
Published at 4th International Conference on Recent Advances in Soft Computing 2002 – RASC2002

©_Essex University 2002 1

A Soft-Computing based Approach to Intelligent Association in
Agent-Based Ambient-Intelligence Environments

Hakan Duman, Hani Hagras, Vic Callaghan

Intelligent Inhabited Environments Group
University of Essex, Colchester, CO4 3SQ, U.K.

Email: hduman@essex.ac.uk

Abstract: The synergistic and complementary use of fuzzy logic and neuro-computing has initiated
the development of soft computing methodologies. In this paper, we investigate the research issues
related to Intelligent Association in multi-embedded agents environments in respect to soft computing
techniques. We introduce a new system that learns the importance of associations represented by fuzzy
weights that are dynamically calculated using different Hebbian Rule methodologies. By doing this,
redundant associations can be removed and new ones can be discovered. The technique is particularly
suitable for the field of pervasive computing where there is a need for agent-based artifacts to operate
within time-variant agent communities.

Keywords: Embedded Agents, Intelligent Associations, Fuzzy Control, Hebbian Learning, Pervasive
Computing, Ubiquitous computing, Ambient Intelligence

1. Introduction

Anthony awoke to the sound of his alarm clock, but the sound did not come out from a regular alarm
clock beside the bed. The clock just displayed the time and the alarm sounded from the speakers of a
hi-fi on the opposite wall. He had set the alarm time using his PDA; alternatively he could have used
his TV or desktop computer. The alarm stopped and the blind opened as Anthony got out of the bed.
The smart electric blind knew that he liked daylight in the morning and after checking the outside light
level, its motor had powered the blind to open. It is checking the light condition because if it was dark
outside it would have switched on the room lights. The aroma of fresh coffee spread out almost
instantly. The coffee maker knew that Anthony liked drinking coffee while he was checking his emails.
The coffee maker was also a smart one that used the time setting from the clock, data from several
activity monitors and an internal model of his past behaviour to optimise the brewing start time.
Needless to say the smart central heating and hot water system had intelligently learnt to turn on so as
to minimise energy wastage whilst maximising Anthony’s comfort.

Are these kinds of devices and environments already becoming a part of our lives, or is it just science
fiction? How hard is it today to imagine that billions of networked devices interacting with each other
to support our everyday activities?

Only ten years ago, Mark Weiser introduced the term ubiquitous computing which described a vision
for living environments populated with “computerized” objects where the emphasis was on greater
user-friendliness, more efficient service support, user-empowerment, and support for human
interactions [7]. It seems as though this vision is already becoming reality. Networked wearable
devices (eg mobile phones or PDAs) have already found their way into everyone's briefcase whilst
internet appliances (eg smart fridges), are starting to appear on the market [6]. However, ubiquitous
computing takes the vision of the future environments even further. It envisages integrating large
number of smart/intelligent appliances and putting electronics into hitherto “silicon free” items (e.g.
garments, chairs, cups etc). In general, this new vision might be described as enhancing, everyday
objects with sensing, effecting, computing and communication capability, resulting in computationally
complex and highly dynamic environments. An obvious barrier to achieve this is the inherent
complexity of the technology and the large number of devices. It cannot be assumed that people who
purchase these devices understand or are able to deal with the underlying technology. An important

Published at 4th International Conference on Recent Advances in Soft Computing 2002 – RASC2002

©_Essex University 2002 2

aspect of enabling collections of artifacts to collaborate together is a mechanism to determine which
artifacts are associated together. Industrial and building automation institutions have been working for
decades to develop network protocol standards but to date, at best, the tools only support some limited
automation of association (e.g. a LonWorks controlled light might flash to request a switch action,
resulting in an association of the two devices). However, with current systems, it is not possible to
perform fully automatic (without the help of a user), or even intelligent, associations between devices.
It is expected that artifacts in intelligent environments will self-organize into functional clusters to
perform a higher-level coordinated action (albeit with some user imposed constraints to reflect
security, safety or personal needs). Currently, in existing device networks, when a new artifact enters
or leaves a community (or sub net), it becomes the user’s responsibility to reconfigure the network
accordingly, otherwise the whole system would become unstable and fails to operate in the way it was
designed to work. Another constraint is that computer based artifacts have limitations in respect to
memory size, processing capacity and most importantly communication bandwidth. This means, that
the devices can only be connected to a limited number artifacts at the same time. If an artifact requires
sensory information from other artifacts to perform its control function, it has to communicate with
them to request this information. However, in a domain with hundreds (and possibly thousands) of
artifacts this would increase the communication overhead and lead to a system delay or even crash. If
the artifact would know only the inputs from artifacts that it is interested in, it would only
communicate with these instead. Also, during the lifetime of the system a service can become less
important and another artifacts’ service more important for a device. If it is of less importance (e.g.
device removal from the system or breakdown) the association should be removed and new services
can be discovered and associated. Clearly producing a robust and reliable design for such a complex
artifact association system, involving hundreds of thousands of heterogeneous fixed and mobile
artifacts, is a most challenging problem. A possible solution to this is to employ some form of
embedded intelligence to work on behalf of the user to dynamically configure this inter-artifact
communication infrastructure. Solving this problem can be seen as addressing two issues; the system’s
ability to accurately determine a user’s task and intention, and its ability to autonomously develop
associations between artifacts to assist the user in undertaking is task and meeting his intentions.

2. The Intelligent Association System (IAS)

2.1 The IAS Architecture

We define three types of embedded-computing artifact: (1) Passive – open-loop systems that collect,
process and provide sensory information (2) Automatic – closed-loop systems that execute a set of
predefined control rules stored in the computational logic, and (3) Embedded-Agents – closed-loop
system that incorporate mechanisms for adaptive control and are capable of learning new
behaviours/rules rather than simply executing pre-programmed rules. A further characteristic of an
embedded-agent is that it is inseparably integrated into a computer-based artifact (as against a
conventional intelligent agent, which is more often a soft process running on a conventional computer)
[1]. Examples for passive artifacts include light level, and pressure sensors; intelligent agents have a
functionality and can reason and infer and can be embedded into heaters, mobile robots etc. Attaching
an agent to an artifact means that each agent offers a particular low-level service. In order to perform a
higher-level coordinated action, many agents can be clustered together into Agent Societies. For
example, agents attached to lighting elements of a light panel may coordinate to dynamically vary
their overall intensity based on environmental factors. An intelligent agent within a society can
become the local leader of its society, a so-called Embassador Agent. The main role of the
Embassador is to communicate with other societies on behalf of its members (in a bandwidth efficient
way) and combine overlapping agent societies. This is not a centralized architecture as the embassador
role is dynamic and can be readily transferred to other agents (all agents being seen as “embassadors
in-waiting”. Detailed description on the characteristics and functionality of an Embassador Agent can
be found in [2]. It is now common for such embedded-agents to have a network connection thereby
facilitating multi embedded-agent systems. In a fully distributed multi embedded-agent systems these
agents cooperate by means of either structured or ad-hoc associations with its neighbours. An

Published at 4th International Conference on Recent Advances in Soft Computing 2002 – RASC2002

©_Essex University 2002 3

association is a soft or hard link between two or more agents. The associations can be in one of the
three ways specified as follows: (1) Manual Association, where agents are associated manually (eg the
user making the equivalent of physical connections), (2) Edited Associations, where the associations
are managed using an association editor (e.g. selection via a PDA based tool) and (3) Intelligent
Associations, where the associations are managed by intelligence in each of the agents (or the
Embassador agent, at a given instant, in the case of inter-society association). The latter is the main
target of this paper. The associations describe the strength (hereafter: weights) of the connections
between the agents. The associations are represented as either discrete (0,1) or continues across a
range [0,wmax]. The discrete weights illustrate only the binary activation of the associations (active or
inactive). In contrast, associations that are continuously adjusted through learning the impact of agents
to others can determine the real strength of the associations and thus it is easier to judge which
associations are more important for the agent and which ones are regarded as “redundant”. This
information becomes especially significant for systems containing agents with bandwidth and memory
limitations. Figure 1 illustrates the IAS architecture comprising of the Embassador (here: A2) and
agent societies.

As proof-of-concept we have implemented a tool, the IAS Editor, which can visually display available
agents, the adjustments of their association weights and enable the user to create/dissolve agent
societies and associations. It should be noted that in this paper the main focus is set to dynamically
calculate the association weights between interconnected agents in order to identify redundant
connections.

2.2 The IAS Editor
We used the iDorm at the University of Essex [5] as our test bed. The iDorm is a multi-use space (i.e.
contains areas with different activities such as sleeping, working, entertainment etc) and can be
compared in function to a room for elderly or disabled people or an intelligent student or hotel room.
The room consists of normal furniture that will allow the user to live comfortably as it has a bed, a
working desk, bedside cabinet, and wardrobe, a multi media PC that the user can use for working or
entertainment. Besides this, the room contains a large number of passive/active and intelligent
embedded-computing artifacts, such as indoor and outdoor light level, temperature and humidity
sensors, chair and bed pressure sensors, bed lamp, desk lamp, controllable vertical blind etc. The
iDorm is populated with different kinds of computing artifacts, which can be static, or mobile (e.g.
mobile robots) or “wearable” (e.g. PDAs).

The IAS Editor is a tool to facilitate users to manually cluster agents to agent societies and create/edit
associations between them. The main role of the IAS Editor is to provide the following services to the
user: (1) Discovery of agents and their services, (2) Visualize information of discovered agents, incl.
their services and constraints, (3) Creation of Agent Societies and assigning a high-level function for
them, (4) Support the user in creating and removing associations and rules in natural language (fuzzy
values), and (5) Offer the user to monitor performance and abnormalities.

During our experimentations, the IAS Editor was used to configure the agents. In the first experiment
described in this paper, we have associated every agent with other existing agents. In addition, initial

Embassador Level

Agent Society Level

A1

A2

A3

A5

A4

W13

W12

W32
W35

W42

W54

Figure 1: The IAS Architecture

Published at 4th International Conference on Recent Advances in Soft Computing 2002 – RASC2002

©_Essex University 2002 4

(expected) fuzzy behaviour rules were assigned for the agents, e.g. IF light switch is ON the ceiling
lamp is HIGH. The IAS Editor sends these rules to the corresponding agents to add them into their
behaviour rule bases. Please refer to [2] for a more detailed description on the functionality and
operation of the IAS Editor. As soon as the rules have been sent to the agents, the agents start to
operate and the IAS Editor simultaneously displays the learnt/calculated association weights to
visualize the importance of the created associations for the user.

3. Association Weight Calculations

People living in their homes rarely change their habits and actions. Although there are daily
fluctuations, our work has shown that there is a distinct and discernable habitual behaviour pattern,
which can be obtained by monitoring a person’s everyday activities. However people are essentially
non-deterministic and highly individual, therefore there is a need for a system that particularizes for
individual users rather than generalizing for a group of users [3]. Thus, the system needs to provide an
online, life-long, non-intrusive method for learning behaviours and anticipatory adaptive control for
these highly dynamic physical environments.

The mechanism to learn user behaviours used during our experimentations within the iDorm is called
ISL (Incremental Synchronous Learning). The online learning, adaptation and control algorithm is
based on a hierarchical fuzzy genetic -like system that learns rule bases (behaviours) of intelligent
agents in without explicit human interaction [3]. The learning cycle is initiated when a behaviour, or
collection of behaviours, is over-ridden a number of times e.g. 3 (the number being the learning
inertia and is chosen to stop the system reacting to erratic behaviour) meaning the existing rule no
longer satisfies them. Any new rules are stored in a fuzzy rule base according to the user’s new
actions. The system requires a relevant representation of the environment state so that it can learn the
necessary rules. The rule base consists of every state variable that is known by the system (eg sensors
data, state of other agents). It is obvious that artifact associations will have differing value to the agent
rule base. For example, the desk lamp room light level is almost certainly more important than
temperature. In addition, an association that was important at the first place can become of less
important during the lifetime of the system so that the agent can remove it. This is especially essential
for agents with computational limitations, which, for example, need to keep connections within a
given number (e.g. only 5 associations). For this, the agents need to continuously manage, and find the
best possible associations, by creating new or dissolving redundant associations dynamically. How can
redundancy of some association be identified? One approach would be to find the causal relationship
and calculate the weights of the associations between the agents or, in other words, which agent
caused another agent to change its state, and to what degree?

There are many ways to “learn” the weights between the agents. One of the mostly used associative
learning mechanisms is the Hebb learning rule. In this an association weight is increased with a
simultaneous occurrence of pre-associative and post- associative agent activities [4]. The learning and
calculating the association weights is initiated with every new rule that ISL learns. The algorithm is as
follows:

Step 0: Initialize all weights: wAi = 0 (i=1 to n)
Step 1: Initialize the learning rate ? ?= 0.1
Step 2: For each pre-associative and post-associative agent pair (i,j=1 to n), a : p, do

following:

Step 3: On a regular basis apply threshold, t=0.1, to determine redundant associations; if

redundant associations > 0 then do Step 4, otherwise go to Step 2.

Step 4: Adjust every agent’s rule base according to the importance of the associations

In the following experiments, we have applied, online, the above algorithm to every newly created
fuzzy rule generated by the ISL. For this experiment, an occupant resided in the iDorm for 24 hours.

wij(q)???? wij (q-1)???? ai(q) pij(q) (1)

Published at 4th International Conference on Recent Advances in Soft Computing 2002 – RASC2002

©_Essex University 2002 5

We have used 13 embedded-computer artifacts for this experimentation, with one ISL agent-based
artifact acting as an Embassador and which learnt the associations described in these experiments. It
should be noted that the ISL agent created over 70 user related rules during this time. However, here
we have applied Hebbian learning to only 20 rules and assume that only these rules have been learnt of
the duration of the experiment. This is done for graphical representation purposes, as described next.

 Figure 2: Simple Hebbian Learning Figure 3: Hebbian Learning with Decay

Figure 2 illustrates the learnt weights of the blinds’ association with the remaining 12 computer-based
artifacts. The horizontal and vertical axes represent rule and the association weights respectively. The
weights were calculated using the simple Hebbian Learning Equation (Eq. 1). After applying the
threshold value, as stated in Step 3 of the proposed algorithm, it shows the blinds associations with A1,
A2, A3, A4 and A5 are more “important” than the rest of the agent. It is however obvious that
repeated application of the Hebbian learning rule leads to increase in post-associative agent ai(q) and
therefore exponential growth that finally drives the association to saturation, regardless of the learning
rate ? . After this point, learning becomes almost impossible and the weights are not reflecting the
“real” strength of the associations anymore [4]. In other words, the agent associations that become
less important over time, would not be recognized and decrease in strength. If we consider association
weights that have more than 10% of the maximum weight as important, then the weight has to be in a
rage of [0, wmax]. In order to avoid this saturation, we modified the Hebbian Learning Rule and applied
a decay value (Figure 3) to our algorithm. The equation for this learning method is as follows:

As it is clear from Figure 3, the Hebbian Learning with Decay differs only from the result of the
Simple Hebbian Learning rule in respect to the association between A5 and the blind when the
threshold is set to 0.1. Here, A5 doesn’t pass the importance barrier and the agent would regard this
specific association as unimportant. After removing redundant associations through deleting the
corresponding inputs and outputs from the rule base, the performance of the agent remained the same
and satisfactory for the control of users actions with less specified number of association. Obviously,
for this case, the Hebbian Learning with Decay performs as good as the simple Hebbian learning but
with fewer associations. The definition of the threshold is mainly depending on the computational
limitations of the artifacts. As mentioned before, the number of associations any device can handle at
one time will be dependent on its computational capabilities; therefore the threshold has to be
determined dynamically to match the device capabilities (Figure 3 would be appropriate for an device
able to handle 4 associations at a time). In addition, the maximum weight that an association can get is
defined by wij

max=? ????were ? ?is the learning rate and ??is the decay value. By increasing the decay
value ?, the association weights are literally “forced” to decrease more quickly than increasing the
association weights. However, association weights that increase as a result of active artifacts are as

wij(q)???? wij (q-1)(1-?)???? ai(q) pij(q) (2)

Association Weights

0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 10

2 4 6 8 10 12 14 16 18 20
Rule

A
ss

oc
ia

tio
n

W
ei

gh
t

A1

A2

A4

A3
A5

A6, A7, A8
 A9, A10

A12

A11
0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8 9 10

A
ss

oc
ia

tio
n

W
ei

gh
t

A1

A2
A3

A4

 A5
A6

A7, A8,
A9, A10

2 4 6 8 10 12 14 16 18 20
Rule

A11

A12

A1 - Light Level A2 - Occupancy A3 - Light Switch A4 - Bed Pressure A5 - Chair Pressure
A6 - Temperature A7 – Blind A8 - Ceiling Lamp 1 A9 - Ceiling Lamp 2 A10 - Ceiling Lamp 3
A11 - Ceiling Lamp 4 A12 – Blower A13 - Heater

Published at 4th International Conference on Recent Advances in Soft Computing 2002 – RASC2002

©_Essex University 2002 6

important as association weights that decrease because of inactive artifacts. Thus, the variables are set
to 0.1, so that the association weights remain between [0,1]. Another purpose keeping the association
weights within this range is that we can represent them in fuzzy values. For this we have generated a
membership function with the fuzzy sets Very low, Low, Medium, High, Very high. By doing this, the
threshold can be set to be a fuzzy value rather then using discrete values, e.g. IF weight is very low
THEN delete this association. Of course, the membership functions need to be adjusted according to
the association constraints of the agents, as described for the threshold, but this work is ongoing and is
not part of the research reported in this paper.

4. Conclusion and Future Work

The experimental results confirm that, for the environment in question (the iDorm, many of the
associations that were initially set were not essential to operate a system. The benefit of
learning/calculating association weights proves to be an important issue in solving problems that
comes with systems, which simply associate “everything with everything”. The problems arising from
this include (1) Bandwidth and communication overhead, (2) storage limitations and dimensionality
problems in rule bases, (3) expert/technical knowledge required, and (4) unstable and non-dynamic
agent societies.

In this paper, we have introduced the IAS and its GUI, the IAS Editor. The tool supports user-driven
inter-device and inter-society association. While the system learns the occupants’ behaviour via an ISL
fuzzy learning mechanism, simultaneously associations are derived by an independent Hebbian rule
learning mechanism. After applying the threshold value to the learnt weights, redundant associations
can be identified and removed via removing the corresponding inputs and outputs in the rule -base. We
have also described Hebbian Learning with Decay, which provides a more reliable way of calculating
the association weights in contrast to the traditional Hebbian Learning.

The calculation of association is a part of an ongoing research project that currently investigates the
possibility of applying Fuzzy Cognitive Maps (FCM) to IAS. In a similar to the approach described
herein, FCMs encode rules in a networked causally connected structure where rules fired based on
both a given set of initial conditions and on the dynamics of the FCM. We are also, intending to
explore variations, including causally and fuzzily interconnected agents system. The main target of
this approach is to automatically construct FCM that will represent individual behaviours.

Acknowledgements : We are pleased to acknowledge the support of our colleagues in the University
of Essex IIEG group (http://iieg.essex.ac.uk), and the EU Disappearing Computer programme for the
funding that made this research possible.

References

[1] V. Callaghan, G. Clarke, M. Colley, H. Hagras (2001), Embedding Intelligence: Research Issues for
Ubiquitous Computing, In Proceedings of the International Conference on Ubiquitous Computing in
Domestic Environments, Nottingham, UK, September, 2001.

[2] H. Duman, H. Hagras, V. Callaghan, G. Clarke, M. Colley (2002), Intelligent Association in Agents Based
Ubiquitous Computing Environments, In Proceedings of the International Conference on Control,
Automation, and Systems, Muju, Korea, October 2002.

[3] H. Hagras, M. Colley, V. Callaghan, G. Clarke, H. Duman, A. Holmes (2002), A Fuzzy Incremental
Synchronous Learning Techniques for Embedded-Agents Learning and Control in Intelligent Inhabited
Environments, In Proceedings of the IEEE International Conference on Fuzzy System, May 2002.

[4] S. Haykin (1999), Neural Networks: a comprehensive foundation, Second Edition, New Jersey, Prentice-
Hall Inc., ISBN 0-13-27330-1, 1999.

[5] A. Holmes, H. Duman, A. Pounds-Cornish (2002), The iDorm: Gateway to Heterogeneous Networking
Environments, In Proceedings of the International ITEA Workshop on Virtual Home Environments,
Paderborn, Germany, February 2002.

[6] LG Electronics, http://www.lge.com/c_product/h_network/products/product.shtml.
[7] M. Weiser (1991), The Computer of the 21st Century, In Scientific American, Vol. 265,

No. 3, pages 66-75, 1991.

