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Abstract 
 

    This paper describes the design of a fuzzy controlled 

autonomous robot, incorporating Genetic Algorithms 

(GA) based rule learning, for use in an outdoor 

agricultural environment for path and edge following 

processes which involves spraying insecticide, 

distributing fertilisers, ploughing, harvesting, etc. The 

robot has to navigate under different ground and 

weather conditions. This results in complex problems of 

identification, monitoring and control. This paper 

addresses the development of an online self-learning 

system based on modified version of the Fuzzy Classifier 

system (FCS). The proposed technique has resulted in 

rapid convergence suitable for learning individual 

behaviours online without the need for simulation. The 

controller was tested on both an in-door and out-door 

mobile robot operating with different types of sensors 

(including a novel wands), propulsion and steering. 

Experiments include operating the vehicle following 

irregular crop edges (full of gaps) under different 

weather and ground conditions within a tolerance of 

roughly 2 inches. 

 

 

1. Introduction 

    A casual glance around our world reveals how 

dependent we are on vehicles and their drivers. As a 

society, much of our resources are associated with 

driving vehicles. A long cherished dream has been 

driver-less cars, in which we are transported to our 

destination by an unseen “electronic chauffeur” whilst 

we indulge in more productive activities. The aircraft 

and boat industry already routinely use auto-pilots as a 

means of automatic guidance One of the most difficult 

technical challenges vehicle guidance is presented by 

the agricultural industry due to the inconsistency of the 

terrain, the irregularity of the product and the open 

nature of the working environment. These situations  

 

result in complex problems of identification, dealing 

with sensing errors and control. Problems include 

dealing with the consequences of the robotic tractor 

being deeply embedded into a dynamic and partly non-

deterministic physical world (e.g. wheel-slip, imprecise 

sensing and other effects of varying weather and ground 

conditions on sensors and actuators). One of the most 

important tasks in a field are those based on crops 

planted in rows or other geometric patterns that involve 

making a vehicle drive in straight lines, turn at row ends 

and activate machinery at the start and finish of each 

run. Examples of this are in spraying, ploughing and 

harvesting. Our work addresses this challenge. We 

utilise a much-developed form of fuzzy logic 

augmented by GA learning that excels in dealing with 

such imprecise sensors and varying conditions, which 

characterises these applications. 

 

 

2. Background 

    AI techniques including expert systems and machine 

vision have been successfully applied in agriculture. 

Recently, artificial neural network and fuzzy theory 

have been utilised for intelligent automation of farm 

machinery and facilities along with improvement of 

various sensors. Ziteraya and Yamahaso [11] showed 

the pattern recognition of farm products by linguistic 

description with fuzzy theory was possible. Zhang et al 

[12] developed a fuzzy control system that could control 

corn drying. Ollis [7] used machine vision to follow and 

cut an edge of a hay crop but however he did not 

address the problem of turning around corners and 

detection of the end of a crop row. Cho [1] used a 

simulation of a fuzzy unmanned combine harvester 

operation but adopted only on-off touch sensors for his 

fuzzy systems. Thus, he lost the advantage of fuzzy 

systems in dealing with continuos data which had led 

him not obtaining a smooth response and presenting 

problems when turning around corners. Also all of his 

work was simulated which is different from the real 

world farm environment. Yamasita[9] tested the 

practical use of an unmanned vehicle for green house 

with fuzzy control. Mandow[5] had developed the 

greenhouse robot Aurora, but the application and 
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environment variation in the greenhouse is restricted 

with respect to the outdoor situations. 

    Little work has been done in implementing a real 

robot vehicle using fuzzy logic that can operate in open 

out door agricultural situations. Broadly speaking, our 

work situates itself in the recent line of research that 

concentrates on the realisation of artificial agents 

strongly coupled with the physical world [2]. A first 

fundamental requirement is that agents must be 

grounded in that they must be able to carry on their 

activity in the real world in real time. Another important 

point is that adaptive behaviour cannot be considered as 

a product of an agent considered in isolation from the 

world, but can only emerge from strong coupling of the 

agent and its environment [2]. Despite most robotics 

regularly use simulations to test their models, the 

validity of computer simulations to build autonomous 

robots is criticised and is subject to much debate [6].  

 

 

3. Overview of Paper 

    The aim of the work described in this paper is to 

develop a fuzzy vehicle controller for real farm crop 

harvesting. In earlier work [3] we developed a 

hierarchical fuzzy logic controller which had many 

advantages including reducing the number of rules 

needed and facilitating better behaviour arbitration. In 

this paper we describe how we have added Gas to 

provide rule learning where reinforcement can be given 

as actions are performed. A modified version of the 

Fuzzy Classifier system (FCS) is used in this algorithm. 

The FCS is equipped with a rule-cache making it 

possible for learnt expertise to be applied to future 

situations and to allow GA learning to start the search 

from the best point found. The system uses sensory 

information in-order to narrow the search space for the 

GA. This process can be viewed as a hierarchy. The 

proposed techniques have resulted in rapid convergence 

suitable for learning individual behaviours online 

without need for simulation. The focus of this paper is 

on the GA learning aspects of the controller.   

 

                                                                                                                                                                                                                        

4. The Target Environment 

    The robot is designed to harvest a crop by following 

its edge while maintaining a safe distance, in this case 

45 cm from the vehicle, while at the same time allowing 

the cutter, which is fixed to the side of the vehicle, to 

cut the crop.  Figure (1a) shows a hay harvester with the 
associated cutting technique being depicted in Figure 

(1b). The robot can also follow the crop edge or lines 

for other purposes like spraying insecticide, distributing 

fertilisers, ploughing, harvesting, etc. 

    Initially we have tested our design with an indoor 

mobile robot, introducing to it all the hard conditions 

that it might encounter in a real field. Although there are 

clearly big differences between the indoor environment 

and that of a farm we have done what we could to make 

the experiments more realistic such as using noisy and 

imprecise sensors, irregular geometrical shapes and 

fences constructed from hay (in baled form). However, 

it is self evident that ultimate test of a farm robot is on a 

real outdoors farm and we thus included as a subsequent 

stage an assessment stage based on the use of our 

outdoor electric and diesel vehicles. We feel that this 

approach is better than a computer simulation which 

suffers from well known modelling difficulties 

(especially when trying to model the physical 

environment comprising varying ground and weather 

conditions and objects such as trees and hay).  

 

 
(a)                                     (b)             

 
Figure 1: a) A real world manned harvester to cut hay, 

b) The harvesting technique. 

 

 

5. The Fuzzy Logic Controller 
 

    Zadeh [10] suggested that one of the reasons humans 

are better at control than conventional controllers is that 

they are able to make effective decisions on the basis of 

imprecise linguistic information. In the following 

analysis we will use a singleton fuzzifier, triangular 

membership functions, product inference, max-product 

composition, height defuzzification. The selected 

techniques are selected due to their computational 

simplicity.The equation that maps the system input to 

output is given by :  

 

 
 

Where M is the total number of rules, y is the crisp 

output for each rule, Aip is the product of the 

membership functions of each rule inputs, G is the total 

number of inputs. The input Membership Functions 

(MF) shown in Figure (2) are the front and back side 

distance sensors (sensed by sonar or wands). The output 

MF are the wheel speeds (in case of the indoor robots) ) 

and the robot speed and steering angle (in case of the 

outdoor robot). More details about the MF and the fuzzy 

controller can be found in [3]. The MF were designed 

The crop  

before cutting. 

The crop  

after cutting. 

(1) 
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according to the human experience. The rule bases were 

learnt using the proposed online algorithm described 

below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: The MF of the input sensors. 

 
 

6. The Online Algorithm description 

    In a real-time GA, it is desirable to achieve a high 

level of online performance while, at the same time 

being capable of reacting rapidly to process changes 

requiring new actions. Hence it is not necessary to 

achieve a total convergence of the population to a single 

string, but rather to maintain a limited amount of 

exploration and diversity in the population. Incidentally, 

it can be observed that near-convergence can be 

achieved in terms of fitness, with diverse structures [4]. 

These requirements mean that the population size 

should be kept sufficiently small, so that progression 

towards near-convergence can be achieved within a 

relatively short time. Similarly the genetic operators 

should be used in a way that achieves high-fitness 

individuals in the population rapidly [4]. Figure (3) 

introduces a block diagram of the operation of the 

proposed on-line algorithm. The rule base of the 

behaviour to be learnt is initialised randomly. In the 

following sections we will introduce the various steps of 

the algorithm. 

 

6.1 Identifying Poor Rules 

    After the rule base initialisation, the robot starts 

moving. If it contains poor rules then it will begin 

deviating from its objective (e.g. not maintaining a 

constant distance from an edge). In this case an on-line 

algorithm is fired to generate new set of rules to correct 

this deviation. The GA population consists of all the 

rules contributing in an action (which is usually a small 

number as the rules base for each behaviour consists 

only of 25 rules). As in classifier systems, in order to 

preserve the system performance the GA is allowed to 

replace a subset of the classifiers (the rules in our case). 

The worst m classifiers are replaced by m new 

classifiers created by the application of the GA on the 

population [3]. The new rules are tested by the 

combined action of the performance and apportionment 

of credit algorithms. In our case, only two rules actions 

will be replaced (those already identifies with being 

predominantly responsible for the error).  

 

6.2 Fitness Determination and Credit 

Assignment 

    The system fitness is evaluated by how much it 

reduces the absolute deviation (d) from the nominal 

value, which is given by:                     

d =                 (2) 

    Where the nominal value will correspond to the value 

that gives maximum normal membership function (45 

c.m in case of wall following and zero degrees in case 

of goal seeking). The deviated value is any value 

deviating from the nominal value. The maximum 

deviation correspond to the maximum deviation that can 

occur (which is equal to 80-45= 35 c.m). So the fitness 

of the solution is given by d1-d2 where d2 is the 

absolute deviation before introducing a new solution 

and d1 is the absolute deviation following the new 

solution. The deviation is measured using the robot’s 

physical sensors (the sonar in case of the wall 

following), which gives the robot the ability to adapt to 

the imprecision and the noise found in the real sensors 

rather than relying on estimates from previous 

simulations. 

    The fitness of each rule at a given situation is 

calculated as follows. As we have two output variables 

(left and the right wheel speeds or steering and speed), 

then we have Yt1 and Yt2. Then the contribution of each 

rule p output (Yp1, Yp2) to the total output Yt1 and Yt2 is 

denoted by Sr1, Sr2 where Sr1 and Sr2 is given by: 

 

Sr1        =             , 

 

Sr2=              (3) 

We then calculate each rule’s contribution to the final 

action Sc by Sc= . Then the most two 

effective rules are those that have the two greatest value 

of Sc, we use mutation only to generate new solutions 

because of the small population formed by the fired 

rules. 
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Figure 3: Block diagram of the Proposed algorithm. 

 

6.3 Memory Application 

    After determining the rules actions to be replaced, the 

robot then matches the current rules to sets of rules 

stored in a memory containing each rule and its best 

fitness value up to date. The fitness of the rule in a 

given solution is given by: 

Srt = Constant + (d1- d2) Sc           (4) 

d1-d2 is the absolute deviation improvement or 

degradation caused by the adjusted rule base produced 

by the algorithm. If there is improvement in the 

deviation, then the rules that have contributed most will 

be given more fitness to boost their actions. If there is 

degradation then the rules that contributed more must be 

punished by reducing their fitness w.r.t to other rules, 

repeating the process for the next most responsible rule. 

For every rule action to be replaced the best fitness rule 

will replace the current action in the behaviour rule 

base. If the deviation decreases, then the robots will 

keep the best rules in the behaviour rule base. If the 

deviation still the same or it increases the robot fires the 

GA to produce new solutions by mutating these best 

rules until the deviation begins decreasing or the rule is 

proved ineffective when the robot is moving thus 

indicating another rule might be more effective.  This 

action is supposed to speed up the GA search as it starts 

the GA from the best found point in the solution space 

instead of starting from a random point. This is then 

considered a solution for the current situation and the 

rule fitness is calculated and is compared with the 

maximum fitness rule. If its fitness is greater than the 

best kept one then it replaces the best one, otherwise the 

best one still is kept in the memory.  

 

6.4 Using GA to Produce New Solutions 

    The GA begins its search for new rule actions to 

replace those identified with poor performance. 

Mutating the two most effective rules generates new 

solutions. A mutation rate of 0.5 was chosen after 

experimenting of different mutation rates from 0 to 1.0 

and monitoring the time the robot needs to achieve its 

purpose (e.g. reaching its goal or following a wall). It 

was noticed that at mutation values less than 0.3 there is 

nearly no convergence as the population size and the 

chromosome size is small, and the low mutation rates 

does not introduce a lot of new genetic materials to 

introduce new solutions. The same occurs for high 

mutation rates (higher than 0.7) as the mutation rate 

reaches 1.0 the genetic materials available are the 

primary chromosomes (e.g. 0101) and its inversion 

(1010) which is not enough for introducing new 

solutions. So 0.5 gave the optimum value of finding a 

solution after, on average, 96 seconds. The robot also 

uses its sensory information to narrow up the search 

space of the GA and thus reducing the learning time. 

For example if the robot is implementing left wall 

following and it is moving toward the wall, then any 

action that suggests going to the left will be a bad 

action, thus if we use the front left side sensor and it 

senses that we are going toward the wall, then the GA 

solutions will have a constraint not to go left.  

 

6.5 The Learning Length Criteria 

    The robot assumes it had learnt the required 

behaviour if it succeeds in maintaining the nominal 

value for the behaviour for a distance enough to proof 

that the learnt rule base is sufficient. The optimal 

learning distance has been related to units of length of 

the robot, so that the algorithm can be applied in an 

invariant manner to different size robots. In order to 

determine the optimal learning distance we have 

conducted numerous experiments evaluating 

performance relative to the robot’s length (e.g. 1x 

robot’s length, 2x robot’s length, etc.). We then 

followed the same track that was used during learning to 

determine the absolute deviation at each control cycle 

from the optimum value (which would be maintaining a 

constant distance from a wall in case of edge following). 

Then we calculated the average and standard deviation 

of this error and compared different sizes for the 

learning length criteria (i.e. as short as possible whilst 

producing a stable rule base). It was found that the 

average and standard error for the wall following 

stabilises at three times the robot’s length at average 

value of 2 c.m and standard deviation of 1 c.m.. Thus 

we use three times the robot the length as our learning 

length criteria. 

 

7. Experimental Results 

    The performance of the architecture has been 

assessed in two main ways. Firstly, we physically 

emulated (rather than simulating) the crop following 

process. In this emulation we have conducted practical 

experiments with the indoor robots to track the robots 
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paths and reactions to the irregular geometrical shapes 

forming fences (which fake the crop edge) including 

real bales of hay  (forming a fence). These offer a real 

challenge to the robot because of their irregularity and 

low sensitivity of sonar sensors toward them. In the next 

phase we have tested the same architecture in outdoor 

environments tracking fences and crop edges in real 

farms. Each experiment was repeated 5 times recording 

the path to test the system repeatability and stability for 

different weather and ground conditions (eg rain, wind , 

holes in the ground, going up and down hill etc).  

 

 
 

Figure 4: a) Learning left wall following. b) Learning 

right wall following. 

 
 Figure (4-a) shows the robot learning left wall 

following whilst dealing with an irregular edge and 

imprecise ultra sound sensing. The robot succeeded in 

learning the desired behaviour in an average of 96 

seconds. In Figure (4-b) the robot learnt right wall 

following in 96 seconds. Note the robot learnt to follow 

the wall in approximately a straight line with minimum 

deviation. All of the learnt behaviours were tested in 

different (and difficult) terrain from those in which they 

were originally trained. In these tests the robots 

produced an average deviation of 2 cm and standard 

deviation of 1cm. This is very encouraging given the 

irregularity of the terrain, and the imprecision of the 

sensors. Figure (5-a) shows the robot emulating the crop 

cutting operation. Here it continues going inwards to 

complete the harvesting operations. The cutting action 

was simulated by reducing the size of the fence. Note 

that the response is smooth especially when the robot 

turns. This is due to the smooth transition between rules 

and the smooth interpolation between different actions 

that are characteristics of fuzzy logic. The same 

experiment was repeated but with real bales of hay and 

gave a very smooth and a repeatable response as in 

Figure (5-b).   

 

 
                    (a)                                     (b) 
 

Figure 5: a) The robot emulating the harvesting 

operation. b) The robot following fences of bales of hay. 
 

 
                        (a)                                    (b)                

 

Figure 6: a) The outdoor robot learning to follow an 

irregular fence in outdoor environment. b) The electrical 

robot following out door irregular tree hedges.  

 

 

 
                    (a)                                  (b) 
 

Figure 7: a) Diesel robot following  irregular hay crop 

edge using mechanical wands. b) The robot path. 

 

To show that the proposed system can deal with open 

outdoor environment we used another different outdoor 

robot (with 68040 microprocessor and 0.5 m/s 

maximum speed) to learn the right edge following 

behaviour of an irregular metallic fence. Figure (6-a) 

shows the robots learning this wall behaviour. The 
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figure shows the robot reducing its deviation rapidly 

until it succeeds in maintaining the robot with almost 

zero deviation after a distance equal to three times the 

robot length. The robot’s path after 79 seconds learning 

is very smooth (it uses faster processor), with only a 

very small deviation despite the irregularity of the fence 

and the highly imprecise sensors. Figure (6-b) shows the 

electric robot in a real farm following a plant edge 

characterised by high irregularity (eg gaps in edge, 

plants falling from the edge) and varying ground 

conditions (eg slopes and holes). It had used two ultra 

sound sensors to sense the crop edge. Once more the 

robot performed well following the crop at a safe 

distance from the edge. Although we currently have no 

quantitative means for evaluating the precision of the 

crop following, we estimate that the crop edge was 

tracked successfully within a tolerance of 2 inches. 

In Figure (7-a) we tried the diesel robot in a hay field 

using the mechanical wand sensors following an 

irregular crop edge. The robot gave stable, repeatable 

and robust response as shown in Figure (7-b), and 

tracked the edge of the crop successfully within a 

tolerance of 2 inches. The robot also turned smoothly 

around the poorly defined hay crop corners.  

 

8. Conclusions 

    In this paper we have developed a fuzzy controller for 

a robot aimed at automating crop following processes 

which includes spraying, ploughing and harvesting. We 

have developed a novel sensor design (outdoor 

mechanical wands) to be used in real farms under 

different conditions. We tested the fuzzy control 

architecture on an in-door mobile robot with only two 

ultrasound sensors. It had learnt to maintain itself at a 

constant distance from the emulated crop, in-spite of 

boundary irregularities and the imprecision in the 

ultrasound sensors. After testing the architecture 

successfully indoors, the control architecture was 

moved to the outdoor robots and environment in which 

the robot displayed a smooth and fast response and was 

able to track various edges under different 

environmental and ground conditions.  The outdoor 

robots tracked irregular crop edges successfully within a 

tolerance of 2 inches. To the authors’ knowledge, the 

work described in this paper is the only system which 

has successfully guided a diesel tractor in outdoor 

environments following real crop edges (including 

irregular edges which include gaps) and turning around 

corners with a high degree of repeatability and 

following the crop edge with a tolerance of two inches. 

The system learnt online, without the need for 

simulation, thereby producing robust behaviours that 

emerged as a result of interacting with the real dynamic 

world. We are currently investigating the performance 

of other farm tasks (such as collecting bales of hay or 

fruit boxes etc). In these we are going to use a fuzzy 

hierarchical controller to combine several behaviours 

for safe navigation toward our goals. In this work we 

will integrate a vision system hay-bale detection [8] and 

use it with our fuzzy system for reactive navigation. 
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