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Abstract. Biologically inspired behaviour-based approaches to agent de-

sign have been particularly successful in mobile robotics. In this approach,

rather than decomposing intelligent systems by function, the system is
segmented into independent components of end-to-end functionality, which
mirror behaviours such as wall following and obstacle avoidance. To date,

although vision has been a vital part of robotic systems, it has tended to be
treated as a monolithic peripheral, even in behaviour-based agents. This
research explores architectures for systems that extend decomposition by
behaviour to vision. In such platforms a number of camera agents, each
monitoring some simple vision characteristic (e.g. movement or bound-

aries) learn to collaborate in real time on the interpretation of a scene.

Visual learning unifies methods that are developed under the major di-

chotomy between supervision and adaptation in machine learning. Two

monochrome non-stereoscopic look-forward cameras are used to test the

strength of agent-based wvision for mobile robots.

1 Introduction

Biologically inspired integration of vision functionality has been suggested in
different domains [15,2], but little has been done on integrating vision methods
for situated agents [19] as potential carriers from specialised applications to
multidomain intelligence [1,5,7]. Tt is also noticed [9] that a comprehensive theory
that collects isolated algorithms for image understanding into a functional vision
system using space state representations is missing.

Other architectures use vision behaviours to control active heads [3], or as
both tools for vision integration and controllers for motion behaviours [4]. In-
tegration of vision functionality is possible through behaviours, drawn from bi-
ological vision and behaviour-based robotics in an attempt to bridge the gap
between AT and specialisations of computer vision [12].

Performance improvement is built around a base group of co-working vision
methods that the robot learns to operate in real time. Both supervised learning
and adaptation are used, since there is no dominant neural structure to enforce
either one or the other. The model deals with the hierarchy of competences that
subsumption does not provide [11].
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2 Vision behaviours

2.1 Motion detection

The motion segmentation module quickly locates activity on image parts by
independently estimating the direction and location of the motion field on a
region array representation of successive images For fast estimations the
motion field is expressed by a set of velocity vectors, each one assigned to a
region of neighbouring points.

In taking decisions about where to turn according to the direction of a moving
object, the 2D motion field is sufficient, rather than producing a complete optic
flow. Vector values corresponding to motion, no motion and insisting motion
are assigned to regions. The normal flow is used to decide a robot’ s behaviour
[16,20]. In [20] it is asserted that if the moving object is within the visible field
and its direction takes two subsequent images to be decided, the preference for
the complete optic flow over the simple computation of the location of the motion
vectors does not give any significant advantage to what action the robot has to
take.

Fig. 1. Simple subtraction of point values for motion segmentation

2.2 [Edge detection

Edge-based segmentation exploits the knowledge offered by motion-based meth-
ods, to retrieve the location of object bounds. A Sobel operator of 5z5 horizontal
and vertical masks is applied locally to every image region. Pixels around the
centre are double weighted to highlight significant discrepancies. By restricting
the edge operator to small regions of the image, decisions on steering behaviours
can be taken even before the process is completed. The masks apply to an im-
age region and the region is scanned either horizontally or vertically, depending
on which mask outnumbers the results of the other, to examine the magnitude

differences magn;; = ,/f7 + f; of neighbouring points against an automatic
threshold T'. If B is an image and

a, = |magn;; — magn;—1|
as = |magni; — magny; |
as = |ma,gn,;j,1 — ma,gn,;jfg‘
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Table 1. The Sobel masks
-1-1011 11211
-1-1011 11211
2-2022 00000
-1-1011 -1-1-2-1-1
-1-1011 -1-1-2-1-1
Ja fy
then segmentation values are defined by the condition:
0 (a1 <aganday >T) or (a; =az and az >1T)
Bij = (1)
1 (a1 >ag and a3 > T)

After the image scanning, regional peak values are compared with a second
threshold to subtract noise from edges. A high threshold reduces noise, however
results in missing edges. The automatic threshold, in a similar approach to [17],
is unique for every region and is decided through a selection of values from a
vector of magnitude differences. First, the value with the highest frequency of
occurrence is selected as a low bound and then the set of all values bigger than
the low bound is searched. The value with the lowest frequency is selected. The
result is the second or third best threshold value near the optimum as it has
been found in simulations. The threshold value retreats from optimum as the
number of edges increases. Regions with edges appear to be brighter. For those
regions, foreground and background intensities are clearly separated from each
other. The second threshold holds for all regions within the agent’s visual field
and its values are experimentally decided for different regions’ resolutions.

2.3 Statistical indices

The image is divided into four rectangular regions. Average intensities are cal-
culated for each region, as well as for the whole image. An estimation of the
average intensity of the lower left and right regions, as well as the upper left
and right regions of the image, is a first hint of either the presence of an object
or of free space. The robot, guided by regional dissimilarities in light intensity,
adjusts its steering behaviour. However, a change in steering, to avoid the un-
certainty introduced by the light variations, does not take place instantaneously.
The delayed reaction depends on the relative persistence of the light pattern.
Those indices are the simplest to use in appearance-based methods for a first
classification of surface features.

3 The learning component

As suggested in [6], we explore habituation and sensitisation as types of learn-
ing. For Thorpe, habituation is one of the categories of animal learning [14].
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In [13], habituation, and in [8], habituation and sensitisation become part of a
neural model of specific functionality. For our study, habituation is a situated
discriminatory behaviour of vision-based learning, quantified by two parameters:

. - Y (@e=)? ;
— the reduction of the standard deviation o = Y/ &=t—— of the robot’s
average trajectory distance measurements fi from a lane or wall in object
following, which certifies the stability of the specified navigation task
the reduction of the relative standard deviation RSD = 100 % £, which is
an index for the reduction of supervisory signals and ensures assimilation of
behaviours.

The learning component is a vision method with the additional capability of
updating the base group of vision methods with respect to their output types and
it provides an ideal example of how sensitisation can be defined for behaviour-
based systems. It is also similar to the method of average intensities. Both meth-
ods have the same output types and divide the image into 4 parts to compute
partial average intensities. The difference between them is the threshold value
and the difference in the steering angle. It turns out that despite their similar-
ities they are different methods, because the behaviours they suggest are not
identical. The learning method is designed either to avoid dark areas or to re-
port night conditions in case no region’s intensity is above the night threshold.
In case it reports dark conditions for one of the agents, it causes the base group
to be updated according to a fixed update strategy that adds a single method
to the group. In case the tutor partially covers the cameras’ lenses, the method
only steers the robot in the direction that corresponds to bright regions, without
applying learning.

A pool of methods is the source for feeding the base group with a variety
of combinations. In case learning neither adds nor replaces methods in the base
group, the agent has stabilised its behaviour in a particular environment. In
case the environment is altered and steering is not as expected, the tutor causes
the learning method to continuously update the base group until the robot’s
behaviour is re-stabilised.

Being part of the base group, each vision method’s output value suggests a
particular behaviour to be adopted by the robot’s wheels. A decision mechanism,
based on priorities of output types, serialises suggestions of vision methods. If
random priorities are used, a voting classifier for selection of subgroups is nec-
essary. Our priorities are ordered, a choice that promotes cooperation over com-
petition. Failures to generalise are corrected by the tutor. Decisions on which
camera will execute which behaviour are taken by one of the agents, which has
the role of manager and collects suggestions from other agents through message
exchange. Alternatively, the model has been tested with a separate manager
process, allowing to the camera agents indirect communication only. Learning
has absolute priority over steering behaviours. Steering codes are preferred to
behaviour codes for wall following, obstacle avoidance and tracking in order to
preserve behaviour slicing in smaller parts common to all behaviours. Thus,
behaviours defined by low-level assembled components are used for scaling to
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determine behaviours that were not part of the original design. The selected
behaviour is the one with the highest priority in the base group. Each method
also advocates the way the suggested behaviour will be implemented. As a con-
sequence of having different output types, each method may propose a different
implementation of the same behaviour. In that case, a decision made by minor
rules is taken on which method will activate the suggested behaviour. Introduc-
tion to the pool of a newly designed vision method is possible in the following
five steps, by loading a relevant object module from a host machine:

declaration of the function prototype

creation of a new pointer in the list of methods
— initialisation of the function’s output type
— writing the code for function activation
— writing the behaviour rule

A design decision for supervised learning to be applied to one method to
affect the disposition of the base group rather than being applied to each in-
dividual method or to a manager agent for a particular hierarchy of agents is
related to the role of agent managers. In our architecture, managers are assembly
points for signals that evaluate an action. Managers do not send signals back
to individual methods. This sort of feedback is allowed for the learning method
only. Individual methods have their own means of adaptability by adjusting their
parameters according to brightness patterns. Supervision, rather than being ap-
plied directly, is spread to base group members through the learning method,
which is a locus of control, a 'gate’, unique for each embedded agent, which
decides for the behaviour of the robot or the sensory agent. After the ’gate’ is
stimulated, re-assigning of methods in the base group is decided according to the
implemented strategy. Thus, control is limited to a single stimulus or gesture.

4 Experiments

Two indoor environments are used separately: a row of blue cylinders of 50c¢m
height and an L-shaped wooden wall 30cm high of virtually no contrast with
the floor. The z; distance measurements are taken from the point where the
perpendicular to the convex hull meets the actual trajectory trace. The robot
goes around the blue cylinders first, using only the normal flow for two rounds
before a learning signal adds a vision method based on average brightness, which
reduces o values significantly. With this active configuration of vision methods,
no further supervision is required. It is not necessary to set the robot at an
accurate distance from the wall, since convergence to a trajectory at a 50cm
average distance away from wall is expected.

After the supervisor visually guides the robot to the I.-shaped wall, the robot
goes around the wall, using the current group of vision methods. After completion
of the first round, an edge detector is added. The improvement in this case is not
drastic because the edge detector converges to the path less smoothly to ensure
that in case of corners the robot is not receding too far away from the wall.
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Fig. 2. A view of the indoor environments

The resolution of the image is 1282128. A 16x16-array mask of 8x8 regions
is a compact form of a higher-level view of the original image and it is used as
a measure of the surface depth from the robot. Simulation shows that this is
the optimal division of regions for a motion detector and for the given image
size. A bigger size does not allow noise to be easily separated from real edges.
Smaller size almost reproduces the original image into a low abstraction level
not appropriate for calculations. Obstacle avoidance emerges as part of a line
following behaviour. Navigation is stable, although the errors from the angle
measurements can be frequent and sometimes insistent. The turning round ob-
ject behaviour is affected by shadows and an on board light source may solve the
problem, at least for indoor environments, in case the sharpness of shadows is
constant. A delay regulates the time-to-turn so the robot does not turn too close
to the vertical edge of the wall. Acceleration of turning is also applied to ensure
the robot will re-establish contact with the wall. Errors in intensity differences
due to illumination and low pixel resolution are handled effectively by dynamic
thresholds, so the robot keeps a minimum and a maximum distance while going
around the blocks. The position and angle of the fixed on-board camera implic-
itly decide the minimum distance. The turning behaviour and the presence of
obstacles decide maximum distance.

Table 2. The codes for the vision methods

Vision method  code
learning component 1
normal flow 2
statistical indexes 3
Sobel edge detector 4
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Table 3. Distance measurements of the robot’s trajectory trace from a wall of
blue cylinders with normal flow and the learning component as members of the
base group of vision methods.

standard relative
average variance deviation deviation
[ o? o RSD %

first round

left side 51.75 297 17.2337 33.3018
first round

right side  41.75 100.75 10.0374 24.0417
second round

left side  47.6875 89.1836 9.4437 19.8033
second round

right side 42.5 38.25  6.1847 14.5522
complete

first round  46.75 223.875 14.9625 32.0053
complete
second round 45.0938 70.4443 8.3931 18.6125

Table 4. Trajectory distance measurements for the blue cylinders environment
after average brightness is added to the base group of vision methods.

standard relative
average variance deviation deviation
[ o? o RSD %

first round
left side  62.375 30.4844 5.5213  8.8518
first round
right side 55.4375 8.9648 2.9941  5.4008
second round
left side  55.3125 9.6836  3.1118  5.6258
second round
right side 55.3125 18.9336 4.3513  7.8667
complete
first round 58.9062 31.7568 5.6353  9.5666
complete
second round 55.3125 14.3086 3.7827  6.8388
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Table 5. Trajectory distance measurements for the L-shaped wall.

standard relative
average variance deviation deviation
m o? o RSD %

concave side

codes 1,2,3  52.33 296.8889 17.2305 32.9266
convex side

codes 1,2,3 51.6818 70.1942 8.3782 16.2111
complete round

codes 1,2,3 52.1591 186.4406 13.6543 26.1782
concave side

codes 1,2,8,4 56.1111 108.3210 10.4077 18.5484
convex side

codes 1,2,8,4 44.9167 60.7014 7.7911 17.3457
complete round

codes 1,2,8,4 49.3478 114.9877 10.7232 21.7298

5 Discussion

Incomplete vision processes at various levels ought to be used in conjunction with
each other. It is an approach that seeks additional evidence for the interpretation
of a scene in the teamwork of vision methods. We choose to combine motion and
edge detection, which are methods of solid foundation in computer vision, and
to refrain from the requirement of 100% accuracy, changing from a methodology
of visual cues to direct perception. If the trajectory deviates from a specified
angle value a line following function steers the wheels in the opposite direction.
Thus, this function is used both for wall following and obstacle avoidance. Vision
functions have been used before as multi-purpose processes. [10] uses the Hough
transform on congruent triangles and alternatively on congruent polygons to
detect planar motion.

We add learning to deal with the complexities and the potential high pop-
ulation of vision processes. Our results show that vision-based learning applies
well to incomplete vision processes by smoothing the distance variations of the
robot from a wall.

6 Conclusions and future work

Our approach suggests cooperation of simple vision behaviours that run in par-
allel, each one having its own functionality along the path from input to output.
These vision agents, based on noisy, low-resolution data and incomplete error-
prone vision methods, learn to govern a robotic platform.

The introduction of new vision methods and a formal description of the
learning model will be part of the future work.
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Fig. 3. Robot’s trajectory becomes even as the combination of vision methods
is updated.
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