Clarke, Hakan Duman

Department of Computer Science, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England

Abstract

In this paper we show how intelligent embedded agents situated in an intelligent domestic environment
can perform learning and adaptation. A typical domestic environment provides an environment where
there is wide scope for utilising computer-based products to enhance living conditions. Intelligent
embedded agents can be part of the building infrastructure and static in nature (e.g. lighting, HVAC

etc.), some will be carried on the person as wearables, others will be nomadic in nature remaining
static for periods but occasionally moving between locations or highly mobile, as with robots. Both
non-intrusive and interactive learning modes (including a mix of both) are used, depending on situation
of the agent. For instance mobile robot type agents use an interactive learning whilst most building
based agents use non-intrusive background learning modes. In this paper we will introduce the learning
and adaptation mechanisms needed by the Building and Robotic embedded agents to fulfil their

missions in intelligent domestic environments. We also present a high-level multi embedded-agent
model, explaining how it facilitates inter-agent communication and cooperation between heterogeneous
sets of embedded agents within a domestic environment.

1. Introduction

The variety of computer-based goods, and their capabilities, is growing at an unprecedented rate
fuelled by advances in microelectronics and Internet technology. Cheap and compact microelectronics
means most everyday artifacts (e.g. shoes, cups) are now potential targets of embedded-computers,

while ever-pervasive networks will allow such artifacts to be associated together in both familiar and
novel arrangements to make highly personalized systems.
 A typical domestic environment provides an environment where there is wide scope for utilizing
computer-based products to enhance living conditions. For instance it is possible to automate building
services (e.g. lighting, heating etc), make use of computer based entertainment’s systems (e.g. DVDs,
TV etc), install work tools (e.g. robot vacuum cleaners, washing machines, cookers etc), or enhance

peoples safety (e.g. security and emergency measures, appliance monitors etc). Some of these artifacts
will be part of the building infrastructure and static in nature (e.g. lighting, HVAC etc.), others will be
carried on the person as wearables or mobiles, or temporarily installed by people as they decorate their
personal space (e.g. mobile phones, TVs etc).
 In order to realise the intelligent domestic environments, technologies must be developed that will
support ad-hoc and highly dynamic (re) structuring of such artifacts whilst shielding non-technical

users from the need to understand or work directly with the technology “hidden” inside such artifacts
or systems of artifacts. For this vision to be realized in domestic environments, people must be able to
use computer-based artifacts and systems without being cognitively aware of the existence of the
computer within the machine. Clearly in many computer-based products the computer remains very
evident as, for example, with a video recorder, whose user is forced to refer to complicated manuals
and to use his own reasoning and learning processes to use the machine successfully. This situation is

likely to get much worse as the number, varieties and uses of computer based artifacts increase. We
argue that if some part of the reasoning, planning and learning normally provided by a gadget user,
were embedded into the artifact itself, then, by that degree, the cognitive loading on the user would
reduce and, in the extreme, disappear (i.e. a substantial part of the computer’s presence would
disappear). However, this is far from easy as such “intelligent artifacts” operate in a computationally
complex and challenging physical unstructured environment which is significantly different to that

In the International Series “Studies in Fuzziness and Soft Computing“,
Physica Verlag, Volume 116, pp. 293-323, November 2002

To appear in: "Fusion of Soft Computing and Hard Computing for Autonomous Robotic Systems" (Eds.: Changjiu

Zhou, Dario Maravall and Da Ruan), "Studies in Fuzziness and Soft Computing Series , Physica-Verlag (mid 2002)

2

encountered in more traditional PC programming or AI. A major challenge is the large amount of
uncertainty that characterizes real world environments. On the one hand, it is not possible to have exact
and complete prior knowledge of these environments: many details are usually unknown. On the other
hand, knowledge acquired through sensing is affected by uncertainty and imprecision. The quality of

sensor information is influenced by sensor noise, the limited field of view, the conditions of
observation, and the inherent difficulty of the perceptual interpretation process.
 In this chapter, we describe an innovative multi heterogeneous agent environment consisting of a
domestic environment inhabited by a variety of agents. Intelligent embedded agents can be part of the
building infrastructure and static in nature (e.g. lighting, HVAC etc.), some will be carried on the
person as wearables or mobiles (termed PA), others will be mobile robotic agents (termed RA). The

class of agents we term Building Agents (BA) are situated in the building services and try to learn the
occupant’s habitual behaviour and preemptively adjust the environment to satisfy him via a non-
intrusive learning mode. Intelligent Robotic Agents differ in that they learn behaviours through
interaction with the environment. An essential feature that characterizes all our work is that intelligent
habitat technology needs to be centered on the individual, tailoring themselves to an individual
wherever possible, rather than generalizing across a group of individuals.

 In the next section we will introduce intelligent autonomous embedded agents and explain firstly
why it is important to learn online and secondly the methods used for learning. We then introduce our
heterogeneous multi agent architecture for intelligent domestic environments that features a
hierarchical fuzzy genetic system for online learning and adaptation. We describe interactive learning
in the mobile Robotic Agents and non-intrusive learning in the Building Agents. Finally we offer
experimental results, our findings to date and plans for future work.

1.1 Intelligent Autonomous Embedded Agents

Embedded intelligence can be regarded as the inclusion of some of the reasoning, planning and
learning processes in an artifact that, if a person did it, we would regard as requiring intelligence. An
intelligent artifact would normally contain only a minimal amount of “embedded-intelligence”,
sufficient to do the artifact task in question. Embedded-computers that contain such an intelligent
capability are normally referred to as “embedded-agents” (Callaghan et al. 2000). Intelligent Artifacts
would, in effect, contain an embedded-agent. Individually, such an embedded-agent can harness

intelligence to undertake such tasks as:

• Enhancing Artifact functionality (enabling the artifact to do more complex tasks)

• Simplifying or automating the user interface (in effect, providing an intelligent assistant)

• Reducing Programming Costs (the system learns its own program rules)
It is now common for such “embedded-agents” to have an Internet connection thereby facilitating multi
embedded-agent systems. In a fully distributed multi embedded-agent systems each agent is an
autonomous entity co-operating, by means of either structured or ad-hoc associations with its
neighbors. Each agent can reason or plan how it might work with those with which it is currently

associated thereby supporting evolving aims or emerging functionality (cf system customization). It is
important to understand that being autonomous and promiscuous (open to making associations with
other artifacts) does not imply undirected or unsafe behavior. Agents can have basic fixed rules built in
to them that prevent them taking specified actions deemed unsafe.
 Most automation systems (which involve a minimum of intelligence) utilize mechanisms that
generalize actions (e.g. set temperature or volume that is the average of many people’s needs).

However, we contend that AI applied to personal artifacts and spaces needs to particularize itself to the
individual [Callaghan 2001]. Further, subject to safety constraints, we contend that it is essential that
any agent serving a person should always and immediately carry out any requested action, no matter
how perverse it may appear (i.e. people are always in control, subject to overriding safety
considerations). The embedded-agent techniques we will outline are characterized by their ability to
particularize their actions to individuals and immediately execute commands, wherever that is a

practical possibility. Thus, the value of an intelligent autonomous embedded agent lies in the agent’s
ability to learn and predict the human and the system needs, automatically adjusting the agent
controller based on a wide set of parameters [Callaghan 2001]. There is thus a need to modify effectors
for environmental variables like heat and light etc on the basis of a complex multi dimensional input
vector, which cannot be specified in advance. For example, something happening to one system (e.g.
reducing light level) may cause a person to change behaviour (e.g. sit down), which in turn may result

in them effecting other systems (e.g. needing more heat). An agent that only looks at heat levels is
unable to take these wider issues into account. An added control difficulty is that people are essentiality

To appear in: "Fusion of Soft Computing and Hard Computing for Autonomous Robotic Systems" (Eds.: Changjiu

Zhou, Dario Maravall and Da Ruan), "Studies in Fuzziness and Soft Computing Series , Physica-Verlag (mid 2002)

3

non-deterministic and highly individual, therefore there is a need for system that particularises for
individual users rather than generalising for a group of users. When viewed in such integrated control
terms it is possible to see why simple PID or fuzzy controllers are unable to deal satisfactorily with the
problem of online learning for embedded agents.

 According to Kasabov [Kasabov 98] an Intelligent Agent System (IAS) should be able to learn
quickly from large amounts of data. He also states that an intelligent system should also adapt in a real
time and in an on-line mode as new data is encountered. The system should also be able to
accommodate in an incremental way any new problem-solving rules, as they become known. It should
be memory-based, plus possess data and exemplar storage and retrieval capacities. In addition, he says
that an IAS should be able to learn and improve through active interaction with the user and the

environment. It should have parameters to represent short and long-term memory, age, forgetting, etc.
Finally he states it should be able to analyze itself in terms of behaviour, error and success. To our
knowledge, no system in the field of embedded agents operating in unstructured environments had
satisfied these criteria (Hagras et al 2001a).
 For physical disappearance artifacts will need relatively small low-cost embedded computers
(possibly based on application specific micro-electronic fabrication). For example typical specifications

might be Cost: £20-£50, Size: <2
2
cm, Speed: 1-10MHz, Memory: 1-2 MB, I/O: 10-50 I/O channels.

Examples of two real devices are shown in figures 1(a) & 1(b).

 (a) (b)

Figure (1): a) University of Essex Prototype building services agent. b) University of Massachusetts
Prototype Embedded-Internet Device

 While it is inevitable that the “computing power / cost ratio” will continue to increase (i.e. more
mega-everything per dollar), history has shown that functionality will always demand even faster
computers. Thus available resources for a given cost always lag behind needs. The classic illustration
of this dilemma is the defiance of the hard disk to become extinct despite 30 years of predictions of
semiconductor memory becoming cheap and abundant. Of course the prediction that memory will
become cheap and abundant has always proved correct but it seems functional demands have outpaced

it. The lesson here is that although it is inevitable that embedded-computers will become much more
powerful, they will always be less powerful than the functionality demanded at that future point!
 Traditional artificial intelligence (AI) techniques are well known for being computationally
demanding and therefore unsuitable for ‘lean’ computer architectures. Historically most traditional AI
system were developed to run on powerful computers such as workstations, whose specifications are at
least 2 orders of magnitude removed from most embedded-computers. In addition traditional AI

techniques have proved too fragile to operate real time intelligent machines such as robots. As a result,
even implementing simplified traditional AI systems on embedded-computers has proved virtually
impossible. However, the authors have techniques from developments of their earlier work in robotics
that seem well suited to providing artifact intelligence (Callaghan et al. 2001, Hagras et al. 2001a,
Hagras et al. 2002) which are discussed later in this chapter.

1.2 Why Online Learning

Broadly speaking this work situates itself in the recent line of research that concentrates on the

realization of artificial agents strongly coupled with the physical world. A first fundamental

To appear in: "Fusion of Soft Computing and Hard Computing for Autonomous Robotic Systems" (Eds.: Changjiu

Zhou, Dario Maravall and Da Ruan), "Studies in Fuzziness and Soft Computing Series , Physica-Verlag (mid 2002)

4

requirement is that agents must be grounded in that they must be able to carry on their activities in the
real world, in real time according to the above definition of embedded agents. Another important point
is that adaptive behavior cannot be considered as a product of an agent considered in isolation from the
world, but can only emerge from strong coupling of the agent and its environment (Dorigo and

Colombetti 95). Despite this, many embedded agents researchers regularly use simulations to test their
models. However, the validity of such computer simulations to build autonomous embedded agents is
often criticized and the subject of much debate. Even so, computer simulations may still be very
helpful in the training and testing of agent models. However as Brooks (Brooks 92) pointed out “it is
very hard to simulate the actual dynamics of the real world”. This may imply that effort will go into
solving problems that simply do not come up in real world with a physical agent and that programs,

which work well on simulated agents, will completely fail on real agents. There are several reasons
why those using computer models (simulations) to develop control systems for embedded agents
operating in unstructured and changing environments may encounter problems (Miglino et al. 95) as
numerical simulations do not usually consider all the physical laws of the interaction of a real agent
with its own environment, such as mass, weight, friction, inertia, etc. Also physical sensors deliver
uncertain values, and commands to actuators have uncertain effects, whereas simulative models often

use grid-worlds and sensors that return perfect information. Physical sensors and actuators, even if
apparently identical, may perform differently because of slight variations in the electronics and
mechanics or because of their different positions or because of the changing weather or environmental
conditions.
 Even where researchers are using real embedded agents in the real world to learn behaviors, these
behaviors if learnt successfully are usually frozen within the agent. Thus if some of the agent dynamics

or the environmental circumstances are changed, the agent must repeat a time-consuming learning
cycle (Miglino et al. 95). From the above discussion it is clear that using computer simulations for
developing agent controllers has significant disadvantages which is best illustrated by the fact that
when transferring the learnt controllers from the simulated world to real world these controllers will
usually fail [Miglino et al 95]
 In this work we will refer to any learning carried out with user intervention and in isolation from the

environment using simulation as offline learning. In our case learning will be done through interaction
with the actual environment in a short time interval and we will call this online learning. Learning the
agent controllers online enables the learnt controller to adjust to the real noise and imprecision
associated with the sensors and actuators. By doing this we can develop rules that takes such defects
into account, producing a realistic controller for embedded agents, grounded in the physical world that
emerge from strong coupling of the agent and its environment not in simulation. These embedded

agents are grounded in the real world (situated, embodied and operating in real time), as adaptive
behaviours cannot be considered as a product of an agent in isolation from the world, but can only
emerge from strong coupling of the agent and its environment.

1.3 Other work in developing Intelligent Embedded Agents for Intelligent Inhabited

Spaces

There are a growing number of research projects concerned with applying Artificial Intelligence (AI) to
intelligent inhabited spaces. In Sweden, Davidsson (Davidsson 98) utilised multi-agent principles to
control building services. These agents are based on the AI thread that decomposes systems by function

rather than behaviour as in our research.. In Colorado (Mozer 98) used neural networks to Their
system, implemented in a building with a real occupant, also achieved a significant energy reduction.
Work at MIT on the HAL project concentrates on making the room responsive to the occupant by
adding intelligent sensors to the user interface (Brooks 97). The University of Loughborough (Angelov
et al. 2000) looked at the application of fuzzy rule-based models in HVAC system simulation. This
project is concerned with producing optimal models for buildings, which could be used later in control.

The HIVE project at MIT (Minar et al. 99) is an example of a particularly forward-looking distributed
agent model. This model differs from our work principally in respect that their agents are soft (rather
than our hard embedded-agents) with access to hard devices being via coded objects referred to as
shadows. The soft agents reside on servers (e.g. PCs) and, as a consequence, do not have to consider
the compactness of agent design, which is one central focus of our work. The University of Reading is
active in the field of Intelligent Buildings. Their view of Intelligence is rooted in structural design and

building utilisation concepts. Currently their research is mostly focusing on monitoring people over the
network with the "talking sign" chips. There are also other high profile Intelligent Building projects
such as the Microsoft Smart House, BT's Telecare and Cisco Internet Home (Sherwin 99). However

To appear in: "Fusion of Soft Computing and Hard Computing for Autonomous Robotic Systems" (Eds.: Changjiu

Zhou, Dario Maravall and Da Ruan), "Studies in Fuzziness and Soft Computing Series , Physica-Verlag (mid 2002)

5

most of these industrial projects are geared toward using networks and remote access with some smart
control (mostly simple automation) with sparse use of AI and little emphasis on learning and adaptation
to the user’s behaviour. To the author's knowledge no other work had addressed online learning and
adaptation of a hertogeneous set of agents within a domestic environment.

Adaptive Soft Computing Approaches?

 The methodology of Fuzzy Logic Control (FLC) appears very useful when the processes are too
complex for analysis by conventional quantitative techniques or when the available sources of
information are interpreted qualitatively, imprecisely or uncertainly [Pedrycz 98], which is the case of

autonomous embedded agents. However in complex unstructured environments the necessity of high
quality information, to be extracted from a broad knowledge domain, constrains the application of
fuzzy systems to solve very demanding problems. Also as the number of inputs variables increases
(which is the case of embedded agents) the number of rules increases exponentially which creates
much difficulty in determining large numbers of rules.

Evolutionary algorithms constitute a class of search and optimisation methods guided by the

principles of natural evolution and genetics. It is the case that Genetic Algorithms (GA) have been
successfully applied to solve a variety of difficult theoretical and practical problems by imitating the
underlying processes of evolution such as selection, recombination and mutation. GA are implicitly
parallel where the solution is explored in parallel by searching different regions, this characteristic
allows a global search in the solution space (Kasabov 98). GA approach enriches the optimisation
environment for fuzzy systems. As described in (Delgado et al. 2000] developing an optimal fuzzy

system is equivalent to finding the minimum of a hyper-surface associated with an objective function.
The hyper-surface has the following characteristics: it is infinitely large, complex and noisy; and is
non-differentiable. Since changes in the number of fuzzy rules are discrete and can have a
discontinuous effect on the fuzzy system’s performance; it is multi-modal (different fuzzy rule sets
and/or membership functions may have similar performance). It is also deceptive, since a little
modification may cause huge effects on the performance of each system (Delgado et al. 2000]. There is

much work reported in the literature on designing fuzzy controllers using GA (Hoffmann 98, Matellan
et al. 98, Bonarini 99, Delgado et al. 2000, Sousa and Madrid 2000). However virtually most of this
work was undertaken using simulation as, in conventional GA, it takes a large number of iterations to
develop a good controller. Even when researchers are using real embedded agents to learn behaviours
online, these behaviours if learnt successfully are usually frozen in the agents. Thus if some of the
robot dynamics or the environmental circumstances are changed, the robot must repeat a time-

consuming learning cycle (Miglino et al. 95]. Thus it is not feasible for a simple GA to learn online and
adapt in real-time. The situation is worsened by the fact that most evolutionary computation methods
developed so far assume that the solution space is fixed (i.e. the evolution takes place within a pre-
defined problem space and not in a dynamically changing and open one), thus preventing them from
being used in real-time applications (Kasabov 98). Hence prior to our work it was not considered
feasible for a simple GA to online learn and adapt an embedded agent controller (Linkens and

Nyongeso 95) in unstructured domestic environments.

2. Heterogeneous Multi-Agent Domestic Intelligent Environments
Application

Figure (2-a) presents an intelligent domestic environment for care/rehabilitation system in which a
collection of building and robotic agents cooperates to care for human occupants (Colley et al. 2001).
The BA handles the control of all building services (e.g. heat, light entertainment, etc) by being

attached to various sensors and controllers. RA communicate with BA so as to operate more effectively
(e.g. command doors to open, locate themselves, responding to remote requests, etc) providing services
such as delivery of meals, medicine etc. Wearables allow remote monitoring of the patient and can be
set to signal any worrying deviation from expected values.

To appear in: "Fusion of Soft Computing and Hard Computing for Autonomous Robotic Systems" (Eds.: Changjiu

Zhou, Dario Maravall and Da Ruan), "Studies in Fuzziness and Soft Computing Series , Physica-Verlag (mid 2002)

6

 We have chosen the Essex Intelligent Dormitory (iDorm) shown in Figure (2-b) to form the
experimental framework for the domestic environments. Being an intelligent dormitory it is a multi-use
space (i.e. contains areas with differing activities such as sleeping, working, entertaining etc) and can
be compared in function to a room for elderly or disabled people or an intelligent hotel room. Because

this room is of an experimental nature we are fitting it with a liberal placement of sensors (e.g. temp.
sensors, presence detectors, system monitors etc) and effectors (e.g. door actuators, equipment
switches etc), which the occupant can configure and use. The room looks like any other but above the
ceiling and behind the walls hides a multitude of networks and networked devices.

(a) (b)

Figure (2): a) Example Intelligent Environment Infrastructure. b) Photograph of the iDorm

 The iDorm is based around three networks, Lontalk, Tini 1-wire and IP. This provides a diverse
infrastructure and allows the development of network independent solutions. It also gives us an
opportunity to evaluate the merits of each network.

 To create a standard interface to the iDorm we have an iDorm gateway server. This exchanges

XML formatted queries with the entire principal computing components, which overcomes many of the
practical problems of mixing networks. The communications architecture is being extended to allow
devices to be ‘Plug N Play’ (enabling automatic discovery and configuration). The iDorm logical
infrastructure is shown in Figure (3-a).

The embedded agent used for the intelligent buildings shown in Figure (1-a) is based on a 68000
Motorola processor with 4 Mbytes of RAM and an Ethernet network connection. It runs the VxWorks

Real Time Operating System (RTOS).
 Our mobile robots are based around a distributed field bus control system. In particular, we use the
CANbus (Controller Area Network) developed for automotive industry, Motorola processors and the
VxWorks Real Time Operating System (RTOS). The current design is influenced largely by the
requirements for both parallel and distributed processing in a real-time environment. We will use
different sizes of robots for our experiments to verify that it is robot independent. We will also perform

the robot experiments in difficult outdoor unstructured environments to test online learning and
adaptation. The outdoor robot is electric. We will use ultrasound for outdoor navigation, as it has
proved convenient and well able to cope with outdoor environments. The ultrasound transceivers were
designed in a compact unit with the transmitter and receiver in the same unit and all the analogue
components are fine-tuned for a perfect operation. It was also equipped with amplification circuits to
try to pick even the weak reflected signals. It has also extra filtering and noise immune circuits to deal

with the noise present in outdoor. The robot is also supplied with GPS, compass and a camera for goal
determination in outdoor environments. We try to give all our robots a similar architecture (to simplify
development work) so its hardware is also based on embedded Motorola processors (68040) running
VxWorks RTOS. The outdoor robot has two different motors one for controlling the speed of the front
wheels and the other for controlling the steering of the front wheel. The control programs are
developed under the Tornado environment and then downloaded via an Ethernet cable or using RF

modem to the robots. After the program downloading the cable or the RF link can be disconnected and
the navigation becomes autonomous. The electrical robot and its sensor configuration are shown in
Figure (3-b). The indoor robot has a ring of 7 ultrasonic proximity detectors, an 8-axis vectored bump
switch, an IR scanner sensor (to aid navigation) and two independent stepper motors for driving plus

To appear in: "Fusion of Soft Computing and Hard Computing for Autonomous Robotic Systems" (Eds.: Changjiu

Zhou, Dario Maravall and Da Ruan), "Studies in Fuzziness and Soft Computing Series , Physica-Verlag (mid 2002)

7

differential steering. The hardware is based on embedded Motorola 68040 processors running the
VxWorks RTOS. In the initial experiments infrared beacons were used to simulate the goals in indoor
environments. Control programs are developed using the Tornado VxWorks environment and then
downloaded via an ethernet cable to the robots, after which the cable can be disconnected and the

navigation is autonomous. The robot and its sensor configuration are shown in Figure (3-c).
The RA can also take the form of a Manus robot arm, which can even be located at a remote place.

We are currently involved in a collaborative project with the Korea Advanced Institute of Science and
Technology (KAIST) supported by UK-Korea S&T collaboration fund. In this project our BA in the
University of Essex, UK will be cooperating and communicating with RA located in Essex and also
remotely to RA in Korea.

 (a) (b) (c)

Figure (3): a) iDorm logical infrastructure. b) The outdoor electrical robot and sensors. c) The
indoor robot and sensors

 Currently the communication between the BA and the RA is established by initiating a request
command from the BA to the RA server. The server creates the link between the computers and waits

for incoming commands from the BA. Depending on the current situation in the building environment
the BA sends out commands to the RA such as moving the Manus Arm to a certain position or
commanding the mobile robot to pick up the mail. Once the command has been sent the server passes
the request to the responsible RA to fulfill the task and informs the ‘commander’ (Building agent)
about the current status of the robots. If the task is not complete then the server sends a message
indicating that the job is “not complete”. Every time when the BA wants to send out a new command, it

waits until the previously requested job has been successfully finished.
 Internet-based control systems rely on the available communication protocols to exchange real-time
data between two computers. Most network protocols nowadays provide a reliable and transparent
support for data exchange among computers by using protocols such as the Transmission Control
Protocol (TCP). Real-time control is used in systems that must react to external stimuli with minimal
delay in order to maintain stability. The issue of time delay is not the main subject in this chapter but it

has been addressed by applying a feedback system. The designed system depicted below allows the RA
(Manus arm and mobile robot) to continuously execute new coming commands while transmitting
feedback information on if the job has been completed or not.
 The communication between the BA and the RA are implemented by applying a TCP/IP stream
socket. The BA has several I/O interfaces. One of them is used to connect to an IP network. To
establish the communication the Agent uses Stream Sockets to communicate with a TCP port within the

node. In other words Stream sockets use TCP to bind to a particular port number. Another process, on
any host in the network, can then create another stream socket and request that it be connected to the
first socket by specifying its host Internet address and port number. After the two TCP sockets are
connected, there is a virtual circuit set up between them, allowing reliable socket-to-socket
communications.

To appear in: "Fusion of Soft Computing and Hard Computing for Autonomous Robotic Systems" (Eds.: Changjiu

Zhou, Dario Maravall and Da Ruan), "Studies in Fuzziness and Soft Computing Series , Physica-Verlag (mid 2002)

8

 Streaming data transfer means that applications using TCP do not have to break up data into blocks
before sending them. Once data is passed to TCP, it transmits the data in a stream of bytes that are
tagged with sequence numbers. These numbers are checked when they arrive at the remote computer
and if a packet in the sequence is lost, a time-out mechanism requests retransmission.

Figure (4): Framework of the heterogeneous Multi Embedded Agents communication

3. Hierarchical Fuzzy Logic Controllers (HFLC)

Most commercial Fuzzy Logic Control (FLC) implementations feature a single layer of inferencing
between two or three inputs and one or two outputs. For autonomous embedded agents, however the
number of inputs and outputs are usually large and the desired control behaviours are more complex. In
the robots domain we use eight inputs (7 sonar inputs and a bearing sensor) and two outputs (the speed
and the steering). If we assume that each input will be represented by three fuzzy sets and each output
by four fuzzy sets, using a single layer of inferencing will lead to determining 3

8
= 6561 rules which

would be difficult, if not impossible, to determine. However, by using a hierarchical assembly of fuzzy
controllers, the number of rules required can be significantly reduced. For robot navigation the
experimental system can be divided into four co-operating behaviours, obstacle avoidance, left and
right wall following and goal seeking. If these behaviours represent each input by three fuzzy sets the
obstacle avoidance with three inputs produces 3

3
 = 27 rules. The left wall following has two inputs

producing 3
2
 = 9 rules, right wall following is the same and goal seeking has one input (more

accurately represented by seven fuzzy sets) producing 7 rules. Thus the total number of rules now
required is 27 + 9 + 9 + 7 = 52 rules which is much easier to determine. To use such a hierarchical
mechanism, a co-ordination scheme is required to combine these behaviours into a single action.
Saffiotti (Saffiotti 97) and Tunstel (Tunstel et al. 97] have suggested a fuzzy context rule combination
method to perform the high level co-ordination between such behaviours. The context dependent rules
are characterised by each behaviour generating preferences from the perspective of its goal. Each

behaviour has a context of activation, representing the situations where it should be used. The
preferences of all behaviours, weighted by a true value of their contexts, are fused to form a collective
preference. One command is then chosen from the collective preference.
 We use a variant of the method suggested by Saffiotti (Saffiotti 97) and Tunstel (Tunstel et al. 97).
In this we will apply fuzzy logic to both implement the individual behaviour elements and the related
arbitration (allowing both fixed and dynamic arbitration policies to be implemented) (Hagras et al.

To appear in: "Fusion of Soft Computing and Hard Computing for Autonomous Robotic Systems" (Eds.: Changjiu

Zhou, Dario Maravall and Da Ruan), "Studies in Fuzziness and Soft Computing Series , Physica-Verlag (mid 2002)

9

2001a). To achieve this we implement each behaviour as an independent FLC aimed at a simple task,
(e.g. edge following or obstacle avoidance) with a resultant small set of inputs and outputs to manage.
We chose fuzzy logic to implement the basic behaviours, as it excels in dealing with the kind of
imprecise and uncertain knowledge associated with the embedded agent's sensors and actuators.

 The outputs of each fuzzy behaviour are fused according to directions supplied by a high-level
planner, which may be a person. This fusion itself is a fuzzy process in which different behaviours are
co-ordinated to give a coherent output. The high-level planner can also define situations and sequences
in which individual behaviours are active, commonly referred to as “willed” operation. The
combination of these methods produce a system that is capable of completing complicated tasks from a
set of simple tasks, which can be more easily designed than more monolithic alternatives. Fuzzy co-

ordination facilitates expression of partial and concurrent activation of behaviours, thereby allowing
behaviours to be active concurrently to differing degrees, which gives a smoother control characteristic
than switched counterparts (Saffiotti 97). As mentioned earlier, using a hierarchical strategy results in
much fewer rules (i.e. much simplified design problem) (Saffiotti 97). In addition, it allows flexible
modularised design where new behaviours can be added easily and different tasks achieved by
changing the co-ordination parameters (either in willed or automatic mode). Our use of a fuzzy

arbitration mechanism, and the flexibility arising, is significant addition to earlier work such as the
subsumption architecture (Brooks 92).
 In our design each behaviour uses a FLC using singleton fuzzifier, triangular membership functions,
product inference, max-product composition and height defuzzification. The selected techniques were
chosen due to their computational simplicity and real-time considerations, more information about
fuzzy logic can be found in (Lee 90a), Lee 90b).

∏∑

∏∑

==

==
G

i
Aip

M

p

G

i
Aip

M

p
py

11

11

α

α
 (1)

Where M is the total number of rules, yp is the crisp output for each rule, ΠαAip is the product of the
membership functions for each rule’s inputs and G is the number of inputs.

 (a) (b)

Figure (5): a) Behaviour co-ordination system. b) Membership function for co-ordination
parameters.

Ruspini (Ruspini 91) defines fuzzy command fusion as the interpretation of each behaviour-producing
unit, acting as an agent, expressing preferences as to which command to apply. Degrees of preferences
are represented by a probability distribution (fuzzy in our case) over the command space. In our HFLC
architecture a fuzzy operator is used to combine the preferences of different behaviours into a
collective preference. Accordingly, command fusion is decomposed into two steps: preference
combination and decision-making. In Figure (5-a) each behaviour is treated as an independent fuzzy

controller. Using fuzzy behaviour combination, we obtain a collective fuzzy output, which we then
defuzzify to obtain a final crisp output. Fuzzy meta-rules or context rules enable more flexible
arbitration policies to be achieved. These rules have the form IF context THEN behaviour (Saffiotti
97) which means that a behaviour is activated with a strength determined by the context (i.e. a fuzzy-

Yt =

Low

Co-ordination

MF

0 A B

1

0

cm

Behaviour

1

Behaviour

2

Behaviour

N

Fuzzy Behaviour Combination

DEFUZZIFICATION

Root Fuzzy

System

Outputs

High

To appear in: "Fusion of Soft Computing and Hard Computing for Autonomous Robotic Systems" (Eds.: Changjiu

Zhou, Dario Maravall and Da Ruan), "Studies in Fuzziness and Soft Computing Series , Physica-Verlag (mid 2002)

10

logic formula). When more than one behaviour is activated, their outputs are fused and each behaviour
output scaled by the strength of its context.
 In case of using fuzzy numbers for preferences, product-sum combination and height defuzzification,
the final output equation, provided by Saffiotti (Saffiotti 97), is given below:

∑

∑

i
y

i
ty

mm
ymm)*(

 (2)

Where i represents the behaviours activated by context rules, which can be right/left edge-following
behaviour, obstacle-avoidance or goal seeking in case of RA and comfort, safety, economy in case of
BA. Yt is the behaviour command output (robot speed and steering in case of RA and room lighting
and heating in case of BA). These vectors are fused in order to produce a single vector Yht to be applied
to the embedded agent. mmy is the behaviour weight.
 In behaviour co-ordination there are a few parameters that must be calculated in the root fuzzy

system. In case of robot navigation these are the minimum distance of the front sensors (represented by
d1), the minimum distance of the left side sensors (represented by d2), the minimum distance of the
right side sensors (represented by d3). The minimum of the fuzzy MF of d1, d2, d3 represented by d4,
reflects how obstacle free the robot path is. After calculating these values, each is matched to its
membership function as shown in Figure (5-b). These fuzzy values are used as inputs to the context
rules which are in case of robot navigation: IF d1 IS LOW THEN OBSTACLE AVOIDANCE, IF d2 IS LOW
THEN LEFT WALL FOLLOWING, IF d3 IS LOW THEN RIGHT WALL FOLLOWING, IF d4 IS HIGH THEN GOAL
SEEKING.
 The context rules determine which behaviour is fired, and to what degree. The final output is
calculated using Equation (2). The behaviour weights are calculated dynamically taking into account

the situation of the agent. For example, in the robots domain the obstacle avoidance behaviour weight
needs to increase as the obstacle comes closer.

4. Interactive and Non-Intrusive Learning

In the field of RA, it is preferred that the learning is performed online interactively with the
environment. The robot through trial and error evaluates its performance and assigns fitness values to
different solutions and it can improve through our patented evolutionary process (Hagras et al. 2001).
The robot by discovering its environment can learn by itself the controller needed to achieve the high
level objectives and goals specified by the humans and it can update its controller to any environmental

and robot kinematics changes it might encounter with no need to repeat the learning cycle. Such online
interactive autonomous learning is desired for RAs operating in unstructured, dynamic and changing
environments, which is the case of intelligent domestic environments. Such interactive learning allows
the robots to program themselves which results in cutting down the costs of reprogramming and
making the robots totally autonomous as they need only a high level mission from the humans.

For the BA the situation is different, as the agent needs to autonomously particularise its service to

an individual. Building based learning is focused around the actions of people. Buildings are, largely,
occupied by people who for a variety of reasons (e.g. time, interest, skills, etc) would not wish, or be
able to cope with much interaction with the building systems. Thus in general, learning should as far as
possible, be non-intrusive and transparent to the occupants (i.e. requiring minimal involvement from
the occupants). The BA are sensor rich and it is difficult to be prescriptive about which sensor
parameter set would lead to the most effective learning of any particular action. Thus, to maximise the

opportunity for the agent to find an optimum input vector set, whilst containing the processing
overloads, the ideal agent would be able to learn to focus on a sub-set of the most relevant inputs.
There are two kinds of online learning and adaptation in intelligent domestic environments one is
interactive for RA which is called the Associative Experience Engine presented in Section (5) and the
other is non intrusive for the BA which is called Incremental Synchronous Learning (ISL) presented in
Section (6).

 As the human user is the center of our model the BA agent will use the ISL in a non-intrusive mode
to capture the user behaviours. Some of the user behaviours will include the agent identifying any
change in the person’s behaviour that might signal a need for specific forms of help available via RA.
The BA agents will receive high level inputs from the RA such as the robot is near the charger and it
will produce high level outputs such as go and fetch a drink based on other input states which can be
composite of the building and robot states. The high level output from the BA will be used as a high

Yht =

To appear in: "Fusion of Soft Computing and Hard Computing for Autonomous Robotic Systems" (Eds.: Changjiu

Zhou, Dario Maravall and Da Ruan), "Studies in Fuzziness and Soft Computing Series , Physica-Verlag (mid 2002)

11

level objective function for the RA. The RA will learn and coordinate their basic behaviours such as
obstacle avoidance, edge following and goal seeking and they will implement AEE to learn and adapt
their controllers to achieve the high level objective.

 Figure (6) shows a domestic environment for elderly and patient care which involves cooperation

between the BA and the RA which is implemented in the project entitled Care Agents supported by the
UK-Korea S&T collaboration fund. In this environment we consider a bed-bound person in a MANUS
equipped bed who is served by a Mobile Agent (MA) bringing two commodities to the person’s
bedside when required. The role of the MANUS robot arm is to serve the patient with the delivered
consumables that the MA has brought to a prescribed bedside location. The MA would carry items,
such as post, newspapers, tissues, food, drinks, personal items (e.g. hairbrush), tissues and medicines

etc. for the use of the patient and deliver them to a fixed point at the bedside so that the goods were
readily available to the MANUS arm. The inputs provided to the BA include the current temperature
and the lighting and entertainment levels in the room. Also the physical state of the person will be
supplied to the BA e.g. prone or sitting up. Another aspect might be certain body signs such as the
health monitoring aspects e.g. blood pressure, heart rate etc. Depending on the preferences of the
patient and current conditions of the temperature and light, these can be adjusted by the BA. For these

preferences to be learnt there would have to be some way of indicating the preferred levels e.g.
switches/voice control. The MA provides the BA with information about its power level and about the
relative (fuzzy) position of the robot to the bed and to the chargers and the commodities (A and B).

The BA has a rich set of data so that the conditions under which the person elected to ask for the
commodity can be captured and recognised. The patient actions will be monitored and his behaviours
will be learnt in a non-intrusive manner according to the whole input vector collected from the rest of

the sensors. The commands are going to be passed as high level objective functions to the RA, which
implement AEE to learn the required controllers to do the job as well as possible. An example of such
high level objective is fetch the mail in which the RA will learn and coordinate its basic behaviours
such as obstacle avoidance, goal seeking and edge following to go and fetch the mail quickly while
avoiding any obstacles. The robot has the capability to adapt its self to any environmental or robot
kinematics changes in a short time interval with no need to repeat the learning cycle.

 In general we divide the behaviours available to the BA into fixed or dynamic sets, where the
dynamic behaviours are learnt from the person, and the fixed behaviours are pre-programmed and
include safety and emergency behaviours. These latter behaviours need to be predefined because they
cannot easily be learnt. For instance if medicine was going to be administered on a regular basis this
would be described explicitly as one of the fixed rules. There will be other safety and emergency
behaviours based upon other significant considerations like the temperature at which pipes freeze or

what to do in the case of fire and so on. We also think that the BA should never issue pre-emptive
commands that would result in the arm moving as such unexpected movement could cause danger to
the patient (perhaps the arm needs some safety rules built in to its control system and patient interface).
For dynamic behaviours we are going to use a monitoring system, which we call an ISL to record the
patient actions, e.g. a request for a drink or turning off the light, and learn to generate rules from this
information. These will then be fine-tuned in an incremental and life long mode. This set of behaviours

will be able to control, light, temperature, tilt of the bed, sound volume etc and will interface to the MA
through high level web based messages with request for specific commodities or advice on recharging
itself.

5. Associative Experience Engine

In our hierarchical learning procedure we start using a set of working (but not necessarily optimum)
fixed membership functions. We then commence learning general rules in each individual behaviour by
relating the input sensors to the actuator outputs. In this phase the membership values are not important

as the agent learns general rules such as, if the obstacle is close then turn left. However in order to
achieve a sub-optimal solution for the individual behaviour (a subset of the large search space) we need
to find next the most suitable membership functions for the learnt rules. After finding a sub-optimal
solution for each behaviour we combine these behaviours and learn the best co-ordination parameters
that will give a “good enough” solution for the large search space to satisfy a given mission or plan.
Readers are referred to (Hagras et al. 2000a) and (Hagras et al. 2000b) for more information about

learning MF and the co-ordination parameters online. After learning the system parameters, the
controller then operates in its environment where the online adaptation technique is triggered to adjust
the learnt controller to any environmental or kinematics changes or to any new situations it might

To appear in: "Fusion of Soft Computing and Hard Computing for Autonomous Robotic Systems" (Eds.: Changjiu

Zhou, Dario Maravall and Da Ruan), "Studies in Fuzziness and Soft Computing Series , Physica-Verlag (mid 2002)

12

encounter. If the controller fails to maintain the desired states, the adaptation technique modifies the
poor rules in the relevant behaviours to adjust to the embedded agent differing environmental and
kinematics conditions without the need to restart the learning cycle. This is called life long learning
where the agent can adapt itself to any new situation and it can update its knowledge about its

environment. This hierarchical procedure results in a fast learning time for finding a solution for
learning and adaptation in changing unstructured environments.

Figure (6): A scenario showing heterogeneous multi embedded agent cooperation in which the robots
implement AEE for learning and the building agents implement ISL

 Our learning and adaptation techniques are inspired from Nature as in biology, most scientists agree
that the remarkable adaptation of some complex organisms comes as a result of the interaction of two
processes, working at different time scales: evolution and life long learning. Evolution takes place at
the population level and determines the basic structures of the organism. It is a slow process that works
by stochastically selecting the better individuals to survive and to reproduce. The life long learning is
responsible for some degree of adaptation at the individual level. It works by tuning up the structures,

built in accordance with the genetic information, by a process of gradual improvement of the
adaptation to the surrounding environment (Rocha et al. 2000). Also condensed learning scenarios over
short periods of time differ drastically from continuous learning or life long learning ones as life long
learning presents the agent with very different perceptual stimuli than learning in a condensed period of
time (Nehmzow 2000). We emulate the natural process by using evolution and online learning to
develop a good enough controller of the agent and we use our patented Fuzzy-Genetic system (the

Associative Experience Engine) described later to speed the slow evolution process. Then we use our
online adaptation technique to implement the life long learning where the agent is always updating its
knowledge and gaining experience and is able to adapt to its changing environment.
 Figure (7) provides an architectural overview of our techniques, which we term as Associative
Experience Engine (AEE). This forms the learning engine within the control architecture and is the
subject of British patent application 99-10539.7. The behaviours are represented as parallel Fuzzy

Logic Controllers (FLC) and form the hierarchical fuzzy control architecture presented in the previous
section. Each FLC has two modifiable parameters, the Rule Base (RB) for each behaviour and the
Membership Functions (MF). The behaviours receive their inputs from sensors. The output of each
FLC is then fed to the actuators via the Co-ordinator, which weights their effect. When a behaviour, or
collection of behaviours, fail to respond correctly to a situation, a learning cycle is initiated.

To appear in: "Fusion of Soft Computing and Hard Computing for Autonomous Robotic Systems" (Eds.: Changjiu

Zhou, Dario Maravall and Da Ruan), "Studies in Fuzziness and Soft Computing Series , Physica-Verlag (mid 2002)

13

Figure (7): Architectural Overview of Associative Experience Learning Engine (British patent No
99-10539.7)

 The learning cycle performed is dependent upon the Learning Focus, which is supplied by the co-
ordinator according to a higher-level plan. For example, if the Learning Focus is to learn the rule base
for individual behaviours, then the rule base of each behaviour is learnt alone.

 When learning or modifying the rule bases, the learning cycle is sub-divided into local situations.
This reduces the size of the model to be learnt. The accent on local models implies the possibility to
learn by focusing at each step on small parts of the search space only. The interaction among local
models, due to the intersection of neighbouring fuzzy sets causes the local learning to reflect on global
performance (Bonarini 99). To further reduce the search space, the system determines if it had
encountered similar situations before by checking the stored experiences in the Experience Bank. The

embedded agent tests different solutions from the experience bank by transferring the “remembered”
experiences, which are stored in a queue to the corresponding behaviours. If any of these experiences
show success, then they are stored in the FLC and we avoid generating a new solution for our system.
An Experience Assessor assigns each experience solution a fitness value to indicate the importance of
this solution. When the Experience bank becomes full it is the role of the Experience Survival valuer to
determine which parameters are retained and which are discarded, according to the parameter

importance. If the use of past experiences did not solve the situation, we use the highest fitness
experience as a starting point for the new learning cycle. We then fire an Adaptive Genetic Algorithm
(AGA) mechanism using adaptive crossover and mutation parameters, which helps to speed the search
for new solutions. The AGA is constrained to produce new solutions in a certain range defined by the
Contextual Constraints supplied by sensors and defined by the co-ordinator according to the learning
focus. This avoids the AGA searching places where solutions are not likely to be found. By doing this

we narrow the AGA search space to where we are likely to find solutions. The AGA search converges
faster as it started from a good point in the search space supplied by the experience recall mechanism
and it used adaptive learning parameters and avoided searching regions where solutions are not likely
to be found. After generating new solutions wither rules or MF or co-ordination parameters the system
tests the new solution and gives it fitness through the Solution Evaluator to be discussed next section.
The AGA generates new solution until reaching a satisfactory solution.

 The online learning mechanism, in addition to the fuzzy behaviours, is also organised as a hierarchy
thus leading to one description of this architecture as being a “double-hierarchy”. The online learning

Associative Experience Engine (Genetic)

MF Rules

 FLC

MF Rules
 FLC

MF Rules
 FLC

 MF Rules

 FLC

Co-ordinator

(FLC)

Learning

Focus Engine

Contextual

Prompter

Solution

Evaluator

AGM for rules

or MF generation

Experience
Survival

Evaluator

Experience

Assessor

Experience

Bank

M Actuators
N

Sensors

MF Rules
 FLC X FLCs

To appear in: "Fusion of Soft Computing and Hard Computing for Autonomous Robotic Systems" (Eds.: Changjiu

Zhou, Dario Maravall and Da Ruan), "Studies in Fuzziness and Soft Computing Series , Physica-Verlag (mid 2002)

14

mechanisms can be regarded as a hierarchy because there is a tiered set of actions. At the highest level
a population of solutions is stored in the Experience Bank and tested in a queue. If one of these stored
experiences leads to a solution then the search ends, if none of these stored experiences leads to a
solution then each of these experiences acquires fitness by the Experience Assessor depending how

well each solution performed in the situation. The highest fitness experience is used as a starting
position to the lower level GA that is used to generate new solutions to the current situation. This
hierarchy preserves the system experience, and speeds up the genetic search by starting the genetic
algorithm from the best point found in the space.

5.1 Learning General Behaviours Rules

The rule base of the behaviour to be learnt is initialised randomly. The designer supplies a preliminary
input membership function for each behaviour. As was explained earlier the values of the membership

functions are not important as we are seeking general rules. In the following sections we will introduce
the various steps of the algorithm to learn the rule base of behaviours that receive immediate
reinforcement such as edge following and goal seeking in the robot navigation domain. For learning the
rules of behaviours that receive delayed reinforcement please refer to (Hagras 2000c).
 After the rule-base initialization, the embedded agent starts operating. If the rule-base contains poor
rules then it will begin deviating from its objective . In this case our algorithm is fired to generate new

set of rules to correct this deviation. The GA population consists of the most two effective rules in the
failure situation. Each chromosome will represent the consequents of one of the effective rules during
the bad action. We will use a binary representation. As the case with classifier systems, in order to
preserve the system performance, the GA is allowed to replace a subset of the classifiers (the rules in
our case). The worst m classifiers are replaced by the m new classifiers created by the application of
the GA on the population (Dorigo Colombetti 95]. The new rules are tested by the combined action of

the performance and apportionment of credit mechanisms. In our case, only two rule actions will be
replaced (those already identified with being predominantly responsible for the deviation).
 The system fitness is determined by the Solution Evaluator and is evaluated by how much the agent
reduces the normalised absolute deviation (d) from the normal value as well as maintaining minimum
system oscillation. This is given by:

d =
deviation

valuedeviatedvaluenormal
.max

|..| −
 (3)

 Where the normal value will correspond to the value desired by the human designer, which
corresponds to the value that gives the maximum normal input membership function. For example, 40
c.m in case of edge following or zero degrees in case of goal seeking (as was specified by the human

designer of the membership functions). The deviated value is any value deviating from the normal
value. The maximum deviation corresponds to the maximum deviation that can occur as was specified
by the human designer membership functions.
 The fitness of the solution is given by d1 - d2, where d2 is the normalised absolute deviation before
introducing a new solution, and d1 is the normalised absolute deviation following the new solution.
The deviation is measured using the agent’s sensors, which gives the agent the ability to adapt to the

imprecision and noise found in the real sensors rather than relying on estimates from previous
simulations.
 The fitness of each rule at a given situation is calculated as follows. We can write the crisp output Yt

as in (1). If the agent has N output variables, then we have Yt1 …, Ytn The normalised contribution of
each rule p output (Yp1, Yp2…..Ypn) to the total output Yt1,Yt2…,Ytn can be denoted by Sr1, . Srn where
Sr1 .. Srn are given by:

Sr1 =

Y

Y

t

G

i
Aip

M

p

G

i
Aipp

1

11

1
1

∏∑

∏

==

=

α

α

 , Srn Y

Y

tn

G

i
Aip

M

p

G

i
Aippn

∏∑

∏

==

=

11

1

α

α

(4)

To appear in: "Fusion of Soft Computing and Hard Computing for Autonomous Robotic Systems" (Eds.: Changjiu

Zhou, Dario Maravall and Da Ruan), "Studies in Fuzziness and Soft Computing Series , Physica-Verlag (mid 2002)

15

 We then calculate each rule’s contribution to the final action Sc =
N

sss rnrr
...

21
++

. The most two

effective rules are those that have the two greatest values of Sc, we use only mutation to generate new
solutions because of the small population formed by the fired rules.

5.1.1 Memory Application

After determining the rule actions to be replaced according to Equation (4), the robot then matches
these rules to sets of rules stored in an Experience Bank containing each rule and its best fitness value

up to date. The fitness of each rule fired in a given solution is supplied by the Solution Evaluator and is
given by:

 Srt = Constant + (d1- d2) .Sc .(1-F). (5)

 d1 - d2 is the deviation improvement or degradation caused by the adjusted rule-base produced by the
algorithm. If there is improvement in the deviation, then the rules that have contributed most will be
given more fitness to boost their actions. If there is degradation then the rules that contributed more

must be punished by reducing their fitness w.r.t to the other rules. F is the normalised oscillation in the
system actions that can be the system steering and velocity in case of the robots. This makes Srt

maximised by maximising the deviation improvement compared to the previous action with minimum
adjustments to system output. The variable F was introduced to penalise instant differences between the
system outputs to give a steady output and also preserving the actuators by not making large
adjustments (ON and OFF) (that might lead to the reduction of the life time of the actuators). The

Experience Survival Valuer keeps the best fitness solution for each rule in the Experience Bank.
 After determining the rule actions to be replaced, the agent then matches the effective rules to sets of
rules stored in a memory containing each rule and its best fitness value up to date. For each rule action
to be replaced, we will replace the current actions in the behaviour rule-base by the best fitness actions
stored in the Experience Bank. If the deviation decreases, then the agent will keep the best rules in the
behaviour rule-base. If the deviation remains the same or increases, the agent uses the GA to produce a

new set of solutions. These are obtained by mutating the best fitness chromosomes from the Experience
Bank to create new actions to replace the most effective rules actions until the deviation begins
decreasing or the rule is proved ineffective. This is then considered a solution for the current situation
and the rule fitness according to Equation (5) is calculated and is compared with the best fitness rule
stored in the memory. If its fitness is greater than the best kept one in the Experience Bank then it
replaces the best one, otherwise the best one still is kept in the Experience Bank. The memory action is

supposed to speed up the GA search as it starts the GA from the “best-found” point in the solution
space instead of starting from a random point

5.1.2 Using GA to Produce New Solutions

The GA begins its search for a new rule action to replace those identified with poor performance by
mutating the two best fitness chromosomes from the Experience Bank to replace the most two effective

rules actions to generate new solutions. The chromosome consists of the effective rule consequents
(which can be speed and steering in case of RA). The population consists of two chromosomes
corresponding to the two most effective rules. We use a small population, which will give faster
convergence to a good enough solution (which is important in online learning) due to the smaller
number of individuals to be evaluated and reproduced each generation. However, small populations run
the risk of stagnating genetically, i.e. the population doesn’t contain sufficient genetic diversity to

properly explore the search space. This is why it is important to introduce high mutation rates to
introduce new genetic material in the population without running into the risk of end by a random
search (Kasabov et al. 99). A mutation rate of 0.5 was chosen after gathering empirical evidence
gathered from experimenting with different mutation rates from 0 to 1.0. This was achieved by
monitoring the time the embedded agent needed to achieve its goal, as shown in Figure (8-a). It was
noticed that at mutation values less than 0.3 there was almost no convergence (which means not finding

a good solution) because the population size and the chromosome size are small, and the low mutation
rates does not introduce sufficient new genetic material to produce different solutions. The same occurs
for high mutation rates (higher than 0.7) as the mutation rate reaches 1.0 the only genetic material
available are the primary chromosomes (e.g. 0101) and its inversion (1010), which is not enough for
producing any new solutions. Thus 0.5 gave the optimum value for finding a solution. The agent also
uses the Contextual Constraints supplied by the sensory information to narrow the search space of the

GA and thus reduces the learning time. For example, if the robot is implementing left wall following

To appear in: "Fusion of Soft Computing and Hard Computing for Autonomous Robotic Systems" (Eds.: Changjiu

Zhou, Dario Maravall and Da Ruan), "Studies in Fuzziness and Soft Computing Series , Physica-Verlag (mid 2002)

16

and it is moving towards the wall, then any action that suggests going to the left will not lead to a
solution. Hence, if we use a left side sensor and the robot senses that it is going towards the wall, and
then the GA solutions will be constrained not to go left. Hence the solutions generated for the
temperature are constrained to be less than the current temperature. This is similar to using a

constrained-GA, where the sensor information constrains the GA search space and forces it to look at
areas where solutions are likely to be found and avoids doing blind searches in the whole search space,
also avoiding abnormal outputs which results from mutation. We have also conducted learning
experiments without the Contextual Constraints. It was noticed that this increased the learning time
compared to those using Contextual Constraints by up to four times (average). This is because the GA
now has to search in the entire search space, instead of just searching the limited regions where

solution are likely to be found.

 (a) (b)
Figure (8): a) Mutation rate versus time. b) The relative robot length plotted against the error after

learning.

 Figure (9) gives an example of a robot deviating from its objective and after trying the memory
actions with no success it triggers the GA. In this example the robot has only two output actions (left
and right wheel velocities) each one is represented by only 4 fuzzy sets which are Very Low, Low,
Normal, High. We need only two bits to represent the consequent of each rule thus we have a four bit

chromosome. The actions are decoded as follows, Very Low is 00, Low is 01, Medium is 10, High is 11.
In this example rule 1 and rule 2 were the most effective rules according to Equation (4) and their
actions are to be replaced by mutating the actions that obtained the maximum fitness according to
Equation (5) which are stored in the Experience Bank.
 The generation of the new solution is constrained according to the contextual constrains and the
mutation continues till the deviation decreases or the effective rules are not effective anymore. After

this the fitness of this solution is evaluated using Equation (5) and is compared with the one stored in
the Experience Bank if it is greater than it, then it replaces the actions stored in the Experience Bank.
The robot learns this situation and other similar local situations involving different rules. The accent on
local models implies the possibility to learn by focusing at each step on small parts of the search space
only. The interaction among local models, due to the intersection of neighbouring fuzzy sets causes the
local learning to reflect on global performance (Bonarini 99). This reduces the size of the model to be

learnt. The agent finishes the learning of the whole behaviour when it reaches a stopping criterion.

5.1.3 Stopping Criteria

The agent assumes it has learnt the rule-base for the behaviour if it succeeds in satisfying the goals
specified to its behaviour. In case of the robot navigation, the robot assumes it has learnt the rule-base
for the behaviour if it succeeds in maintaining the nominal value for the behaviour for an optimum

learning distance. The optimal learning distance has been related to units of length of the robot, so that
the algorithm can be applied in an invariant manner to different size robots. In order to determine the
optimal learning distance we have conducted numerous experiments using different learning distances
corresponding to the robot’s length (e.g. 1x robot’s length, 2x robot’s length, etc.). We then follow the
same track that was used during the learning phase to determine the absolute deviation at each control
cycle from the optimum value which is maintaining a constant distance from a wall in case of edge

following and going towards a goal in case of goal seeking. The average and standard deviation of this
error are calculated over 10 experiments over different tracks. From Figure (8-b) it is obvious that the
average and standard error for the wall following stabilizes at three times the robot’s length at average

To appear in: "Fusion of Soft Computing and Hard Computing for Autonomous Robotic Systems" (Eds.: Changjiu

Zhou, Dario Maravall and Da Ruan), "Studies in Fuzziness and Soft Computing Series , Physica-Verlag (mid 2002)

17

value of 4 cm and standard deviation of 3 and become almost the same for a larger number of
experiments. Thus we use three times the robot length as our learning length criteria.

Figure (9): An example of GA processes in which rule 1 and rule 2 consequents stored in Experience
Bank and having the best fitness are generating new consequent for rules 1,2 which are the most

effective rules responsible for behaviour failure.

5.2 Online Adaptation of the learnt controller and Life Long Learning

In the previous sections we explained how to learn the embedded agent controller online and through
interaction with the environment using the Evolutionary techniques, imitating the natural evolution and
using our patented techniques to speed it up so that we can learn online. In this section we discuss how

can we adapt the RA to any environmental changes and implement a life long learning scheme where
the agent gains and updates its knowledge by encountering new situations. This means that the agent
can add or delete or modify rules according to the situations it encounters.
 Also this approach is useful in prototyping as we can learn the embedded agent controller on a
prototype agent in a controlled environment and then we transfer it to the agent running in the real
environment where we only run a short adaptation cycle with no need to repeat the learning cycle

(Hagras et al. 2001a, Hagras et al. 2001b).
 Perhaps more importantly, this adaptation and life long learning session is important in the case that
environmental or embedded agent characteristics changes occur and the agent needs to rapidly adapt to
these changed circumstances.
 Although fuzzy logic allows a degree of imprecision to exist within the environment, significant
environmental or agent differences will prevent the rule sets from operating correctly. One solution to

this problem is to provide a new rule set for each of the different environments, although prior
knowledge of the different environments would be needed (which is difficult if not impossible for
dynamic unstructured environments). An alternative solution is to allow the existing co-ordinated rule
set to be adapted to compensate for the environmental differences. This latter approach only requires a
basic rule set to be present from the prototype robot controller and does not require prior knowledge of
all possible environments. We start the adaptation from the best-learnt HFLC by the RA, instead of

starting from a random point. If the system was started with random rule bases, the system could still
modify its actions but would take approximately six times the time needed when started from a good
rule base containing some inappropriate rules for the new environment. This figure was found by
practical experimentation.
 The system discovers the rules (in different behaviours) that, if modified, can lead the embedded
agent to adapt to its environment. Whilst it might seem a good idea to change the co-ordination

parameters, or the membership functions of the individual behaviours, to adjust the agent behaviour

To appear in: "Fusion of Soft Computing and Hard Computing for Autonomous Robotic Systems" (Eds.: Changjiu

Zhou, Dario Maravall and Da Ruan), "Studies in Fuzziness and Soft Computing Series , Physica-Verlag (mid 2002)

18

when it fails, this is not the best approach. This can readily be illustrated by considering a case where
the rules in the individual rule bases become inappropriate, then clearly changing the co-ordination
parameters will never correct the RA behaviour (as was proved by experimentation). Also changing the
MF is a difficult task, as it needs to be done to each individual behaviour necessitating the robot to be

taken away from its environment for MF calibration. However, our method allows the poor rules to be
found and corrected for each behaviour, online and in-situ without the need to repeat the whole
learning cycle, modifying only the actions of a small number of rules that performed poorly.
 Imagine a situation where the robot had failed to do its mission. In this case we will modify all the
rule bases whose behaviours were active. The agent then uses its short-term memory to return back to
its pre-failure position, identifying the two most dominant rules (which can belong to different

behaviours). The agent then replaces the actions of these rules to solve this situation. The way the agent
determines the dominant rules is done by calculating the contribution of each rule to the final output in
a given situation as follows: Apply Equation (2) and substitute Yt from Equation (1). Then we can write
the crisp output Yht as:

∑
=

4

1y
ymm

∏∑

∏∑

==

==
G

i
Aip

M

p

G

i
Aip

M

p
py

11

11

α

α

y
y

mm
=

∑
1

4

Where M is the total number of rules, Yp is the crisp output for each rule, ΠαAip is the product of the
membership functions of each rule inputs. G is the number of the input variables, mmy is firing strength

of each of the four behaviours.
 Because we have N output variables, then we have Yht1, ….Yhtn. The contribution of each rule p in
the behaviour y to the total output Yht1, ..Yhtn is denoted by Sra11, . Srann where Sra11, Srann are given by:

 Sra11 =

Y

Y

mm
mm

ht

G

i
Aip

M

p

G

i
Aipp

y
y

y

1

11

1
1

4

1

.

∏∑

∏

∑
==

=

=
α

α

, Srann =

Y

Y

mm
mm

htn

G

i
Aip

M

p

G

i
Aippn

y
y

y

∏∑

∏

∑
==

=

= 11

1

4

1

.

α

α

 (7)

We then calculate each rule’s contribution to the final action Sac1 by:

 Sac1= N
sss rannrara

++
2211

.

The most effective rules are those rules with the greatest values of Sac1.

 In order to implement the Life-Long learning strategy the agent has a long-term memory composed
of all the experiences it encountered in the past and how the agent had succeeded to solve the problems
it encountered. These experiences are in the shape of rule clusters having the rule numbers and the
consequents the agent had learnt to associate with inputs of these rules in a situation where the agent
failed to satisfy the desired behaviour. The rule clusters are arranged in a queue starting from the most
recent experiences. These clusters represents how the agent have adapted to different changing

environments and situations, i.e. in two different rule clusters we can find the same rule having
different consequents which means that each environment should have its different actions. So in case
of the agent failing to achieve the desired behaviour in the changing unstructured environment then the
actions of the most effective rules can be modified to solve this situation. The agent then matches the
effective rules to sets of rules stored in the Experience Bank. In the robot domain if, for example; rules
1,2 from the obstacle-avoidance rule base, rule 3 of the left edge-following behaviour and rule 4 of the

right edge following need to be replaced, AND the first rule cluster in the Bank contains the
consequences of rules 1 of obstacle avoidance; rule 3 of left edge following and rule 6,7 of right edge
following, then the consequences of rules 1 for obstacle avoidance and 3 for left edge following will be

Yht = (6)

To appear in: "Fusion of Soft Computing and Hard Computing for Autonomous Robotic Systems" (Eds.: Changjiu

Zhou, Dario Maravall and Da Ruan), "Studies in Fuzziness and Soft Computing Series , Physica-Verlag (mid 2002)

19

changed and rule 2 for obstacle avoidance and 4 for right edge following will remain the same. Then
the agent starts operating with this modified rule-base taken from the Experience Bank. If it survives
and gets out of this situation with no behaviour failures, then these rules are kept in the rule-base of the
controller. In this way we have saved the process of learning a solution to this problem from the

beginning by using the memorized experience that had worked in different environmental conditions.
This is the same as nature where the agent tries to recall its experiences that solved the same situation
before. If none of these experiences had solved this situation, the agent assigns to each experience a
fitness value indicating how well it performed in the current situation. Then the agent chooses the
consequents of the rule clusters that have given the highest fitness and keep them in the rule-bases of
the controller in order to serve as a starting position of the Adaptive Genetic Algorithms (AGA) search

instead of starting from a random point, these consequents will be the parents of the new rule
consequents. This action helps to speed up the genetic search as it starts the search from the best-found
point in the search space instead of starting from a random point.
 The robot then calculates the fitness value of the solution starting from the modified rule base
supplied by the Experience Bank. If there is an improvement in the performance produced by the
modified rule base, then the rules that contributed most must be given increased fitness to boost their

actions. If there is no improvement then the rules that contributed most must be punished by reducing
their fitness w.r.t to other rules and the solutions that had small contributing actions are examined. The
fitness of each rule is supplied by the Solution Evaluator and is given by:

Srat 1= Constant + (dnew-dold) .Sac1. (1-F) (8)

 Where dnew is the new performance of the robot (using the modified rule base, dold is the old
performance of the agent before modifying the rule base, dnew-dold is the performance improvement or
degradation caused by the adjusted rule-base produced by the algorithm. F is the normalised oscillation
in the system actions. Thus Srat1 is maximised by improving the robot performance before behaviour
failure with minimum oscillations in the system output. In the first population of the GA, because there
is no performance assessed yet, we blame the rules that have contributed most to the behaviour failure.

The fitness of each rule is given by:

Srat = Constant - Sac1 (9)

 The performance of the robot is assessed according to the failure of the robot to reach or maintain a
certain target. For example in case the robot approaches an obstacle to a dangerous distance then the

performance of the robot will be assessed by how it increases the distance moved before collision.
 However, a problem occurs as the system begins accumulating experience that exceeds the physical
memory limits. This implies that we must delete some of the stored information. To deal with this, for
every rule cluster we attach a difficulty counter to count the number of iterations taken by the agent to
find a solution to a given situation, we also attach a frequency counter to count how frequently this rule
have been retrieved. The degree of importance of each rule cluster is calculated by the Experience
Survival Valuer based on the product of the frequency counter and the difficulty counter. This attempts
to keep the rules that required a lot of effort to learn (due to the difficulty of the situation) and also the
rules that are used frequently. When there is no more room in the Experience Bank, the rule cluster that
had the least degree of importance is selected for replacement. If two rule clusters share the same
importance degree, tie-breaking is resolved by a least-recently-used strategy. The rule that has not been
used for the longest period of time is replaced. Thus an age parameter is also needed for each rule

cluster. The value of the age parameter increases over time, but is initialised whenever the associated
cluster is accessed. The limit for the memory clusters is set to 2000 rule clusters, so if we exceed this
limit the Experience Survival Valuer begins using the degree of importance and the age operator to
optimise the memory.
 The AGA is using the Srinivas method (Srinivas and Patnaik 96). If, for example in the robot
domain, rule number 5 of the obstacle avoidance and rule 7 of the left wall following are chosen for

reproduction by roulette wheel selection due their high fitness. This implies they have either
contributed more with their actions to the final action that caused improvement, or contributed less
with their actions to final action that caused degradation. Then we apply adaptive crossover and
mutation operators to both chromosomes. The resultant offspring will be used to replace the consequent
of rules 1 and 2 for obstacle avoidance that were largely blamed for the behaviour failure. The AGA is
constrained to produce offspring according to the Contextual Constraints supplied by the input sensors.

The robot ends the adaptation when the agent achieves the desired response.

To appear in: "Fusion of Soft Computing and Hard Computing for Autonomous Robotic Systems" (Eds.: Changjiu

Zhou, Dario Maravall and Da Ruan), "Studies in Fuzziness and Soft Computing Series , Physica-Verlag (mid 2002)

20

6. Incremental Synchronous Learning for non-intrusive learning

The Incremental Synchronous Learning (ISL) architecture is shown in Figure (10). The BA need to
address somewhat different learning needs, short “initialisation” and long “life-long” learning. In
general a learning mechanism within a building should be non-intrusive.
 The ISL forms the learning engine for the BA. The agent is an augmented behaviour based
architecture, which uses a set of parallel Fuzzy Logic Controllers (FLC), each forming a behaviour.
The behaviours can be fixed, in the case of an Intelligent Building (IB) these could be - the Safety,

Emergency and Economy behaviours or dynamic and adaptable such as, in an IB, Comfort behaviours
(i.e. behaviours adapted according to the occupant’s actual behaviour).
 Each dynamic FLC has one parameter that can be modified which is the Rule Base (RB) for each
behaviour.

 Figure (10): The ISL Embedded-Agent Architecture

 Also, at the high level the co-ordination parameters can be learnt (Hagras et al. 2000b). The HFLC is
the same as explained in Section (3). The ISL system aims to provide life-long learning and adapts by
adding modifying or deleting rules. It is also memory based in that it has a memory enabling the system
to use its previous experiences (held as rules) to narrow down the search space and speed up learning.
The ISL works as follows: - when a new user enters the room he is identified by a key button and the
ISL enters a Monitoring initialisation mode where it learns the user's preferences during a non-intrusive

cycle. In the Experimental set-up we used a period of 30 minutes but in reality this is linked to how
quickly and how complete we want the initial rule base. For example in a care house we want this rule
base to be as complete as possible with some fine tuning, in a hotel we want this initialisation period to
be small to allow fast learning. The rules and preferences learnt during the Monitoring mode form the
basis of the user rules which are retrieved whenever the user renters the room. During this time the
system monitors the inputs and users action and tries to infer rules from the user monitored actions.

The user will usually act when given an input vector the output vector is unsatisfactory to him.
Learning is based on negative reinforcement, as the user will usually request a change to the
environment when he is dissatisfied with it
 After the Monitoring initialisation period the ISL enters a Control mode in which it uses the rules
learnt during the Monitoring mode to guide its control of the rooms effectors. Whenever a user
behaviour changes, so he needs to modify, add or delete any of the rules in the rule base the ISL goes

To appear in: "Fusion of Soft Computing and Hard Computing for Autonomous Robotic Systems" (Eds.: Changjiu

Zhou, Dario Maravall and Da Ruan), "Studies in Fuzziness and Soft Computing Series , Physica-Verlag (mid 2002)

21

back to the non-intrusive cycle and tries to infer the rule base change to determine the users preferences
in relations to the specific components of the rule that has failed. This is a very short cycle that the user
is essentially unaware of and is distributed through the lifetime of the use of environment, thus forming
a life-long learning phase.

 As in the case of classifier systems, in order to preserve the system performance the learning
mechanism is allowed to replace a subset of the classifiers (the rules in this case). The worst m
classifiers are replaced by the m new classifiers (Bonarini 99). In our case we will change all the
consequences of the rules whose consequences were unsatisfactory to the user. We find these rules by

finding all the rules firing at this situation where ΠαAi > 0. We replace these rules consequents by the

fuzzy set that has the highest membership of the output membership function. We have done this
replacement to achieve the non-intrusive learning and to avoid direct interaction with the user. The
learnt consequent fuzzy rule set is guided by the Contextual prompter, which uses the sensory input to
guide the learning.
 The normalised contribution of each rule p output (YpN) to the total output Yht can be denoted by Sra11

and is given by Equation (7).
 During the non-intrusive Monitoring and life-long learning phases the agent is introduced to
different situations, such as having different temperature and lighting levels inside and outside the
room with the agent guided by the occupant’s desires as it attempts to discover the rules needed in each
situation. The learning system consists of learning different episodes; in each situation only small
number of rules will be fired. The model to be learnt is small and so is the search space. The accent on

local models implies the possibility of learning by focusing at each step on a small part of the search
space only, thus reducing interaction among partial solutions. The interaction among local models, due
to the intersection of neighbouring fuzzy sets means local learning reflects on global performance
(Bonarini 99). So we can have global results coming from the combination of local models, and smooth
transition between close models. It is necessary to point to a significant difference in our method of
classifying or managing rules, which is, rather than seeking to extract generalised rules we are trying to

define particularised rules.
 After the initial Monitoring initialisation phase the system then tries to match the user derived rules
to similar rules stored in the Experience Bank that were learnt from other occupiers. The system will
choose the rule base that is most similar to the user-monitored actions. The system by doing this is
trying to predict the rules that were not fired in the initialisation session thus minimising the learning
time as the search is starting from the closest rule base rather than starting from random. Also this

action will be satisfactory for the user as the system starts from a similar rule-base then fine-tuning the
rules.
 After this the agent will be operating with the rules learnt during the monitoring session plus rules
that are dealing with uncovered situations during the monitoring process which are ported from the rule
base of the most similar user, all these rules are constructed by the Rule Constructor. The system then
operates with this rule-base until the occupant’s behaviour indicates that his needs have altered which

is flagged by the Solution Evaluator (i.e. the agent is event-driven). The system can then add, modify
or delete rules to satisfy the occupant by re-entering the briefly to Monitoring mode. In this case again
the system finds the firing rules and changes their consequence to the desired actions by the users. We
also employ a mechanism - learning inertia - that only admits rules to the rule base when their use has
exceeded some minimal frequency (we have used 3). One of our axioms is that “the user is king” by
which we mean that an agent always executes the users instruction. In the case where commands are

inconsistent with learned experience learning inertia acts as a filter that only allows the rule-based to be
altered when the new command is demonstrated by its frequent use to be a consistent intention. It is in
this way that the system implements a life long learning strategy. It is worth noting that the system can
be Monitoring for long times to learn as much needed rules which is highly needed in care houses. Also
the system can start with short Monitoring time and then jump to the life long learning mode to learn
the user behaviour quickly, which is needed in hotel rooms. The weighting is set by adjusting the

Monitoring non-intrusive period to the required application.
 The emphasis on particularisation over generalisation can create problems when the particularised
rules storage needs of different users exceed the physical memory limits. This implies that we must
remove some stored information. To manage this we employ various mechanisms. One such
mechanism is for every individual rule base cluster we have, we attach a difficulty counter to count the
time taken by the agent to learn a particular rule base. We also attach a frequency counter to count how
often this rule base has been retrieved. The degree of importance of each rule base cluster is calculated

by the Rule assassin and is given by the product of the frequency counter and the difficulty counter.
This approach tries to keep the rules that have required a lot of effort to learn (due to the difficulty of
the situation) and also the rules that are used frequently. When there is no more room in the Experience

To appear in: "Fusion of Soft Computing and Hard Computing for Autonomous Robotic Systems" (Eds.: Changjiu

Zhou, Dario Maravall and Da Ruan), "Studies in Fuzziness and Soft Computing Series , Physica-Verlag (mid 2002)

22

Bank, the rule base cluster that had the least degree of importance is selected for removal by the Rule
assassin. If two rule base clusters share the same importance degree, tie-breaking is resolved by a least-
recently-used strategy; derived from a “life invocation” flag that is updated each time a rule is
activated.

 Multi-Agent operation is supported by making compressed information available to the wider
network. The compressed data takes the form of a status word describing which behaviours are active
(and to what degree). As with any data, the processing agent decides for itself which information is
relevant to any particular decision. Thus, multi-agent processing is implicit to this paradigm. We have
found that receiving high level processed information from remote agents, such as “the room is
occupied” is more useful than being given the low level sensor information from the remote agent that

gave rise to the high-level characterisation. This is because the compressed form both relieves agent-
processing overheads and reduces network loading.

7. EXPERIMENTS AND RESULTS

This section describes the experiments and results of applying the AEE for online learning and
adaptation in mobile RA and the application of ISL to BA and how the Building and Robotic agents
communicate and cooperate to do the specified jobs.
 All the robots will have the same sensors, there will be three front sonar sensors for obstacle

avoidance and two sonar sensors on each side of the robot for edge following, each sensor is
represented by three membership (which are Near, Medium, Far) as this was found to be the least
number of membership function to give a satisfactory result. Also the robots have sensors to measure
the bearing from the goal. Each bearing sensor is represented by seven memberships as this was found
to be the least number of membership functions to give a satisfactory result. The output membership
functions will be represented by four membership functions (which are Very Low, Low, Medium and

High).
 The following experiments shows the RA using the AEE to learn their basic behaviours which are

goal seeking, edge following and obstacle avoidance. We had used different sizes of robots to show
that our techniques are robot independent and also we performed some experiments in outdoor
environments to test that the AEE can deal with highly difficult and unstructured environments.
 Figure (11-a) shows an indoor robot learning the rule base of the goal seeking behaviour, using an

imprecise infrared beacon system to emulate a goal. The robot learnt the rule-base in an average of 96
seconds (this time is not the actual time to find a solution but it is bounded by the robot microprocessor
speed and the robot speed) over 5 trials using a 68020 microprocessor robot with maximum speed of
13cm/sec starting from different positions with different initialised rule bases (the average error over
more experiments was found to converge after 5 trials).

 (a) (b) (c)

Figure (11): a) Indoor robot learning goal seeking behaviour. b) The outdoor robot learning the edge

following behaviour. c) The outdoor robot learning the obstacle avoidance behaviour.

 Figure (11-b) shows the electrical outdoor robot learning the rule-base for the right edge following

behaviour of an irregular metallic fence, the robot tried to follow the edge keeping a desired distance of

To appear in: "Fusion of Soft Computing and Hard Computing for Autonomous Robotic Systems" (Eds.: Changjiu

Zhou, Dario Maravall and Da Ruan), "Studies in Fuzziness and Soft Computing Series , Physica-Verlag (mid 2002)

23

1 m. The figure shows the robot reducing its deviation rapidly until it succeeds in maintaining the robot
with a very small deviation. The robot’s path after 79 seconds of learning is very smooth despite the
irregularity of the fence and the highly imprecise sensors. Table (1) shows the learnt rule base that
adapts the robot to the edge irregularity while taking into account the robots kinematics and dynamics.

The robot followed the edge in almost a straight line while avoiding any bigger bumps in the fence.
The rule-base was initialised randomly with the first 4 rules actions assigned to move forward. The
actions of the fifth and the sixth and the seventh rules were assigned to turn left. And the actions of the
remaining rules were assigned to turn right. Some of the rules look contradictory to human reasoning
but they fit the robot. For example in the rule stating if Right Front Sensor (RFS) is Near and Right
Back Sensor (RBS) is Near, a human consequent would be to turn left to avoid collision with the fence

but the learning system had chosen to turn right towards the fence. The reason for this is that the robots
dynamics are biased to the left and when the robot is activating rules 2 and 3, the robot turns sharply to
the left and the robot takes time in order to stabilise again, thus causing a zigzag path. The first rule
consequent had resulted in damping the combined actions composed of these rules and thus resulting in
a smooth path with minimum deviation rather than a zigzag path. Also the seventh rule states if RFS is
Far and RBS Near, which is a corner situation, a human decision would be to turn right to follow the

fence and turn around this corner. The learnt rule suggests going to the left away from the fence to give
the robot more space until the robot goes to the next rule which is RFS is Far and RBS Med then the
robot turns around the corner smoothly as it has enough space to perform the turning. The learnt rule-
base had produced an average deviation from the desired distance of 4.3 cm with a standard deviation
of 1.5 while the human designed rule-base had resulted in average deviation of 27 cm and a standard
deviation of 8.

Rule

No

RFS RBS Speed Steering

1 NEAR NEAR LOW HIGH

2 NEAR MED MED LOW

3 NEAR FAR MED LOW

4 MED NEAR LOW VERY LOW

5 MED MED MED MED

6 MED FAR MED MED

7 FAR NEAR LOW VERY LOW

8 FAR MED LOW HIGH

9 FAR FAR MED HIGH

Table (1): The best learnt rule base of the right edge following behaviour using

outdoor robots.

 Figure (11-c) shows the outdoor robot learning the obstacle avoidance behaviour while following an
irregular metallic fence full of bumps in an outdoor environment at a desired distance of 120 cm whilst
avoiding obstacles at a distance of 1m. The robot converged to a solution after an average of 6
iterations taking 3 minutes of robot time. It gave a small average deviation of 2.4 cm and standard
deviation of 0.52 for the desired safe distance. After learning the rule bases the robot then learns the

best membership functions that suits the learnt rules to form a sub optimal behaviour. The robot then
learns the best coordination parameters to satisfy the high level mission to form the HFLC. More
information about learning the MF and the coordination parameters online can be found in (Hagras et
al. 2000a and Hagras et al. 2000b]

What were learnt are HFLC, which were sub-optimal under certain environmental and robot
kinematics conditions. If the environmental or the robot kinematics changed dramatically these

parameters would not be sub-optimal and the learning cycle would have to be repeated from the
beginning. Of course this is not practical in highly and unstructured dynamic environments such as the
domestic environments where the environment is continuously changing. Although fuzzy logic allows
a degree of imprecision to exist within the environment, significant environmental differences will
prevent the rule sets from operating correctly. One solution to this problem is to provide a new rule set
for each of the different environments, although prior knowledge of the different environments would
be needed (which is difficult if not impossible for dynamic outdoor environments). An alternative

solution is to allow the existing coordinated rule set to be adapted to compensate for the environmental
differences. This latter approach only requires a basic rule set to be present and does not require prior
knowledge of all possible environments. The online adaptation technique will discover the rules in

To appear in: "Fusion of Soft Computing and Hard Computing for Autonomous Robotic Systems" (Eds.: Changjiu

Zhou, Dario Maravall and Da Ruan), "Studies in Fuzziness and Soft Computing Series , Physica-Verlag (mid 2002)

24

different behaviours that, if modified online and in-situ, without the need to repeat the whole learning
cycle can lead the robot to adapt to its environment [Hagras et al. 2001b].
 In figure (12-a) the robot was given a high level mission which is to align to center of the corridor
while avoiding any obstacles and going to its goal after exiting the corridor, this high level mission can

be supplied by the BA. In this figure we had destroyed the rules in all behaviours by setting all the rule
consequences to “go right”, thus causing the robot to collide with walls in the corridor, we also tried
loosening the left wheel to simulate changing robot conditions. Also the rules in the goal seeking
behaviour were destroyed to make the robot always shift to the right. These changes were done to
simulate changes in the environmental and robot kinematics conditions and to test if the life long
learning strategy within the AEE can adapt the robot online with no need to repeat the learning phase.

It took the robot 8 minutes (including reversing time) to get out of the corridor and to modify the rule
bases of the co-ordinated behaviours. It modified 7 rules in the obstacle avoidance behaviour, 4 rules in
the left wall following behaviour, 3 rules in the right wall following behaviour and 3 rules in the goal
seeking behaviour (i.e. 17 rules). It learnt these rules in an average of 20 iterations (episodes) over 4
experiments. The modified rules are shown in Table (2).
 Figure (12-c) shows the robot after learning the sub optimal HFLC co-ordinating the obstacle

avoidance behaviour and the goal seeking behaviour. The robot was required to go up hill to go to
target 1 and then go down hill to target 2 and then it had to repeat the path back up hill to target 1, the
operation was repeated continuously for 2 hours. This operation is similar to the missions described
before in which the BA gives a high level mission of go to target 1 and target 2 while avoiding
obstacles. While going uphill the online adaptation module had to change the goal seeking behaviour
speed consequents to High to give the robot more power to go up this steep hill, as the robot was

trained on a nearly flat ground. When going down hill the goal seeking consequents had to be changed
again to Low. Although the robots are equipped with wheel encoders and a speed controller however
there is a need for a high level set point from the goal seeking behaviour to give more power to the
robot up hill and to protect it from slipping when going downhill. When the robots goes uphill again it
doesn't need to relearn the rule base, thanks to the Experience Bank which allows the robots to recall its
past experience rather than relearning. The robot path after two hours is nearly the same with an

average deviation from the original path of 2.5 cm and standard deviation of 1.2.

LFS MFS RFS Left

Speed

Right

Speed
Near Far Near Med Med

Med Near Near Very

Low

High

Med Med Near Low High

Med High Near Low Med

Far Far Near Very

Low

High

High Med Near Low High

Obstacle

Avoidance

High High Near Very

Low

Med

LSF LSB Left

Speed

Right

Speed

Med Near Low Med

Far Near Very

Low

High

High Med Med High

Left Edge

Following

High High Med High

RSF RSB Left

Speed

Right

Speed

Near Near Very

Low

High

Low Med Low High

Right Edge

Following

Low High Very

Low

High

Bearing Left

Speed

Right

Speed

Very Very

Negative

Very

Low

High

Very Negative Low High

Goal

Seeking

Med Negative Med High

Table (2): The modified rules for the experiment in Figure (12-a).

To appear in: "Fusion of Soft Computing and Hard Computing for Autonomous Robotic Systems" (Eds.: Changjiu

Zhou, Dario Maravall and Da Ruan), "Studies in Fuzziness and Soft Computing Series , Physica-Verlag (mid 2002)

25

We have conducted a number of experiments using the ISL to learn and adapt the behaviours of

different users with different tastes and desires. For each experiment the users have spent up to 5 hours
in the iDorm.
 For the experiments the room had four environmental parameters to control:

• lighting level (I1) represented by 3 triangular fuzzy sets (Low Norm High)

• temperature (I2) represented by 3 triangular fuzzy sets (Low Norm High)

• outside level of lighting (I3) represented by three triangular fuzzy sets (Bright Dim Dark)

• user location represented by two fuzzy sets (I4) wither he is on the Desk or lying on the Bed.

• There were seven outputs to control;

• two dimmable spot lights above the desk (O1) represented by five triangular fuzzy sets (VLow, Low, Norm,
High, VHigh).

• two dimmable lights above the Bed (O2) again represented by five triangular fuzzy sets

• a Bedside Lamp (O3) represented by ON-OFF Fuzzy states;

• a Desk Lamp (O4) represented by ON-OFF Fuzzy states

• automatic blinds whose opening can be controlled (O5) represented by 5 triangular fuzzy sets, where the
fuzzy sets VLow, Low, deal with blind opening to the left and VHigh, High deal with blind opening to the
right and Norm is 50 % opening

• a Fan Heater (O6) represented by ON-OFF Fuzzy states and a Fan Cooler (O7) represented by ON-OFF
Fuzzy states.

This forms a rule base of 3*3*3*2 =54 rules. However as the ISL learns only the rules required by the
user we find that we don't need to learn the whole rule base, thus the rule base will be optimised.
 Table (1) shows the learnt rule-base for “User-1” pictured in Figure (13) who occupied the room for
more than two hours. In these experiments the users undertook many behaviours such as studying
during the day (in which the lighting was bright) and studying in the evening (i.e. when external light
was fading). This specific user preferred to use all the ceiling lights ON and the blind open to Norm.

Another behaviour was lying in bed reading with the blind adjusted to his convenience and the bedside
light being sometimes used. He would also close the blinds in the evening using combinations of the
ceiling lamps and desk lamp. The data also contains “going to sleep behaviours” including reading
before sleeping and getting up spontaneously at night to work (they are students!).

 (a) (b)

Figure (12): The indoor robot using life long learning to adapt itself. b) The outdoor robot

To appear in: "Fusion of Soft Computing and Hard Computing for Autonomous Robotic Systems" (Eds.: Changjiu

Zhou, Dario Maravall and Da Ruan), "Studies in Fuzziness and Soft Computing Series , Physica-Verlag (mid 2002)

26

implementing continuous learning.

Figure (13): “User 1 in the iDorm”.
 The ISL learnt 15 rules of which the first 7 rules were learnt during the Initialisation phase. The next
4 rules were ported from similar users and were satisfactory to the user. The last 4 rules resulted from
fine-tuning the ported rules. These rules dealt with darkness the first two rules dealt with the user
wanting to sleep and he wanted all lights off while the similar user slept with the desk lamp ON

because he doesn't like darkness. The last two rules dealt with user returning to the desk to read as he
couldn't sleep he switches all lights to Norm and switch ON the desk and the bedside lamp and the
blind to Norm to allow more light, the similar user had the same behaviour but he was closing the
blind. It is obvious that the room user and the similar user actions are very similar and we needed only
a fine-tuning to satisfy the current user needs, this is an advantage of using the Experience Bank which
reduces the life long learning time and satisfies the user. The XX in Table (3) indicate a No-Care

situation, which resulted as the inside room lighting level was not important as when it was bright the
user took always the same actions. This shows also that ISL besides optimising the rule base can help
to identify the input parameters required by the user and hence giving more optimisation to the system.

Table (3): The learnt Rule Base for “User-1”

 Table (4) shows the learnt rule base for another user with different desires and taste. His

Experiments were conducted at night giving rise to 12 learnt rules. 8 of which were generated during
the Initialisation phase, 2 rules being ported from a similar user and were satisfactory to the user. The
last 2 rules were tuned during the life long learning period as when sitting on a Desk and reading he
wanted the desk light to be ON while for the similar user it was OFF so again it is a small fine tuning to
satisfy the user which verifies the use of the Experience Bank.

 Of course the learnt rules in both tables are different as our agent particularises rather than

generalises. To adequately show all the characteristics of this agent we would need to run experiments
over much longer periods (e.g. 12 months to get a full environment variation).

To appear in: "Fusion of Soft Computing and Hard Computing for Autonomous Robotic Systems" (Eds.: Changjiu

Zhou, Dario Maravall and Da Ruan), "Studies in Fuzziness and Soft Computing Series , Physica-Verlag (mid 2002)

27

Table (4): The learnt Rule Base for “User-2”
We have compared this method, which is an online proactive method, with other offline supervised
learning systems such as the Mendel-Wang ANFIS approach (Mendel and Wang 92). We found, from
the experimental results, that our system gives comparable results to that of such offline approaches.
However our system has the added advantage of being on-line, adaptable to new users and able to

particularise rather than generalise. Offline methods have to repeat the learning cycle from the
beginning and require that the initial training set, plus any newly acquired data, be used. Our system
works by cause-effect actions in the form of fuzzy rules, based on the occupant’s actions. The
advantage of this is that the system responds and adapts to the users needs in an immediate manner.
More information about comparison with other techniques are listed in (Hagras et al. 2000d, Hagras et
al. 2002].

 Figure (14) shows the BA communicating with the RA agents in the form of a Manus arm to fetch a
newspaper from the table and deliver it to the user in the bed. These experiments were conducted in
cooperation with KAIST and in the Human-friendly Welfare Robotic system lab in Daejeon-Korea.
The RA only receives a high level mission of getting the newspaper which is a high level output from
the ISL.

Figure (14): The Building agent communicates with the Robotic agents to get the newspaper to the
bed.

8. Conclusions

In this chapter we have presented our learning and adaptation techniques applied in intelligent domestic
environments. We the system operating in both an interactive mode for Robotic agents and in a non-
intrusive mode for Building agents. We have also illustrated how to form a heterogeneous multi

To appear in: "Fusion of Soft Computing and Hard Computing for Autonomous Robotic Systems" (Eds.: Changjiu

Zhou, Dario Maravall and Da Ruan), "Studies in Fuzziness and Soft Computing Series , Physica-Verlag (mid 2002)

28

embedded agent system in which the various member agents cooperate and communicate to satisfy the
user desires and objectives. The intelligent and autonomous system we have described learns
behaviours and adapts online and through interaction with the environment, including its occupants..
We have also argued that embedded-intelligence can bring significant cost and effort savings over the

evolving lifetime of product by avoiding expensive programming (and re-programming).
For our current and future work we have plans to conduct more and longer experiments with the

iDorm (up to a year to get a full climate cycle), significantly expand the sensor-effector set and explore
more fine-grained and course grained distributed embedded-agents (e.g. with agents within gadgets, or
communicating rooms). We are also currently conducting experiments which link agents in physically
separated intelligent spaces together (eg UK to Korea) which are allowing us to explore us to explore

the issues in virtual adjacency across time and culture zones.

Acknowledgement

We are pleased to acknowledge the funding support from the EU IST Disappearing Computer program
(eGadgets) and the joint UK-Korean Scientific fund (cAgents), which has enabled much of this
research to be undertaken. We especially acknowledge the work and effort from our Korean partners
from KAIST who areco-operating with us in the Robotic and Building agent communication. In
particular we would like to acknowledge the highly valuable advise from Professor Zenn Bien of

KAIST and his team which includes Mr. Kim and Mr. Lee and Mr. Myung.
 We are pleased to acknowledge the contribution of Malcolm Lear, Robin Dowling and Arran
Holmes for their help building the intelligent dormitory and intelligent-artifacts. We would also like to
thank, Anthony Pounds-Cornish, Sue Sharples, Gillian Kearney, Filiz Cayci, Adam King, and Fiayaz
Doctor for their indirect contributions arising from many stimulating discussions on intelligent-artifact
and embedded-agent issues.

References

[Angelov 2000] P. Angelov, R. Buswell, V. Hanby, “ Automatic Generation of Fuzzy Rule -based Models from

Data by Genetic

[Bonarini 99] A. Bonarini, "Comparing Reinforcement Learning Algorithms Applied to Crisp and Fuzzy Learning

Classifier systems", Proceedings of the Genetic and Evolutionary Computation Conference, pp. 52-60,

Orlando, Florida, July, 1999.

[Brooks 92] R. Brooks, "Artificial Life and Real Robots", MIT press 1992.

[Brooks 97] R. Brooks, “Intelligent Room Project”, Proc 2nd Int’l Cognitive Technology Conference (CT’97),

Japan 1997.

[Callaghan et al 2000] V.Callaghan, G.Clarke, M.Colley, H.Hagras, “A Soft-Computing based DAI Architecture

for Intelligent Buildings” to appear in the book series entitled Studies in Fuzziness and Soft Computing,

Springer Verlag, August 2000.

[Callaghan et al 2001] Victor Callaghan, Graham Clarke, Martin Colley and Hani Hagras, " Embedding

Intelligence: Research Issues for Ubiquitous Computing" Proceedings of the Ubiquitous Computing in

Domestic Environments Conference, 13-14 September 2001, Nottingham-UK.

[Colley 2001] M.Colley, G. Clarke, H.Hagras, V. Callaghan, "Integrated Intelligent Environments: Cooperative

Robotics & Buildings" Proceedings of the 32nd International Symposium on Robotics and Automation, pp.

745-750, Seoul-Korea, April 2001.

[Davidsson 98] P. Davidsson “Energy Saving and Value Added Services - Controlling Intelligent-Buildings Using

a Multi-Agent System Approach” in DA/DSM Europe DistribuTECH, Penn Well, 1998.

[Delgado 2000] M. Delgado, F. Zuben, F. Gomide, “ Evolutionary design of Takagi-Sugeno Fuzzy Systems: a

Modular and Hierarchical Approach”, Proceedings of the 2000 IEEE International Conference on Fuzzy

Systems, San Antonio-USA, May 2000.

[Dorigo 95] M. Dorigo, M. Colombetti, "Robot Shaping: Developing Autonomous agents through learning",

Artificial Intelligence Journal, Vol.71, pp. 321-370, 1995.

[Hagras 2001b] H.Hagras, M. Colley, V. Callaghan, "Life Long Learning and Adaptation for Embedded agents

operating in unstructured Environments", Proceedings of the Joint 9th IFSA World Congress and 20th

NAFIPS International Conference Vancouver, Canada, July 2001

[Hagras 2000a] H. Hagras, V. Callaghan, M. Colley, “On Line Calibration of the sensors Fuzzy Membership

Functions in Autonomous Mobile Robots” to appear in the Proceedings of the 2000 IEEE Internatio nal

Conference on Robotics and Automation, pp. 3233-3238, San Francisco-USA, April 2000.

To appear in: "Fusion of Soft Computing and Hard Computing for Autonomous Robotic Systems" (Eds.: Changjiu

Zhou, Dario Maravall and Da Ruan), "Studies in Fuzziness and Soft Computing Series , Physica-Verlag (mid 2002)

29

[Hagras 2000b] H. Hagras, V. Callaghan, M. Colley, “Learning Fuzzy Behaviour Co-ordination for Autonomous

Multi-Agents Online using Genetic Algorithms & Real-Time Interaction with the Environment ” to be appear

in the Proceedings of the 2000 IEEE International Conference on Fuzzy Systems, pp. 853-859, San Antonio-

USA, May 2000.

[Hagras 2000c] H. Hagras, “An Evolutionary Computing Based Technique for Embedded-Agent System Design

for Mobile Robots”, PhD thesis, University of Essex, March 2000.

[Hagras 2000d] H.Hagras, V.Callaghan, M.Colley, G.Clarke, "A Hierarchical Fuzzy Genetic Multi-Agent

Architecture for Intelligent Buildings Sensing and Control " Proceedings of the International Conference on

Recent Advances in Soft Computing 2000, pp. 199-206, Leicester-UK, June 2000.

[Hagras et al 2001] H. Hagras, V. Callaghan, M. Colley, "Prototyping Design and Learning in Outdoor Mobile

Robots operating in unstructured outdoor environments" IEEE International Robotics and Automation

Magazine, Vol. 8, No.3, pp.53-69, September 2001.

[Hagras et al 2002] H. Hagras, V. Callaghan, M.Colley, G. Clarke, "A Hierarchical Fuzzy Genetic Multi-Agent

Architecture for Intelligent Buildings Learning, Adaptation and Control", to appear in the International

Journal of Information Sciences, August 2002.

[Hoffmann 98] F. Hoffmann, "Incremental Tuning of Fuzzy Controllers by means of Evolution Strategy”,

Proceedings of the GP-98 Conference, pp. 550-556, Madison, Wisconsin, 1998.

[Kasabov 99] N. Kasabov, M. Watts, “Neuro-Genetic Information Processing for Optimisation and Adaptation in

Intelligent Systems”, In: Neuro-Fuzzy Techniques for Intelligent Information Processing, N.Kasabov and R.

Kozma, Eds. Heidelberg Physica Verlag, pp. 97-110, 1999.

[Kasabov 99] N. Kasabov, M. Watts, “Neuro-Genetic Information Processing for Optimisation and Adaptation in

Intelligent Systems”, In: Neuro-Fuzzy Techniques for Intelligent Information Processing, N.Kasabov and R.

Kozma, Eds. Heidelberg Physica Verlag, pp. 97-110, 1999.

[Linkens 95] G. Linkens, O. Nyongeso, "Genetic Algorithms for Fuzzy Control, Part II: Online System

Development and Application", IEE proceedings Control theory applications, Vol.142, pp.177-185, 1995.

[Matellan 98] V. Matellan, C. Fernandez, J. Molina, “Genetic Learning for Fuzzy Reactive Controllers”, Journal of

Robotics and Autonomous Systems”, Vol. 25, pp. 33-41, 1998.

[Mendel 92] J. Mendel, L.Wang, “Generating Fuzzy Rules by Learning Through Examples, IEEE Transactions on

Systems, Man and Cybernetics”, vol .2 pp. 1414-1427, 1992.

[Miglino 95] O. Miglino, H. Lund, S. Nolfi, "Evolving Mobile Robots in Simulated and Real Environments",

Technical report NSAL-95007, Reparto di sistemi Neurali e vita Artificale, Instituto di Psicologia, Consiglio

Nazionale delle Ricerche, Roma, 1995.

[Minar 99] N. Minar, M. Gray, O. Roup, R. Krikorian and P Maes. “HIVE: Distributed Agents for Networking

Things”. MIT Media Lab, Appeared in ASA/MA, 1999.

[Mozer 98] M. Mozer “The Neural Network House: An Environment That Adapts To Its Inhabitants”. In Proc of

American Association for Artificial Intelligence Spring Symposium on Intelligent Environments, pp. 110-114,

AAAI Press, 1998.

[Nehmzow 2000] U. Nehmzow, “ Continuos Operation and perpetual Learning in Mobile Robots”, Proceedings of

the International Workshop on Recent Advances in Mobile Robots, Leicester, UK, June 2000.

[Pedrycz 98] W. Pedrycz, F. Gomide, “ An Introduction to Fuzzy Sets: Analysis and Design”, MIT press,

Cambridge 1998.

[Rocha 2000] M. Rocha, P. Cortez, J. Neves, “ The Relationship between Learning and Evolution in Static and

Dynamic Environments”, Proceedings of the Second ICSC Symposium on Engineering of Intelligent

Systems, Paisley-UK, pp. 500-506, June 2000.

[Ruspini 91] E. Ruspini, "Truth as Utility a Conceptual Synthesis", In Proceedings of the 7th Conference on

uncertainty in Artificial Intelligence, pp. 458-464, Los Angeles, CA 1991.

[Saffiotti 97] A. Saffiotti, "Fuzzy Logic in Autonomous Robotic s: Behaviour Co-ordination", Proceedings of the

6th IEEE International Conference on Fuzzy Systems, Vol.1, pp. 573-578, Barcelona, Spain, 1997.

[Sherwin 99] A Sherwin. Internet Home Offers a Life of Virtual Luxury. The Times, pp. 10, 3rd Nov 1999.

[Sousa 2000] M. Sousa, M. Madrid, “ Optimisation of Takagi-Sugeno Fuzzy Controllers Using a Genetic

Algorithm”, Proceedings of the 2000 IEEE International Conference on Fuzzy Systems, San Antonio-USA,

May 2000.

[Srinivas 96] M. Srinivas, L. Patnaik, “Adaptation in Genetic Algorithms”, Genetic Algorithms for pattern

recognition, Eds, S.Pal, P.Wang, CRC press, pp. 45-64, 1996.

[Tunstel 97] E. Tunstel, T. Lippincott, M. Jamshidi, "Behaviour Hierarchy for Autonomous Mobile Robots: Fuzzy

Behaviour Modulation and Evolution", International Journal of Intelligent Automation and soft computing,

Vol.3, No.1, pp. 37-49, 1997.

[Tunstel 97] E. Tunstel, T. Lippincott, M. Jamshidi, "Behaviour Hierarchy for Autonomous Mobile Robots: Fuzzy

Behaviour Modulation and Evolution", International Journal of Intelligent Automation and soft computing,

Vol.3, No.1, pp. 37-49, 1997.

To appear in: "Fusion of Soft Computing and Hard Computing for Autonomous Robotic Systems" (Eds.: Changjiu

Zhou, Dario Maravall and Da Ruan), "Studies in Fuzziness and Soft Computing Series , Physica-Verlag (mid 2002)

30

