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Abstract 
 
    In this paper we describe an innovative multi-agent 
environment consisting of an Intelligent-Building (IB) 
inhabited by a variety of agents ranging from mobile 
robots, embedded-agents to people some of which carry 
smart wearable gadgets. These cooperate together to 
form what we term an intelligent inhabited 
environment. We discuss the high-level multi 
embedded-agent model, explaining how it facilitates 
inter-agent communication and cooperation between 
heterogeneous sets of agents. We present an application 
aimed at establishing an agent based care/rehabilitation 
system in which a collection of building and robot 
agents cooperates to care for human occupants. The 
technological basis of our solutions stem from a 
genetic-fuzzy technique that has already been developed 
and successfully applied to the control of autonomous 
outdoor vehicles. We discuss in detail how we might 
use this system to identify significant variations from 
normal behaviour or identify emergency situations in 
which specialised robots might be summoned to assist. 
Finally we report results from earlier experiments on 
autonomous mobile robot navigation and embedded-
agent based environment control in intelligent buildings. 
 
1. Vision 

In our previous work we have looked at the problems 

involved in developing intelligent buildings [5], mobile 
robotics [10] and the development of agent based 
technologies embedded in ubiquitous and mobile 
gadgets [4]. In this paper, we describe an innovative 
multi-agent environment consisting of an intelligent-
building inhabited by a variety of agents ranging from 
mobile robots and embedded-agents as shown in Figure 
(1) to smart wearable gadgets. An essential feature that 
characterises all our work is that intelligent habitat 
technology needs to be centred on the individual. The 
agents should tailor their behaviour base to an 
individual wherever possible rather than generalise 
across a group of individuals. We have proposed that an 
elegant solution to producing such a system would be to 
embed agents and sensors into wearable devices (e.g. 
mobile phones, watches, smart-clothing etc). Here 
agents and sensors reside in both body-wearable 
artefacts and buildings. The agents share common 
functionality and are enabled to interact and work 
together as shown in Figure (2). 
    The underlying engineering infrastructure is based on 
a combination of: DAI (Distributed Artificial 
Intelligence), Hierarchical Fuzzy-Logic/GA based 
embedded-agents and network technology. We discuss 
the high-level multi embedded-agent model, explaining 
how it facilitates inter-agent communication and 
cooperative operation between heterogeneous sets of 
agents.  

t r a n s p o r tb o d y  s e n s o r s

h o m e

o f f i c e

b l a c k / w h i t e

p r o d u c t s

o t h e r

P M A

c o m p u t e r

sate l l i te

P M A

U M T S /

G S M

B L U E

T O O T H

 
 
 

robots 

 

 
 

Figure (1): Prototype Essex IB Agent 

Figure (2): Abstract Communication Model 
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2. Heterogeneous Multi-Agent Physical Intelligent 
Environments Application 

In previous IB work we have begun to look at the 
problems associated with a care environment and the 
ways in which IBs might be able to help [13]. Here we 
present an application aimed at establishing an agent 
based care/rehabilitation system in which a collection of 
building and robot agents cooperate to care for human 
occupants as show in Figure (3). The building agents 
handle control of all building services (e.g. heat, light 
entertainment, etc) maximising energy efficiency by 
being attached to various sensors and controllers. 
Davidsson has shown that such systems can save as 
much as 40% of the buildings energy without any loss 
of comfort or safety [8].  Mobile robots communicate 
with building agents so as to operate more effectively 

(e.g. command doors to open, locate themselves, 
responding to remote requests, etc) providing services 
such as delivery of meals, medicine etc. Wearables 
allow remote monitoring of the patient and can be set to 
signal any worrying deviation from expected values.  
    Learning in intelligent buildings mostly takes the 
form of identifying cause-effect relationships based on 
building occupant actions in response to changes in the 
environment. A detailed discussion of the challenges 
involved is presented by the authors elsewhere [5]. In 
simple terms, the learning mechanism needs to be able 
to interpret these cause-effect relationships based on the 
combinational states and temporal sequences of 
numerous input vectors. The agent uses these 
relationships as part of a mechanism to serve the 
occupant’s needs by taking pre-emptive actions.  For 
efficient and robust learning, it is necessary to have 

mechanisms to identify, combine or resolve similar or 
contradictory events. IB based learning is focused 
around the actions of people. Buildings are, largely, 
occupied by people who for a variety of reasons (e.g. 
time, interest, skills, etc) would not wish, or be able to 
cope with much interaction with the building systems. 
Thus in general, learning should as far as possible, be 
non-intrusive and transparent to the occupants (i.e. 
requiring minimal involvement from the occupants). IB 
agents are sensor rich and it is difficult to be 
prescriptive about which sensor parameter set would 
lead to the most effective learning of any particular 
action. Thus, to maximise the opportunity for the agent 
to find an optimum input vector set, whilst containing 
the processing overloads, the ideal agent would be able 
to learn to focus on a sub-set of the most relevant 
inputs. Thus, minimally constrained approaches, that 

maximise agent learning opportunities, are favoured. 
Finally, the computationally compact nature of agents in 
IB (e.g. limited memory) has an effect that permeates all 
aspects of learning such as altering the extent of 
particularisation versus generalisation or the granularity 
of similarity clustering. One particular challenge here 
that needs to be addressed is how an agent can identify a 
change in the person’s behaviour that might signal a 
need for specific forms of help available via mobile 
robots.  
 
3. The Robots 
 
We have built a number of robots ranging from small 
desktop vehicles to large outdoor diesel powered 
agricultural vehicles.  
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Figure (3): Example Intelligent Environment Infrastructure 
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Of these robots, the wheelchair robot shown in Figure 
(4) is the one we are using inside our IB environment. 
 

3.1. Agents: Technical Details 
 
The internal agents that make up the mobile robots and 
the intelligent-buildings are based on the same 
principle: a double fuzzy logic and genetic learning 
mechanism. Details of this are published elsewhere [11, 
5], but a figure showing the main parts is reproduced 
below in Figure (5). 
    In general terms, the architecture utilises fuzzy logic 
and genetic system principles, the fundamentals of 
which are widely known and thus are not reproduced 
here. The high-level operation of the control scheme 
belongs to a “school” labelled “behaviour based control 
architecture” pioneered by Rodney Brooks of MIT in 
the late 80’s [3]. In this approach a number of 
concurrent behaviours (mechanisms to attain goal or 
maintain a state) are active (sensing environment, 
effecting machine) to a degree determined by the 
relationship between the machine and environment. At 
this macro-level, the novelty lies in our unique 
combination of fuzzy-based behaviours and behaviour-
integration and a genetic-based “Associative Experience 
Engine” (AEE) (the latter itself containing various novel 

Figure (4): Wheelchair Robot 
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genetic mechanisms). The diagram provides an 
overview of both the novel macro and micro aspects of 
the agent. Behaviours are represented by parallel Fuzzy 
Logic Controllers (FLC). Each FLC has two parameters 
that can be modified; these are the Rule Base (RB) of 
the behaviour and its Membership Functions (MF). The 
behaviours receive their inputs from sensors. The output 
of each FLC is then fed to the actuators via the Co-
ordinator, which weights its effect. In our agricultural 
agent, we employ four FLCs namely: Obstacle 
Avoidance (OA), Left Edge Following (LF), Right Edge 
Following (RF) and Goal Seeking (GS). When the 
system fails to have the desired response (e.g. deviating 
largely when following a crop edge or colliding with an 
obstacle), the learning cycle begins.  Learning depends 
on the Learning Focus that is supplied by the 
Coordinator (the fuzzy engine which weights 
contributions to the outputs). When the Learning Focus 
learns the MF for individual behaviours, the MF for 
these behaviours is learnt in isolation. When the 
Learning Focus is learning an individual rule base of a 
behaviour, then each rule base of the behaviours is 
learnt alone. When the Learning Focus is adapting the 
coordinated behaviours online, then the algorithm will 
adapt different rules in the different behaviours in 
response to the environment. The system recalls similar 
experiences by checking the stored experiences in the 
Experience Bank . The robot tests different solutions 
from the Experience Bank  by transferring the most 
recent experiences, which are stored in a queue. If these 
experiences show success than they are stored in the 

FLC and thereby avoid generating new solution for our 
system. The Experience Assessor assigns each 
experience solution a fitness value. When the 
Experience Bank  is full, we have to delete some 
experiences. To assist with this the Experience Survival 
Evaluator determines which rules are removed 
according to their importance (as set by the Experience 
Assessor). When past experiences did not solve the 
situation we use the best-fit experience to reduce the 
search space by pointing to a better starting point. We 
then fire an Adaptive Genetic Mechanism (AGM) using 
adaptive learning parameters (except when learning 
behaviour with immediate reinforcement, we use an 
optimum mutation parameter) to speed the search for 
new solutions. The AGM is constrained to produce new 
solutions within certain ranges as defined by the 
Contextual Prompter. This is supplied by sensors and 
defined by the coordinator according to the learning 
focus in order to avoid the AGM searching options 
where solutions are unlikely to be found. By using these 
mechanisms, we narrow the AGM search space 
massively thus improving its efficiency. After 
generating new solutions (either rules or MFs) the 
system tests the new solution and gives it fitness 
through the Solution Evaluator. The AGM provides 
new options until a satisfactory solution is achieved. 
The system can be viewed as a double hierarchy system. 
In this, both fuzzy behaviours and the online learning 
mechanism can be seen to be hierarchies. In the case of 
the latter, at the higher level we have a population of 
queued solutions stored in the Experience Bank. If any 
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of these stored experiences leads to a solution then the 
search ends, if not then each of these experiences is 
assigned a fitness value. The fittest experience is used 
as a starting position to the lower level AGM that is 
used to generate a new solution. 
    The current IB agent is built on the same architecture 
as the mobile robot agent apart from the subtle 
alterations to the learning engine to provide it with a 
non-intrusive learning mechanism as shown in Figure 
(6). We have shown elsewhere that learning by forced-
error methods as with the mobile robot would be both 
frustrating and incompatible with the IB learning 
paradigm. Thus, we have developed a non-intrusive 
learning technique for our agent that we refer to as  
Incremental Synchronous Learning (ISL). In simple 
terms this works as follows: when an occupant changes 
an effector setting manually, the system responds by 
immediately carrying out the action, setting the building 
to the requested state, generating a new rule based on 
that instance and initiating a new learning sequence. In 
this case, the learning sequence is equivalent to one 
iteration of forced-error learning in our mobile robot 
agent. At this point any further action is suspended until 
there is another interaction with the occupant. That is, 
there are no forced interactions with the occupant but 
rather the occupant’s spontaneous interactions trigger a 
simple learning process. Thus learning is made 
unobtrusive by spreading the iterations over an extended 
period using the natural interactions of the user with the 
system. For example, in previous work [5] we 
performed experiments using an AEE based IB agent, 
configured as a temperature controller, based on a 
68000 Motorola processor shown in Figure (1). The 
agent has a built-in “economy behaviour” (eg minimises 
heat low & ventilation in vacated rooms); “safety 
behaviour” (eg prevents temperature going below zero 
degrees which would result in pipes freezing) and 
“comfort behaviour” (eg maintains the room 
environment to the users liking). The agent was tested 
under various conditions such as multiple occupancy, 
different temperatures, human activity and times of day. 
The agent was able to generate a satisfactory rule base 
for different users in an average of 22 trials. Thus, 
assuming that each day the occupant makes an 
adjustment to the system (i.e. one learning trial) the 
agent would complete a learning cycle in an average of 
22 days. We would argue that this is an acceptable time 
for an agent to learn to particularize its services to a 
person (given in a manual system the user will always 
need to command the system, whereas in the agent-
assisted system the manual load upon the occupant 
reduces over time). In addition to providing a non-
intrusive learning mechanism, this approach also places  
the user in prime control as it unfailingly and 
immediately responds to his command.  
 
4. Future Work and Conclusions 
 
    We are currently planning a series of larger scale 
experiments involving a more complex multi-use 

environment made up of many more agents, sensors, 
effectors and dynamic events. This multi-use space 
takes the form of an Intelligent Dormitory (see figure 
7). In our case, the dormitory is a student bed sitting 
room based upon standard student accommodation on 
the Essex University campus (being university all the 
necessary expertise and equipment is readily available). 
This test-bed will allow us to monitor and eventually 
control the environment based upon the activity of the 
room’s occupier – a student researcher.  
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Figure 7 – Intelligent Student Dormitory 

 
 In parallel we are carrying out research into a novel 
position sensor and the use of fuzzy-based voice 
recognition and agent communication (the latter in 
partnership with the University of Otago). 
    Since writing this paper we have been given two new 
grants to take aspects of this work forward. The first 
under the EU’s “Disappearing Computer Programme” 
(in Partnership with CTI Patras & NMRC Cork) 
concerns the placement of intelligence within a wider 
set of passive commodities (eg cups, pencils, cloth etc), 
the second under the UK-Korean Scientific fund 
concerns the integration of robots and intelligent-
buildings in a rehabilitation environment (in partnership 
KAIST, Korea). Thus development of a multi 
heterogeneous agent intelligent inhabited environment 
is well under way and we look forward to report results 
on these projects in the near future. 
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