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Abstract: 

 

In this paper, we describe a new application domain for intelligent autonomous 

systems – Intelligent Buildings (IB). In doing so we present a novel approach to 

the implementation of IB based on a hierarchical fuzzy genetic multi embedded-

agent architecture comprising a low-level behaviour based reactive layer whose 

outputs are co-ordinated in a fuzzy way according to deliberative plans. The fuzzy 

rules related to resident’s comfort are learnt online in a short time interval using 

our patented Fuzzy-Genetic techniques  (British Patent 99-10539.7) from the 

resident’s actual behaviour in a learning phase.Our approach utilises an 

intelligent agent approach to autonomously governing the building environment. 

We discuss the role of learning in building control systems, and contrast this 

approach with existing IB solutions. We explain the importance of acquiring 

information from sensors, rather than relying on pre-programmed models, to 

determine user needs. We describe how our architecture, consisting of distributed 

embedded agents, utilises sensory information to learn to perform tasks related to 

user comfort, energy conservation, and safety. We show how these agents, 

employing a behaviour-based approach derived from robotics research, are able 

to continuously learn and adapt to individuals within a building, whilst always 

providing a fast, safe response to any situation. Such a system could be used to 

provide support for older people, or people with disabilities, allowing them 

greater independence and quality of life. 

 

 

1. Introduction  

We define an intelligent building as  “a building that utilises computer technology 

to autonomously govern the building environment so as to optimise user comfort, 

energy-consumption, safety and work efficiency”.  In simplified terms, an 
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intelligent-building is one that utilises inputs from building sensors (light, 

temperature, passive infra-red, etc), and uses this information to control effectors 

(heaters, lights, electronically-operated windows, etc) throughout the building 

[Sharples99]. A essential feature of an intelligent system is an ability to learn from 

experience, and hence adapt appropriately. Thus the notion of “autonomous 

governing” is important, as it implies a system which can adapt and generate its 

own rules  (rather than being restricted to simple automation). In controlling such 

a system one is faced with the imprecision of sensors, lack of adequate models of 

many of the processes and of course the non-deterministic and sometime 

idiosyncratic  aspects of human behaviour. Such problems are well known and 

there have been various attempts to address them. The most significant of these 

approaches has been the pioneering work on behaviour-based systems from 

researchers such as Brooks [Brooks 91] & Steels [Steels 95] who have had 

considerable success in the field of mobile robots. It might not seem obvious that a 

building can be looked upon as a machine; indeed “a robot that we live within”, 

but, in other work we have justified this view that intelligent buildings, as 

computer-based systems are akin to robots, gathering information from a variety 

of sensors, and using behaviour-based techniques to determine appropriate control 

actions [Callaghan 2000]. This paper builds on these ideas and explains our use of 

a double hierarchical Fuzzy-Genetic system  (similar to our previous work in 

mobile robotics [Hagras 99a, 99b]), to create embedded-agents for intelligent-

buildings. 

 

2. Distributed Architecture 

The granularity of our distribution is room-based. Thus, each room contains an 

embedded-agent, which is then responsible, via sensors and effectors for the local 

control of that room as shown in Figure (1). This mirrors the architects vision of 

the functionality of the building. All embedded-agents are connected via a high 

level network (IP-ethernet in our case), thereby enabling collaboration or sharing 

of information to take place where appropriate.  Within a room, devices such as 

sensors and effectors are connected together using a building services network 

(Lontalk in our case) and IP at the higher level. This DAI architecture is illustrated 

in Figure (1). 
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Figure (1): The DAI Building-Wide Architecture 

 

3. The Embedded-Agents 

    Figure(2) shows the internal architecture of the embedded-agents which is 

based on the behaviour-based approach, pioneered by Brooks.  Controlling a large 

integrated building system requires a complicated control function resulting from 

the large input and output space and the need to deal with many imprecise and 

unpredictable factors, including people. In our system we simplify this problem by 

breaking down the control space into multiple behaviours, each of which responds 

to specific types of situations, and then integrating their recommendations. 

3.1 The Hierarchical fuzzy control architecture 
 

The behaviour based approach, pioneered by Brooks, consisting of many simple 

co-operating units, has produced very promising results when applied to the 

control of robotics (which we argue includes IB) [Brooks 91].  

    The problem of how to co-ordinate the simultaneous activity of several 

independent behaviour-producing units to obtain an overall coherent behaviour 

have been discussed by many authors. [Brooks 91] [Saffiotti, 1997]. The work 

described in this paper suggests a solution based on using fuzzy logic to both 

implement individual behaviour elements and the necessary arbitration (allowing 

both fixed and dynamic arbitration policies to be implemented). We achieve this 

by implementing each behaviour as a fuzzy process and then use fuzzy agents to 

co-ordinate them. In the resultant architecture, a hierarchical fuzzy logic controller 

(HFLC) takes a hierarchical tree structure form and is shown in Figure (2). This 

hierarchical approach has the following advantages: 
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 It facilitates the design of the robotic controller and reduces the number of 

rules to be determined. It uses the benefits of fuzzy logic to deal with 

imprecision and uncertainty.  

 Using fuzzy logic for the co-ordination between the different behaviours 

which allows more than one behaviour to be active to differing degrees 

thereby avoiding the drawbacks of on-off switching schema (i.e. dealing with 

situations where several criteria need to be taken into account). In addition, 

using fuzzy co-ordination provides a smooth transition between behaviours 

with a consequent smooth output response. 

 It offers a flexible structure where new behaviours can be added or 

modified easily. The system is capable of performing very different tasks 

using identical behaviours by changing only the co-ordination parameters to 

satisfy a different high level objective without the need for re-planning. 

 

    Our room-based decomposition of behaviours consists of the following meta-

functions. A Safety behaviour ensures that environmental conditions in the room 

are always at a safe level. In the case of an emergency this is the only active 

behaviour. Under normal circumstances each room has a fuzzy degree of safety 

(determined by fuzzy membership function) according to the needs of the room 

occupant. An Economy behaviour ensures that energy is not wasted. A Comfort 

behaviour ensures that conditions are maintained as the occupant would prefer 

(subject to being safe). This behaviour has an adaptable rule base, which learns 

from the room occupant’s behaviour. This learning is done through reinforcement 

where the controller takes actions and monitors these actions to see if they satisfy 

the occupant or not, until a degree of satisfaction is achieved. Since this requires 

active responses from the user of the room this constitutes an unsupervised 

learning phase in the process. This process is clearly less appropriate where the 

occupants of the room are themselves in need of care or assistance as was the case 

in some of our earlier work [Sharples 99]. It would however be perfectly 

acceptable in other applications e.g. an hotel or apartment block. The complexities 

of training and negotiating satisfactory values for multiple use rooms depends 

upon having reliable means of identifying different users. The behaviours, resident 

inside the agent, take their input from a variety of sensors in the room (such as 

occupancy, light level, temperature, etc), and adjust device outputs (such as 

heating, lighting, blinds, etc) according to pre-determined, but settable, levels. 

 

4. Overview of the Genetic Learning Architecture 

    For learning and adapting the dynamic comfort rule base according to the 

occupant behaviours we use an evolutionary computing approach based on a 

development of novel genetic algorithm (GA) technique. This mechanism operates 

directly on the fuzzy controller rule-sets. We refer to any learning conducted 

without user interaction, in isolation from the environment, using simulation as 
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offline learning. In our case learning will be done online in real-time through 

interaction with the actual environment and user.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure (2): The Hierarchical Fuzzy Control System 

 

4.1 The Associative Experience Engine 

    Figure (3) provides an architectural overview of what we term an Associative 

Experience Engine which forms the learning engine within the control architecture 

and is the subject of British patent application 99-10539.7. Behaviours are 

represented by parallel Fuzzy Logic Controllers (FLC). Each FLC has two 

parameters that can be modified which are the Rule Base (RB) of each behaviour 

and its Membership Functions (MF). The behaviours receive their inputs from 

sensors. The output of each FLC is then fed to the actuators via the Co-ordinator 

that weights its effect. When the system response fails to have a desired a 

response, the learning cycle begins.  

The learning depends on the Learning Focus which is supplied by the Co-

ordinator (the fuzzy engine which weights contributions to the outputs). When the 

Learning Focus is learning an individual rule base of a behaviour, then each rule 

base of each behaviour is learnt alone. When the Learning Focus is adapting the 

co-ordinated behaviours online, then the algorithm will adapt the rules in the 

comfort behaviour in response to the room occupant. The system recalls similar 

experiences by checking the stored experiences in the Experience Bank.  

the most recent experiences that are stored in a queue. If these experiences show 

success then they are stored in the FLC and thereby avoid generating new solution 

for our system. The Experience Assessor assigns each experience solution a 

fitness value. When the Experience Bank is full, we have to delete some 

experiences. To assist with this the Experience Survival Evaluator determines 
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which rules are removed according to their importance (as set by the Experience 

Assessor). When past experiences did not solve the situation we use the best-fit 

experience to reduce the search space by pointing to a better starting point which 

is the experience solution with the largest fitness.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (3): Architectural Overview of Associative Experience Learning Engine 

(UK patent No 99-10539.7) 

 

The controller tests different solutions from the Experience Bank by transferring 

We then fire an Adaptive Genetic Mechanism (AGM) using adaptive learning 

parameters (except when learning behaviour with immediate reinforcement, we 

use optimum mutation parameter) to speed the search for new solutions. The 

AGM is constrained to produce new solutions in certain range defined by the 

Contextual Prompter which is supplied by sensors and defined by co-ordinator 

according to the learning focus in order to avoid the AGM searching options 

where solutions are unlikely to be found. By using these mechanisms we narrow 

the AGM search space massively improving its efficiency. After generating new 

solutions (either rules or MFs) the system tests the new solution and gives it 

fitness through the Solution Evaluator. The AGM provides new options until a 
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satisfactory solution is achieved. From a users viewpoint the system functions as 

follows. A user is asked to select his preference for any given programmable 

setting. The system then tries to adapt its rules to achieve this setting. The user is 

prompted to confirm or deny his satisfaction with the result. The system then 

either tries to re-adjust rules or , if the user is satisfied, the current rule set is 

accepted. Experiments to date show the experience engine achieves a satisfactory 

solution in a small number of iterations which most users find acceptable. 

This same architecture was used in mobile robots learning and learnt rapidly (max 

75s) complicated behaviours in a dynamic agricultural environment without 

simulation or human intervention [Hagras 99a, Hagras 99b].     

 

5. Experimental setting 

 

In our preliminary experiments we had used an IB agent based on 68000 Motrolla 

processor, the agent is equipped with light and heat sensors and actutaors in the 

form of a heater and a light source, the IB agent is shown in Figure(4). This agent 

is used as a prototype simulator to simulate the control of light and temperature in 

a room with various condition such as multiple occupancy, different levels of 

natural light and temperature and different times of the day and different human 

desires. There is a built in economy behaviour that should switch the heat low and 

ventilation off after the room is vacated. It is arguable that there should also be a 

safety behaviour that prevents the heat going below a minimum safe level (e.g. 

zero degrees which would result in pipes freezing). Furthermore there is the 

comfort behaviour of the person himself which will be learnt using our patented 

fuzzy-genetic techniques. 

    The agent is dealing in a proactive way with the human occupier(s) and it just 

asks if the the action done is satisfactory or no, and if it is required to decrease or 

increase the heat or light levels. The agent have 5 input membership functions 

(which were found empirically to be the smallest number of membership functions 

that give a satisfactory response) to represent the input temperature and light 

sensors and 7 membership functions to repersent the heat and light. The agent 

using our patented techniques shown in Section (4.1) was able to find a 

satisfactory rule base for the different users in an average of 5 trials which is a 

small number of iterations. Also the agent is using the Experience bank of our 

patented technique so each time it identifies the room occupant it just retrieves his 

favourite rule base, if he changes his behaviour the agent can adapt by changing 

the necessary rules to adapt to the human desirse rather than changing the whole 

rule base and repeating the learning from the beginning. If the agent locates a new 

room occupant it just tries to start learning his favourite rule base from a similar 

rule base that was stored the Experience Bank. 
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Figure (4): The IB agent 

    For our future work, we will construct intelligent rooms equipped with these 

agents and we will try to deal with more inputs and deal with different human 

desires in different rooms in a house. 
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