
In he 8th International Conference on Fuzzy Systems (FUZZ-IEEE'99), Seoul, Korea, August 22-25, 1999

© Essex University 1999

1

 Abstract-- This paper introduces a learning algorithm to on-

line adapt a robot controller consisting of fuzzy behaviors

which are organized hierarchically and coordinated using

fuzzy logic to any environmental or ground or even robot

dynamics changes. This allows the robot to deal adaptively

with outdoor changing environments such as the agricultural

environment.

 A modified version of the Fuzzy Classifier system (FCS) is

used in this algorithm. The FCS is equipped with Long Term

Memory (LTM) to make it possible for the learning system to

transfer its problem solving expertise into a solution for the

problem of interest, as well as allowing the GA to start its

search from the best point found. The system also uses its

sensory information in-order to narrow the search space for

the Genetic Algorithm (GA). Adaptive mutation is also used to

speed up the GA search. The proposed techniques have

resulted in a fast converging algorithm that can be applied to

adapt as well as learn the robot behaviors to perform a global

task (such as get out of a maze while avoiding obstacles) on-

line with real robots with no need to simulation. The proposed

system is also characterized by being adaptive so that if any of

the environmental conditions or the robot dynamics is

changed the robot can still adapt itself to the environment

without the need to repeat the learning cycle from the

beginning. The algorithm is robot independent so that it can

be applied to different robots irrespective of their shapes or

sizes. The Results achieved with a real robot are discussed and

compared with the other methods to show the effectiveness

and the speed of the proposed method.

 Index Terms-- Fuzzy Logic, genetic algorithms, classifier

systems, mobile robots.

I. INTRODUCTION

 In the past several years, fuzzy logic control has been

explored for mobile robot reactive navigation [22] [24]. A

robot control system is decomposed into several task

oriented parallel computing modules called behaviors [21].

Each behavior is implemented with a set of fuzzy control

rules, which has the form if x is A and y is B then z is C.

Through fuzzification, fuzzy set operations and fuzzy

reasoning processes, a fuzzy control rule produces a control

 The Computer Science Department, Essex University, Wivenhoe

Park , Colchester CO43SQ, England, U.K .

output. The control outputs of a fuzzy behaviors are

produced by synthesizing all the outputs of the fuzzy

control rules through defuzzification. The main advantage

of fuzzy logic control is that expert knowledge and human

experiences can be easily translated into fuzzy control rules.

A fuzzy logic controller is also capable of accommodating

approximate, imperfect and noisy information presented in

real world environments and producing smooth control

output [24].

 GA are a stochastic global search method that mimic the

metaphor of natural biological evolution. GA operated on a

population of potential solutions applying the principle of

survival of the fittest to produce better and better

approximations to a solution. At each generation, a new set

of approximations is created by the process of selecting

individuals according to their fitness in the problem

domain and breeding them together using operators

borrowed from natural genetics. The GA begins by

initialization of the genes of each individual in the

population P(k), where k is the number of generations. It

then generates P(k+1) from P(k) by evaluating the fitness

of each individual in P(k) and selection of individuals from

P(k) with a probability proportional to their fitness.

Recombine, reproduce and mutate them using the genetic

operators of reproduction, crossover and mutation. If

termination condition is met, stop and return the best

individual. Otherwise set k=k+1 and produce new P(k) [8].

 The goal of our research is to develop a robot for the

outdoor agricultural domain. In an agricultural setting the

inconsistency of the terrain, the irregularity of the product

and the open nature of the working environment result in

complex problems of identification and sensing and control.

Problems can range from the effects of varying weather

conditions on vehicle sensors and traction performance,

through to the need to deal with the presence of

unauthorized people and animals. All these problems

provide good opportunities for fuzzy systems as they excel

in dealing with imprecise and varying conditions which

characterizes such situations. In previous work [10], we

have used a hierarchical fuzzy control architecture for

controlling the robot in an outdoor agriculture media, but

the parameters of the fuzzy controllers must be varied under

different field environmental changes and robot kinematics

changes. So for successful out-door navigation we need a

Using On-line Genetic Algorithms for Learning

and Adaptation Of Hierarchical Fuzzy

Behaviors Of a Real Time Mobile Reactive

Robot

Hani Hagras, Victor Callaghan, Martin Colley

In he 8th International Conference on Fuzzy Systems (FUZZ-IEEE'99), Seoul, Korea, August 22-25, 1999

© Essex University 1999

2

fast learning and adaptive system. In this paper a new

algorithm is developed which is using modified version of

FCS which have its GA search space reduced by the sensor

data. Also this algorithm is equipped with a long term

memory so that to make it possible for the learning system

to transfer its problem solving expertise into a solution for

the problem of interest, as well as allowing the GA to start

its search from the best point found to the moment in the

search space instead of starting from scratch. Also the

practical problems involved with using learning for real

robots such as determining the distance traveled by the

robot (to be used in the objective function) are solved. The

algorithm is designed to be robot independent so that the

algorithm can be applied to different robots independent of

their shapes or sizes. This algorithm will be used to modify

and learn rules of a robot controller consisting of fuzzy

behaviors which are organized hierarchically and

coordinated using fuzzy logic to perform a global task (such

as get out of a maze while avoiding obstacles) on-line with

real robots with no need to simulation. The algorithm is

adaptive to any environmental or ground or even robot

dynamics changes, with no need to repeat the learning cycle

whenever any of the surrounding circumstances changes.

 The proposed system can be viewed as a double

hierarchy system in which the fuzzy behaviors are

organized in a hierarchical form and the online learning

algorithm is also a hierarchy in which in the higher level we

have a population of solutions stored in the LTM and they

are tested in a queue , if one of these stored experiences

leads to a solution then the search ends, if none of these

stored experiences leads to a solution then each of these

experiences acquires a fitness by finding the distance it had

moved before failing. The highest fitness experience is used

as a starting position to the lower level GA which is used to

produce new solution to the current situation.

 This paper is organized as follows. In the next three

section we briefly introduce the merits of learning using

real robots over learning by simulation then we introduce

the work done in designing fuzzy controllers using GA.

Then fuzzy classifier systems and fuzzy hierarchical

controller are introduced. Then we outline the algorithm

and outline the problem definition and then explain the

algorithm different components and the LTM technique and

the choosing of crossover and mutation techniques and their

variation effect on convergence rate. In the final section we

introduce the results of the experiments done on real robots

and compare them with results obtained by the researchers

in this field.

A. Why Online Learning

 Broadly speaking, our work situates itself in the recent

line of research which concentrates on the realization of

artificial agents strongly coupled with the physical world. A

first fundamental requirement is that agents must be

grounded in that they must be able to carry on their activity

in the real world in real time. Another important point is

that adaptive behavior cannot be considered as a product of

an agent considered in isolation from the world, but can

only emerge from strong coupling of the agent and its

environment[5].

 Despite most robotics regularly use simulations to test

their models, the validity of computer simulations to build

autonomous robots is criticized and the subject of much

debate. Computer simulations may be very helpful to train

and test robotics models. However as Brooks[4] pointed out

“it is very hard to simulate the actual dynamics of the real

world ”. This may imply that effort will go into solving

problems that simply do not come up in real world with a

physical robot and that programs which work well on

simulated robots will completely fail on real robots.

 There are several reasons why those who want to use

computer models to develop control systems for real robots

may encounter problems [19]:

a) Numerical simulations do not usually consider all the

physical laws of the interaction of a real agent with its

own environment, such as mass, weight, friction, inertia,

etc.….

b) Physical sensors deliver uncertain values, and

commands to actuators have very uncertain effects,

whereas simulative models often use grid-worlds and

sensors which return perfect information.

c) Different physical sensors and actuators, even if

apparently identical, may perform differently because of

slight differences in the electronics and mechanics or

because of their different positions on the robot.

 Even if some researchers are using real robots to learn

behaviors, these behaviors if learnt successfully are usually

frozen in the robot so that if some of the robot dynamics is

changed or the environmental circumstances is changed ,

the robot must repeat a time-consuming learning cycle.

 In our case we aim to use Fuzzy Classifier Systems with

GA as a rule discovery system to adapt the robot to ongoing

environmental changes. Such adaptivity to the environment

is important especially if using outdoor agricultural robots

where the agricultural environment is rapidly changing.

B. Fuzzy Logic and GA Learning

 In many applications the robot’s environment changes

with time in a way that is not predictable by the designer in

advance. In addition , the information available about the

environment is subject to imprecision , incompleteness and

imperfection due to the perceptual quality of sensors. These

problems limits the utility of traditional model-based

reasoning approaches.

 Evolutionary algorithms constitute a class of search and

optimization methods guided by the principles of natural

evolution. GA are optimization methods inspired by

principles of natural evolution and genetics. GA have been

successfully applied to solve a variety of difficult

theoretical and practical problems by imitating the

underlying processes of evolution such as selection,

recombination and mutation. Their capability of learning

enables a GA to adapt to a system to deal with any desired

task .

 Fuzzy logic offers a framework for representing

imprecise , uncertain knowledge. Similar to the way in

In he 8th International Conference on Fuzzy Systems (FUZZ-IEEE'99), Seoul, Korea, August 22-25, 1999

© Essex University 1999

3

which human beings make their decisions fuzzy systems are

using a mode of approximate reasoning, which allows them

to deal with vagueness and incomplete information. Fuzzy

controllers show robustness with regard to noise and

variations of system parameters.

 Combinations of various soft computing disciplines

which includes fuzzy logic ,neural networks genetic

algorithms have acquired the name of hybrid systems.

Several work have focused in automating the design of the

rule bases so that the fuzzy controller is fully optimized.

 Karr [14] , developed systems that learned to balance an

inverted pendulum. The system learnt slowly , taking

several thousand generations to develop a good controller.

 Lee and Takagi developed the technique in [16] , using

real coded GA to represent rules as vectors. They used a

fixed length string and a variable length string , with results

markedly better than Karr’s on the same problem ,due to

the fact that the GA had the flexibility to design the system

antecedent sets.

 Herrera et.al [11] describe a system where the fuzzy rule

bases are coded using strings of real numbers , combined

with arithmetical crossover and mutation operators.

 Leitch in [17] had developed a new algorithms in which

he used a new coding technique called context dependent

coding (CDC) which is unlike the position dependent

schemes where the meaning of the codon is determined by

its absolute position in a chromosome. The CDC codon’s

interpretation is determined by the context in which it is ,

that is the meaning is dependent on the values of

surrounding codons. This means that some sequence of

codons will have the same interpretation regardless of

where they lie on the chromosome. The main advantage of

this is that it allows for great flexibility , so crossover is

very simple and can occur at any site as the coding is robust

to disruption due to the meaning being dependent on

context rather than position. He also used an implicit

chromosome reordering operator which improved the

algorithm performance for this application , reducing

epistasis by using an estimate of it to favor chromosomes

with low epistasis during selection. Because he was using

simulation, he introduced the co-evolution of controller test

sets which leads to a situation similar to a biological

predator/prey pair , where controllers are continually

adapting to a new test sets , while the test sets adapt to be as

difficult for the controller as possible. He used the GA off-

line using simulation and training data set to optimize his

fuzzy rule set in robotics for very simple independent

problems like corridor tracking , performing a multi point

turn in a confined space.

 Hoffmann [12] had implemented a new design of

hierarchical fuzzy controllers using messy genetic

algorithms which is unlike the classical GA which encode

candidate solutions to strings of fixed length. Messy GA

work with strings of flexible length in which genes can be

arranged in any order. Each gene is composed of a pair of

integers. The first entry specifies the meaning of the gene ,

which in case of a standard coding is determined by the

location within the string. The second integer plays the

same role as in classical GA by representing the value of

the gene. This algorithms has new genetic operator such as

the cut-splice operator which replaces the crossover. It is

immune to disruption by the crossover techniques and very

robust as the chromosome is variable sized. He also applied

the problem again to the simulation of learning the obstacle

avoidance and goal seeking for the robot by using different

input data and applied the controller to a real robot.

 However a lot of work remains to be done. The most

important problems are to increase the speed of

convergence while maintaining stability, implementing pure

reinforcement learning , these problems will be involved in

our research.

C. Fuzzy Hierarchical Systems

 Modular decomposition is a well known technique for

reducing system complexities. Hierarchies are a proven

method of effectively handling and managing modularized

control structures . Albus[1], among others shows how any

complex activity can be decomposed into a hierarchy of

behavioral modules each consisting of few behaviors. He

sites many examples of such systems ranging from the

organization of government through to control architecture.

 For mobile robot and complex reactive systems, the size

of the input space requires a complicated control function.

This mapping can be made manageable by breaking down

the input space for analysis by multiple agents, each of

which responds to specific types of situations and then

integrating the recommendations of these agents. Agents

also called behaviors, can be designed independently to

exhibit behaviors such as goal seeking, obstacle avoidance,

and wall following [24]. The work presented in this paper

seeks to apply these hierarchical efficiencies to the

organization of fuzzy architectures.

 There are many ways for behavior co-ordination. A

classical robot architectures such as the subsumption[4]

architectures which decomposes the system into small

independent decision-making processes , or behaviors.

These architectures use a on-off switching schema : in each

situation , one behavior is selected and is given complete

control of the effectors. This simple scheme may be

inadequate in situations where several criteria should taken

into account. Also this rigid organization contrasts with the

requirement that an autonomous robot can be programmed

to perform a variety of different tasks in a variety of

environments[24]. Later proposals relied on dynamic

arbitration policies , where the decision of which behavior

to activate depends on both the current (sub- goal), given by

the planner and the environmental conditions. Both fixed

and dynamic arbitration policies can be implemented using

the mechanisms of fuzzy logic. The two main advantages in

doing so are :

a) The ability to express partial and concurrent

activation’s of behaviors .

b) The smooth transition between behaviors[9].

 In previous work [10] we have developed a fuzzy

hierarchical controller which can combine four behaviors

and navigate in an unknown environment reactively .

In he 8th International Conference on Fuzzy Systems (FUZZ-IEEE'99), Seoul, Korea, August 22-25, 1999

© Essex University 1999

4

D. Fuzzy Classifier Systems

 A classifier system in an adaptive, general purpose

machine learning system which is designed to operate in

noisy environments with infrequent and often incomplete

feedback.

 Classifiers simply are if-then rules. The name Learning

Classifier Systems (LCS) comes from the capability of rules

to classify messages into arbitrary message sets [13].

However, this is only one facet of rules. In classifier

systems rules or productions have the same role as

instructions in ordinary programs. Such production systems

are computationally complete [20] and therefore as

powerful as any other Turing-equivalent programming

language.

Figure 1 : The classifier system.

 A classifier systems is a machine learning system which

learn rules in order to guide its performance in any arbitrary

environment [7]. Its main components are a production

system and one or several learning algorithms as shown in

Fig. 1. This classifier system is characterized by a very

simple pattern language, parallel rule firing and message-

based internal communication.

 At the top level, the classifier system communicate with

the environment. The classifier system effects action in the

environment and detects information on the state of the

environment. Moreover, an action or sequence of actions

may lead to payoff received by the classifier system. The

classifier system consists of the production system and two

learning components, namely an apportionment of credit

system and a rule discovery system. In a Holland classifier

system [13], the apportionment of credit algorithm for

updating rule weights is a bucket brigade algorithm, the rule

discovery algorithm is a GA.

 The bucket brigade algorithm modifies the weight of

rules (called the strength) in the rule base with the payoff

from the environment, with payments from message

consuming rules and with payments to message producing

rules. However, for the bucket brigade to work properly, all

useful rules must be present in the rule base [5].

 Generating new rules is the task of the GA. The GA sees

the rule base as a population of classifiers, whose fitness is

the rule-strength obtained under the bucket brigade

algorithm. The GA is invoked by the production system

periodically, and it generates a new population of rules

according to rule-strength. However for the GA to work

properly, the strengths of the rules generated by the bucket

brigade algorithm must reflect the true fitness of the rules.

 There are two different approaches in learning fuzzy

controllers using GA. In the so called “Michigan” approach

of GA [7] the population consists of fuzzy rules. The fitness

is assigned to individual rules competing among each other

in the evolution process. This approach is appropriate for

on-line learning because the fuzzy controller is built of the

population itself and is improved constantly in the evolution

process [18]. A mechanism of credit assignment to

individual rules is required , which is difficult when

reinforcement is only provided sporadic after a sequence of

control actions. Credit assignment procedures like the

bucket brigade can be used to distribute reinforcement

among fuzzy rules activated sequentially in time.

 The so called “Pitts” approach of GA uses a population

of fuzzy controllers. Each individual alone is a candidate

solution to the optimization problem. It is only possible to

learn off-line because in each generation a population of

solutions has to be tested [18]. The fitness function

evaluates the performance of the entire fuzzy controller.

The assignment of credit is easier but involves the

drawback that rules of bad quality sometimes benefit from

good ones.

 In many complex environments the LCS have not had

not much application due in part to the limitations of their

syntax to represent continuously varying variables. A

simple and promising way of dealing with this problem is

through fuzzy set theory [11].

 A FCS is a genetic based machine learning system whose

classifier list is a fuzzy rule base. They learn by creating

fuzzy rules which relate the values of the input variables to

internal or output variables. They integrate the same

elements of the LCS but working in fuzzy environment.

 Valezuela –Rendon [23] gave the first description of the

fuzzy classifier system , the classifiers are fuzzy rules ,

similar to fuzzy controllers. Each classifier is a binary string

that encodes the membership function of the fuzzy sets

defined for variables involved in the problem so that the

number of bits in a condition or an action is the number of

fuzzy sets defined over a given variable. A “1” indicates

that the corresponding fuzzy set is part of the condition or

action. He tested his fuzzy classifier system in the

identification of static one-input one-output systems using a

stimulus-response fuzzy classifier system .

 Bonelli [3] produced a new system in which each

variable has associated a fuzzy set and i.e. each variable is

described by a membership function. This description is

variable and will evolve through genetic search. Each

classifier contains the actual description of the membership

functions that correspond to each input and output variable,

which consists of parameters that define the associated

Input

Unit

Message

List

Output

Unit

Classifier

List

Credit

Assignment

GA

Input Values

New

Classifiers
New

Messages

Payoff

Payoff

Input Messages

Output Messages

Output
Values

Payoff from environment

Production

System

In he 8th International Conference on Fuzzy Systems (FUZZ-IEEE'99), Seoul, Korea, August 22-25, 1999

© Essex University 1999

5

fuzzy set. There is also an associated strength to each

classifier that indicate its credibility. The degree to which

each classifier is activated is calculated by taking the

minimum of the current inputs membership values with

respect to the fuzzy sets present in the condition part of

each classifier. In the output interface the partially activated

fuzzy sets of same output variables are combined using the

weighted sum method to produce a final fuzzy set for each

output variable. Its credit assignment system only works

with positive rewards. It deducts a fraction of each active

classifier strength and distributes the payoff quantity of the

obtained reward to each active classifier strength according

to a measure of goodness. This measure determines the

quality of the classifiers action and the quality of the

classifiers conditions for this particular input. He applied

this model to the same examples used by [23] and he

obtained better results.

 Very few and simple applications of on-line learning in

robotics among these are Bonarini [2] in which he suggests

a hybrid method solving the co-operation versus

competition problem. He uses sub `populations of similar

fuzzy rules ,which are undergoing a local competition. Co-

operation of fuzzy rules is achieved by composing each of

the best local solutions into an entire fuzzy controller, he

had applied this method for simple behaviors like following

another robot or moving in a corridor and then he had

coordinated them, but in this work he developed his

controllers by simulation and then he applied it to real

robots so it is not pure on-line learning.

 Other work was done by Furuhashi [7] on which he

based his credits for each rule on the number of

membership function in the antecedent having values larger

than zero. He applied his algorithm with a standard GA to a

very simple simulation problem of two ships attempting to

avoid each other.

II. THE FUZZY HIERARCHICAL SYSTEM CONFIGURATION

 Most commercial fuzzy control implementations feature

a single layer of inferencing between two or three inputs

and one or two outputs. For autonomous robot, however the

number of inputs and outputs are usually large and the

desired control behaviors are much more complex. For

example in our case we have 7 sonar inputs and an infrared

bearing sensor i.e. eight inputs and we have two outputs

which are the left and right wheel speeds and assuming that

each input will be represented only by three fuzzy sets and

each output by four fuzzy sets. In this case, using a single

layer of inferencing will lead to determining 3
8
= 6561 rules

which is difficult to determine if not impossible. While if

we divide the whole system to four co-operating behaviors ,

the obstacle avoidance which consists of three sonar inputs

each represented by three fuzzy sets, this leads to determine

3
3
 =27 rules, the left and right wall following each having

two sonar inputs each represented by three fuzzy sets this

will lead to 3
2
 =9 rules in each behavior, the goal seeking

behavior only taking one infrared bearing scanner input

each represented by seven fuzzy leading to 7 rules. Then

the total required rules to be determined in the individual

behaviors are 27+9+9+7=52 rules which is easy to be

determined. However we need some form of co-ordination

scheme in order to combine these behaviors into a single

action. In this paper we have chosen the fuzzy context rule

combination method developed by Saffiotti [24] to perform

the high level co-ordination between the behaviors. The

context depending rules are characterized by each behavior

generates preferences from the perspective of its goal. Then

each behavior has a context of activation, representing the

situations where it should be used. The preferences of all

behaviors, weighted by the truth value of their contexts, are

fused to form a collective preference. Then one command is

chosen from the collective preference.

 The work described in this paper suggests a solution

based on using fuzzy logic to both implement individual

behavior elements and necessary arbitration (allowing both

fixed and dynamic arbitration policies to be implemented).

We achieve this by implementing each behavior as a fuzzy

process and then using other fuzzy processes to co-ordinate

them.

 Each fuzzy process provides some basic machine

behavior. In this system four behaviors will be used for

robot navigation, namely goal seeking, obstacle avoidance,

right edge-following and left edge following.

 In the obstacle avoidance behavior, the robot is required

to avoid obstacles from the front. To accomplish this task,

the three front sensors of the robot are used, which are the

Left Front Sensor (LFS), Medium Front Sensor (MFS) and

the Right Front Sensor (RFS). The sensor configuration is

shown in figure (2).

 The left and right edge following are used to follow a

wall or an edge on the left or right side of the robot , thus

enabling it to navigate out of mazes and in tight corridors.

The Left edge following behaviors uses two left side

sensors : Left Side Front (LSF), Left Side Back (LSB). The

Right edge following behaviors uses two Right side sensors

: Right Side Front (RSF), Right Side Back (RSB).

 The goal seeking behavior is used for the robot to reach

a goal, and the path of the robot to its goal is completely

reactive with no previous planning and the goal in our

experiments is in the form of an infra-red beacon. To

accomplish this behavior the input to this behavior is from

an infra-red scanner.

In he 8th International Conference on Fuzzy Systems (FUZZ-IEEE'99), Seoul, Korea, August 22-25, 1999

© Essex University 1999

6

Figure 2 : The robot and its sensor configuration.

(a) (b)

Figure 3: a) The Membership function (MF) of the front

sensors b) The MF of the side sensors.

 In this work all input Membership Functions (MF) of all

the behaviors are pre specified to the controller and are

shown in Fig. 3, Fig. 5. The output MF of all the behaviors

are shown in Fig. 4-a and are chosen to be the right and left

wheel velocities. These MF were used in our previous work

to guide a robot in an outdoor agricultural environment and

they were derived using human experience according to the

designer estimates of the safety distances as well as the

upper and lower limits of the sensor readings.

 The rule bases of the left and right edge following and

the obstacle avoidance are to be learnt and modified on-line

using real robots and using the proposed on-line GA

algorithm, however we have supplied the rule base of the

goal seeking behavior which was designed using human

experience. The reason for this is, in this work we are

interested in solving the problem of getting out of a maze

safely without hitting any obstacles, and we are not

interested of finding the optimal path toward the goal, we

are only interested in reaching this goal, which is the case in

an agricultural domain.

 In the following design of each single behaviour we will

use singleton fuzzifier, triangular membership functions,

product inference, max-product composition, height

defuzzification. The selected techniques are chosen due to

their computational simplicity.

The equation that maps the system input to output is given

by:

 (1)

Where M is the total number of rules , y is the crisp output

for each rule, Ai is the product of the membership

functions of each rule inputs, G is the number of inputs.

More information about fuzzy logic can be found in [15].

 The resultant architecture takes a hierarchical tree

structure form and is shown in Fig. 6. Saffiotti [24] defines

fuzzy command fusion as interpretation of each behaviour

producing unit as an agent expressing preferences as to

which command to apply. Degrees of preferences are

represented by a possibility distribution (or fuzzy as in our

case) over the command space. In our hierarchical

architecture we use a fuzzy operator to combine the

preferences of different behaviour into a collective

preference.

 According to this view, command fusion is decomposed

into two steps: preference combination and decision. In

case of using fuzzy numbers for preferences, product-sum

combination and height defuzzifcation. The final output

equation is [24]:

C= (2)

Where i = right behavior, left behavior, obstacle avoidance,

navigation. Ci is the behavior command output (left and

right velocity in our case). These vectors have to be fused in

order to produce a single vector C to be applied to the

mobile robot. BWi is the behavior weight. The behavior

weights are calculated dynamically taking into account the

situation of the mobile robot. By doing this there is no need

to pre-plan as the system plans for its self depending on the

current situation of the environment.

 In figure(6) each behavior is treated as an independent

fuzzy controller and then using fuzzy behavior combination

we obtain a collective fuzzy output which is then

deffuzzified to obtain a final crisp output.

 In behavior coordination there are some few parameters

that must be calculated in the root fuzzy system. These

parameters are the minimum distance of the front sensors

which is represented by d1, in this case A= 40 c.m, B=100

c.m. The minimum distance of the left side sensors which is

represented by d2 , the minimum distance of the right side

sensors is represented by d3, in this case A=18 c.m, B=36

c.m (these values were designed according to the designer

interpretation of safe distances) After calculating these

values, each of them is matched to its membership function

which are shown in Fig. 4-b and these fuzzy values are used

as inputs to the context rules which are :

0 22 45 100 c.m.

Near Med Far Near

0 18 40 80

Med Far

1

0

1

0

Front
Sensors

MF

Side
Sensors

MF

c.m.

The Infrared
detector

The Front
Sonar sensors

The Left Sonar
sensors

The right
Sonar sensors

In he 8th International Conference on Fuzzy Systems (FUZZ-IEEE'99), Seoul, Korea, August 22-25, 1999

© Essex University 1999

7

IF d1 IS LOW THEN OBSTACLE AVOIDANCE.

IF d2 IS LOW THEN LEFT WALL FOLLOWING

IF d3 IS LOW THEN RIGHT WALL FOLLOWING

IF d1 IS HIGH AND d2 IS HIGH AND d3 IS HIGH

THEN GOAL SEEKING.

(a) (b)

Figure 4: a) The MF of the left and right wheel velocity of

the robot. b) The MF of d1,d2,d3.

Figure 5: The MF of bearing from the goal for the goal

seeking behaviour

These context rules determines which behaviour is fired and

to what degree, then the final robot output is calculated

using equation 2.

Figure 6: The behavior coordinated system.

III. OVERVIEW OF THE PROPOSED ON-LINE ALGORITHM

 In this work, we are considered of making the robot learn

to adapt its combined behaviors to achieve a high level goal

which is getting out of a maze while avoiding obstacles.

Table 1 : The Fuzzy rule base of the goal seeking

behaviour.

Bearing From

Goal

Left Velocity RightVelocity

Very Very Negative Very Low Very High

Very Negative Very Low Very High

Medium Negative Low Medium

Normal Very High Very High

Medium Positive Medium Low

Very Positive High Very Low

Very Very Positive Very High Very Low

 In a real-time GA, it is desirable to achieve a high level

of online performance while, at the same time being

capable of reacting rapidly to process changes requiring

new actions. Hence it is not necessary to achieve a total

convergence of the population to a single string, but rather

to maintain a limited amount of exploration and diversity in

the population. Incidentally, it can be observed that near-

convergence can be achieved in terms of fitness, with

diverse structures. These requirements mean that the

population size should be kept sufficiently small, so that

progression towards near-convergence can be achieved

within a relatively short time. Similarly the genetic

operators should be used in a way that achieves high-fitness

individuals in the population rapidly [18].

Figure 7: Block diagram of the Proposed on-line algorithm.

Obstacle
Avoidance

Left edge
Following

Right edge
Following

Goal
Seeking

 Fuzzy Behaviour Combination

 DEFUZZIFICATION

The whole memory is scanned

and a starting point is

provided to the GA

Root Fuzzy

System

Output

FLC

ENVIORNMENT

Inputs

Outputs

Finding the Most effective Rules

(MER) that resulted in crashing

(only if this is a new situation,

otherwise skip this step)

Fitness determination and Credit

assignment of the participating
rules in this situation

Forming a population of the

 participating rules and applying

adaptive GA operations to generate

new rules

Memory Matching with the
current situations

Replacement of the

MER Rule actions

by actions from the
memory

Replacement of the

MER Rule actions

by actions

produced by GA.

Crashing sensed by

bumper switches

-9 -2 0 9 13 c.m/sec

Very
Low

Low Med

1

0

Wheel
speeds

MF High

0 A B c.m

Low High

1

0

Minimum
Distance

MF

Very

very
Negative

Very

Negative
Med

Negative
Normal Med

Positive
Very

Positive

Very

very

Positive

1

0

Bearing

MF

-200 -180 -120 -60 0 60 120 180 Degrees

In he 8th International Conference on Fuzzy Systems (FUZZ-IEEE'99), Seoul, Korea, August 22-25, 1999

© Essex University 1999

8

 Fig. 7 introduces a block diagram of the operation of the

proposed on-line algorithm. In this system as we are

concerned in adapting an existing controller to the existing

environment, we will assume that all the behaviors have

useless rules that cannot achieve the robot goal (which is

getting out of a maze while avoiding obstacles) and need to

be modified. This can also be viewed as learning the rules

of the different behaviors from scratch. As argued by [21],

if the robot starts with a random rule base then it can do

unpredictable things which can damage the robot or turn the

robot on spot with out moving at all. To avoid this problem,

the obstacle avoidance behavior as well as the right and left

wall following are randomly initialized to have the same

consequent such consequent is move forward with normal

speed or move to the right with low speed, but not move

with zero speed. By doing this then we make sure that the

robot is moving to start its learning sequence. This is

similar to classifiers systems where all the classifiers are

initialized with same fitness strength. In the following

sections the algorithm component will be introduced.

A. Finding the Blamed Rules

 After rule base initialization of the three behaviors the

robot starts moving with these bad rule bases, until it hits an

obstacle or wall. Then the on-line algorithm is fired to

generate new set of rules to escape from this collision. As in

classifier systems, in order to preserve the system

performance the GA is allowed to replace a subset of the

classifiers (the rules in our case). The worst m classifiers

are replaced by m new classifiers created by the application

of the GA on the population. The new rules are tested by

the combined action of the performance and apportionment

of credit algorithms [6]. In our case, only 4 rules

consequences will be replaced and these rules are the most

effective rules in the situation of crashing, because they are

the mostly blamed for this crashing. These rules are found

by making the robot using its Short Time Memory that

maintains the last 2000 actions and replaying them to

remember the robot path and find the blamed rules. The

distance backed at this step will be used after as the starting

point of all the solutions proposed by the algorithm. The

method of specifying the rules to be replaced will be

explained later in detail.

B. Fitness determination and Credit assignment:

 The system fitness is evaluated by the distance moved by

the robot from its starting point before crashing. To

determine this distance we use triangulation between 3

infrared beacons placed at known distances to know how

far away is the robot from an origin point. And then by

subtracting this distance from the distance of the starting

point from the origin we can know the

distance the robot had travelled before crashing.

C. LTM Application

 After determination of the rules whose consequences to

be replaced, the robot then matches the current rules to

chunks of rules stored in a LTM. If for examples we have

rules 1,2,3,4 to be replaced and in the first chunk we have

the consequences of rules 1,3,6,7. Then the consequences of

rules 1,3 will be changed and 2,4 will remain the same.

Then the robot begins moving with this modified rule base.

If it survives and gets out of this situation with no collision

then these rules are kept in the rule base of the controller

and we have saved the process of learning a solution to this

problem from the beginning by using our memorized

experience. If the robot crashes again, it returns to the first

point where it had started and measure the distance it had

moved to determine the fitness of the solution proposed by

this memory chunks. After all memory chunks have been

examined and the robot still crashes, the best solution

proposed by LTM is kept in the rule base of the controller,

in order to serve as a starting position of the GA search

instead of starting from a random point. This LTM will

serve to speed up the search.

D. Producing New Solution by GA

 The GA then starts its search for a new rule

consequences for the blamed rules. The fitness of every rule

in the population is proportional to its contribution in the

final action. If the proposed action by the new solution

results in improvement in the distance then the rules that

have contributed more will have their fitness increases than

the rules that have contributed less in this situation. If the

result was a decrease in the distance then the rules that have

contributed more to this action will have their fitness less

than the rules that have contributed less to this action. This

allows us to go away from the those points in the search

space that causes no improvement or degradation in the

performance. The method employed in credit assignment

will be discussed later.

 Then the parents for the new solution are chosen

proportional to their probability using the roulette-wheel

selection process. And the genetic operations of crossover

and mutation are applied. The crossover is selected to be

1.0 by empirical experiments and the mutation is variable

according to the improvement in the distance. If this there is

no improvement or there is degradation then the mutation is

set to high probability was chosen to be 0.5 by empirical

experiments, which means that we want to introduce new

genetic materials in the solution. If the result was

improvement then the mutation rate is lowered proportional

to this improvement until it reach a high limit (to be

discussed later) , the mutation is set to zero which means

that we want to keep this genetic material with no high

disruption and to fine tune the solution using crossover.

Binary coding is used in coding of the chromosomes.

 After the GA generates a new solution the robot tries the

controller with the modified rule base, if the robot had

moved a certain distance with no crashing (to be

determined later), then this is an ending criteria, which

means that the robot had learnt this situation. Then the

robot keeps this solution to the rule base and keeps it in the

LTM. If not It tries from the step B skipping step C.

In the following section we will explain these steps in more

detail.

In he 8th International Conference on Fuzzy Systems (FUZZ-IEEE'99), Seoul, Korea, August 22-25, 1999

© Essex University 1999

9

 The proposed system can be viewed as a double

hierarchy system in which the fuzzy behaviors are

organized in a hierarchical form and the online learning

algorithm is also a hierarchy in which in the higher level we

have a population of solutions stored in the LTM and they

are tested in a queue , if one of these stored experiences

leads to a solution then the search ends, if none of these

stored experiences leads to a solution then each of these

experiences acquires a fitness by finding the distance it had

moved before colliding. The highest fitness experience is

used as a starting position to the lower level GA which is

used to produce new solution to the current situation.

IV. DETAILED ALGORITHM DESCRIPTION

A. Finding the Blamed Rules

 The robot is equipped with a Short Time Memory (STM)

composed from the last 2000 actions the robot had taken

using the HFLC till collision (with an obstacle or a wall).

When it begins moving again using the new generated rule

base the STM is initialized to record the new 2000 actions.

 As mentioned before the robot starts its operation by

moving using the initial rule base until collision. At the

moment of collision the robot begins backing off by

replaying the actions that are stored in the memory starting

from the last action it had taken.

 We want to determine the distance it backs off to make it

escape from crashing again and to enable us to find the

blamed rule for this crash. In the following analysis we will

try to make all the computations related to the robot

dimension, so that when we move from large robot to small

robot, the algorithm can still work but with changing some

parameters in the algorithm that depend on the robot

dimensions. This means that our algorithm is robot

independent and it is not developed for one kind of robot.

Figure (8): The Robot turning distances.

 As the collision with an obstacle requires steering away

from it, then we are required to find the minimum distance

that if we applied maximum steering we can pass without

hitting the obstacle.

 The minimum front distance from which the robot if

applied maximum steering can escape from hitting an

obstacle is equal to the width of the robot (W) as shown in

figure (8). The robot also must satisfy that at this point the

left and right side will also be safe at turning. This can be

satisfied be making the minimum distance from the left

walls (X1) equal to L1-W and from the right side X2 equal

to L2-W. Then if we made the robot back off until the

minimum front sensor is equal to or just greater than W,

and the minimum left sensor is equal to or just greater than

X1,and the minimum right sensor is equal to or just greater

than X2. In this distance if the robot applied maximum

steering, it should avoid the obstacle safely. We will call

this distance the First Backing (FB). This technique is also

efficient when encountering dead ends or when the space is

tight for the robot to maneuver, in this case the robot will

go back until it is possible for it to maneuver.

 But doing this means that the robot at this distance must

try maximum steering to get out of this situation, while if it

backed more, it can apply less steering and get out of this

situation. This is similar to a driver near an end of a corner

tries maximum steering to get out of this situation, while if

he backed more he can easily get out of this situation. Also

if corrected our self earlier we can avoid collision. So we

will back another distance double the FB and we will call

this Second Backing (SB). At the end point of SB the robot

stops backing and consider this point its starting point of all

the next iterations.

 As mentioned earlier we cannot replace all the rules in

the population, so we will replace only a part of the

population. We will choose to replace the most two

effective rules in each backing, these rules are blamed,

because if they had taken the right actions, the robot can

avoid collision. So at FB we stop and find all the rules that

fired at this situation and evaluate strength of each rule by

how much it contributed to the final action, the greater it

contributes the larger it will be blamed for collision by

reducing its initial fitness with respect to other rules, the

most two effective rules (lowest fitness) consequents will

be replaced later by two new rules consequents. The robot

then backs and at SB it does the same for the rules at the SB

situation, and the most two effective rules (lowest

fitness)consequents will be replaced later by two new rules

consequents. The population of GA is composed of all the

rules that have contributed to the actions at FB, SB.

B. Fitness determination and Credit assignment

 In this work, we are considered in making the robot learn

to adapt its combined behaviors to achieve a high level goal

which is getting out of a maze while avoiding obstacles .

This could be done by introducing the robot to different

situations (such as corridors, obstacles, walls) and through

avoiding collisions with these objects, the robot can learn

these tasks by adapting its combined behaviors. In this case

reinforcement is available only when the performing system

collides or escapes from collision after an ending criteria.

The state of the performing system where the performance

is evaluated is called a reinforced state [2]. The

 W

THE ROBOT

BEORE

ROTATING

THE ROBOT

AFTER

ROTATING

L1 L2

X1 X2

W

L2

L1

In he 8th International Conference on Fuzzy Systems (FUZZ-IEEE'99), Seoul, Korea, August 22-25, 1999

© Essex University 1999

10

achievement of a reinforced state may not depend only on

the last action done, but also on the state from where it has

been applied, i.e. , on the actions done before. This is called

delayed reinforcement [2]. Delayed reinforcement concern

tasks where the performing system needs time to express its

behavior. For example; this is the case for an agent blocked

in a corner that should maneuver to escape. It should apply

maneuvering behavior for a given period, to be able to

demonstrate its ability. Only at the end of this period it may

receive a reinforcement that judges its performance. If this

is evaluated too early, the system will never discover how

to escape, since the intermediate states are not desirable per

se, but as part of the escaping maneuver. The only

possibility is to evaluate the agent’s performance when it

succeeds in escaping, and when it is collides with that

corner. From this we evaluate the performance of an agent

after a sequence of control steps called episodes. This

evaluation strategy averages the effects of the single rules,

and, in general, it has a stabilizing effect [2]. At the end of

each episode, the reinforcement program evaluates the

agent’s performance and it distributes the corresponding

reinforcement to the rules that have contributed to control

actions at FB and SB.

 In the following actions we will not use the Bucket

Brigade algorithm for apportionment of credit assignment.

As discussed in [26], the bucket-brigade algorithm may

loose effectiveness as action sequences grow long, and as

we use HFLC system we have long chains of rules. So we

will only apply credit assignment to the rules FB and SB, as

it will be shown that modifying these rules is sufficient to

find a solution and there is no need to backward chaining.

 The fitness of each rule at a given situation is given as

follows:

By applying equation (2) and substituting Ci from

equation(1) we can write the crisp output Yt as:

 (2)

 Where M is the total number of rules , y is the crisp output

for each rule , Ai is the product of the membership

functions of each rule inputs. G is the number of the input

variables, mmy is firing strength of each of the four

behaviors.

 Because we are having two output variables which are

the left and the right wheel speeds, then we have Yt1 and

Yt2. Then the contribution of each rule p for a behavior y to

the total output Yt1 is denoted by Sr1 where Sr1 is given by:

Sr1 = (3)

Sr2 is given by:

Sr2= (4)

 If there is improvement of the distance, then the rules

that contributed more must be given more fitness to boost

their actions. If there is no improvement then the rules that

contributed more must be punished by reducing their fitness

w.r.t to other rules and beginning examining the solutions

that were proposed the small contributing actions.

The fitness of each rule is given by:

Srt = Constant + (dnew-dold) (5)

where dnew is the distance after producing a new rule base

by the online algorithm, dold is the distance moved by the

robot from the previous iteration, dnew-dold is the distance

improvement or degradation caused by the adjusted rule

base produced by the algorithm. In the first population of

GA, as there is no distance moved yet, we blame only the

rules that have contributed more for the action of collision

and the fitness of each rule is given by:

Srt = Constant - (6)

O
A

r

y

b

x

Robot

a

In he 8th International Conference on Fuzzy Systems (FUZZ-IEEE'99), Seoul, Korea, August 22-25, 1999

© Essex University 1999

11

Figure (9): The Position estimation using the 3 infrared

beacons.

 In this way the rules that have contributed more to this

bad action will have lower fitness value than the rules that

have less to this action which allows the GA to go away

from these bad actions and begins exploring other actions.

1) Determination of the distance moved by the robot

 In simulation, it is very easy to determine exactly,

the distance the robot had moved, while in real world it is

difficult.

 In the lab experiments to determine this distance we have

used three infrared beacons placed at right angels and at

known distances a, b, and the infrared scanner sensor

mounted on the robot gives bearing of the robot w.r.t. the

three beacons. The distance of the robot from a point O

(beacon number zero) is given by:

r = (7)

where C is given by and is given by:

tan()= .

 At the first collision of the robot (sensed by its bumper

switches) and after the FB and SB. The robot at the end of

SB calculates its distance r from point O which will be the

original point for any new distance and is denoted by ro. For

example if the robot moves new distance r1, then dnew will

be equal to:

 (8)

C. Long Time Memory (LTM) Application

 Zhou [27] presented CSM (Classifier System with

Memory) system that addresses the problem of long versus

short term memory, i.e. how to use past experience to ease

the problem solving activity in novel situations. Zhou’s

approach is to build a system in which a short and long term

memory are simultaneously present. The short term

memory is just the standard set of rules found in every

learning classifier system; the long term memory is a set of

rule chunks, where every rule chunk represents a

generalized version of problem solving expertise acquired

in previous problem solving activity. Every time the agent

is presented a problem it starts the learning procedures

trying to use long term experience by means of an

appropriate initialisation mechanism. Thereafter, the system

works as a standard classifier system-except for some minor

changes- until an acceptable level of performance has been

achieved. It is at this point that a generalizer process takes

control and compress the acquired knowledge into a chunk

of rules that are memorized for later use in the long term

memory.

 In our system, as the robot begins the motion, it had no

previous experience at all and the memory is empty. But as

it begins learning by GA , it begins filling the memory with

chunks of rules. Each rule chunk is consisting of the rules

that were learnt and the actions (consequences) that were

learnt by the GA.

 Each time the robot is presented a situation to learn, it

begins checking if the rules to be modified are present in

the memory chunks or no. If for example we have rules

1,2,3,4 to be replaced and in the first chunk has the

consequences of rules 1,3,6,7. Then the consequences of

rules 1,3 will be changed and 2,4 will remain the same.

Then the robot begins moving with this modified rule base.

If it survives and gets out of this situation with no collision

then these rules are kept in the rule base of the controller

and in this way we have saved the process of learning a

solution to this problem from the beginning by using our

memorized experience. If the robot collides again, it

measures the distance it had moved to determine the fitness

of the solution proposed by this memory chunks using

equation (7). After all memory chunks have been examined

and the robot still collides. The best solution proposed by

LTM is kept in the rule base of the controller, in order to

serve as a starting position of the GA search instead of

starting from a random point. This LTM will serve to speed

up the search.

 By doing this our system does not need the matcher

calculations in [27] as our system does not use the binary

message coding and the don’t care conditions and always

we use perfect match. We also don’t need the generalizer.

The chunks are laid in a queue starting from our recent

experience.

 The problem occurs as the system begins accumulating

experience that is exceeding the physical memory limits.

This implies that we must get rid of some of the stored

information as the acquired experience increases. However

we don’t favor this, because this means that some of the

experiences the robot have discovered as solutions will be

lost (which is similar to a situation of a sinking boat where

we have to sacrifice some of the passengers and keep others

according to their relative importance). So for every rule

chunk we attach a difficulty counter to count the number of

iterations taken by the robot to find a solution to a given

situation, we also attach a frequency counter to count how

much this rule have been retrieved. The degree of

importance of each rule chunk is calculated as the product

of the frequency counter and the difficulty counter, which

tries to keep the rules that the robot had done a lot of effort

to learn them (due to the difficulty of the situation) and

also the rules that are frequently used . When there is no

more room in the long-term memory, the rule chunk that

had has least degree of importance is chosen to be replaced.

If two rule chunks share the same importance degree, tie-

breaking is resolved by a least-recently-used strategy. The

rule that has not been used for the longest period of time is

replaced. Thus an age parameter is also needed for each

rule chunk. The value of the age parameter increases over

time, but is initialized whenever the associated chunk is

In he 8th International Conference on Fuzzy Systems (FUZZ-IEEE'99), Seoul, Korea, August 22-25, 1999

© Essex University 1999

12

accessed. The limit for the memory chunks is set to 2000

rule chunks, so if we exceed this limit we begin using the

degree of importance and age operator to optimize the

LTM. Of course not all the 2000 chunks will be used in

each trials, because we will use the chunks that contains the

rules that match the current situation.

D. Producing new solutions by Genetic Algorithms.

 The GA is the rule discovery component for our system

(as in the classifier system). The GA is applied to learn a

new solution for a certain situation, after the solutions

stored in the LTM fails. The GA produces new solutions

that replaces the most two dominant rules at FB and the

most two dominant rules at SB.

 As mentioned earlier the GA starts by modifying the

actions of the most two dominant rules at SB (to modify the

earlier rules that, if their actions were true the robot can

easily get out of this situation), we will call this First

Replacement (FR). If the robot does not find a solution

within a certain number of iterations, chosen empirically to

be three iterations, the robot begins modifying all the rules

actions of FB and SB, we will call this Second Replacement

(SR).

Figure (10): The robot is in a situation composed of two

sub-situations, one is right turn followed by left turn.

 The robot then starts moving with the modified rules. If

the robot moved a distance above the distance needed for

the ending criteria of this situation (to be determined later),

this will be considered a solution, until it collides again

(requiring it to learn a new situation). If the number of

generation exceeds a certain number of generations chosen

empirically to be six with no solution found then we

decrease the situation ending criteria to half the distance.

This means that this situation cannot be learnt as one

situation and must be split into two situations such as figure

(10). Splitting this situation into two sub-situation is

essential for producing a solution.

 The population of the GA during the FR will be the

actions of all the rules that have contributed to the SB

(which is usually a small population of 6-12 rules

depending on the situation). While in the SR the population

will be consisting of all the rules that contributed to the FB

and the SB. The crossover and mutation probabilities play

a great role in the GA fast convergence, in which we are

interested very much. The selection procedure for these

probabilities will be discussed in detail.

 The crossover probability pc controls the rate at which

the solutions are subjected to crossover. The higher the

value of pc, the quicker are the new solutions introduced

into the population. As pc increases, however, solutions can

be disrupted faster than selection can exploit them. The

choice of pm is critical to the GA performance, large values

of pm transform the GA into a purely random search

algorithm, while some mutation is required to prevent the

premature convergence of the GA to sub optimal solutions.

The traditional role of mutation has been that of restoring

lost or unexplored genetic material into the population to

prevent the premature convergence of the GA to sub

optimal solutions. However recent investigations have

demonstrated that high levels of mutation could form an

effective search strategy when combined with conservative

selection methods[25].

 Because we are using small population size , then we

need high mutation rate to allow wider variation in the

search and hence the ability to jump of the local minima.

Also because we start our search of all the rules have the

same consequences which means that all the genetic

materials are the same, hence we need high mutation rate to

introduce new genetic material with out changing the

algorithm to random search. It is also desirable as the

system is showing improvement in fitness (distance), the

mutation rate is decreased for not loosing these genetic

materials that caused this improvement and we depend on

crossover to fine tune these genetic materials to obtain our

solution.

 So the mutation probability we propose will be variable

from one generation to the other, and it will depend on the

distance improvement. In the first generations we will use

high mutation probability found empirically to be 0.5 (to

be shown later). If there is a distance improvement we will

have the mutation linearly reduced until the improvement is

zero, when the improvement is equal to the robot length

(determined empirically as will shown later). If the distance

improvement was the same or was degradation, then the

mutation rate is increased again to 0.5 to find new genetic

materials that might aid in finding a solution.

So the mutation probability will be given by :

pm = if dnew > dold

pm = 0.5 otherwise (9)

 The reduced crossover lowers the productivity of the GA,

since there is less recombination between individuals, and

hence it takes a longer time to obtain good solutions [18],

so as in [18] we will set the crossover probability to 1.0 to

guarantee fast convergence. The above selections will be

justified by the following experiments.

 In the following experiments we wanted to find a

solution for the problem encountered by the robot in figure

The robot

In he 8th International Conference on Fuzzy Systems (FUZZ-IEEE'99), Seoul, Korea, August 22-25, 1999

© Essex University 1999

13

(11) , in which the robot is required to learn only the right

turn in a corridor. In figure (12) we have conducted

different experiments for each mutation value we have tried

6 values of crossover probability starting from 0 to 1 with a

step of 0.2. And then we varied the mutation probability

starting from 0 to 1 with values equal to 0, 0.1,0.3,0.5 ,

0.7,0.9, 1.0. It was found that at zero mutation no solution

could be found because lack of genetic material, the same

was for value of 0.1. At mutation value of 0.3 the fastest

convergence was after 7 iterations with crossover value of

1.0. At mutation value of 0.5 we have the fastest

convergence after 4 iterations with a crossover rate of 1.0.

The same for mutation values of 0.7. At mutation values of

0.9 the system is more or less a random search and the best

performance is at crossover rate 1.0 after 6 iterations. The

mutation rate of 1.0 leads to no solutions at all, because this

means that starting with all the genetic materials the same

as our case, mutation will lead to inversion of the binary

materials and we will end with all the genetic materials the

same again with no new material (i.e. we will end flipping

between the current genetic material and its inversion).

Figure 11: The problem set to the robot to learn the right

turn in a corridor.

 From this figure it is obvious that always as the crossover

rate increases the convergence rate is faster with optimum

value at crossover probability of 1.0. Also the optimum

mutation value was found to be 0.5 and 0.7 but we will

choose 0.5 to be our bound to decrease the risk of ending as

a randomized search.

 In figure (13) we conducted a series of experiments to

investigate the effect of the robot length variation in

equation (9) and is the robot length the optimum parameter.

That is to say if we tricked the robot by saying that its size

is half its original size or double, by doing this we can

investigate the optimum parameter for equation (9) also we

are interested in making our work robot independent (i.e.

when the system is transferred to other robot it will still

work). From figure(13), it is obvious that the original robot

size had given the fastest convergence (after 4 iterations)

whilst any other lengths didn’t give the same fast

convergence (while maintaining the crossover =1 and

mutation using equation(9)).

 In order to be sure that this parameter is optimum we

tried varying the robot sizes and mazes size. By doing this

we are investigating that the effect of the robot length

parameter was not a parameter dependent on the maze and

that by changing the maze size, the optimum parameter

should the robot original length. Figures(14) shows the

robot original length tried with different mazes sizes. Figure

(15) shows half the robot length tried in equation(9) with

different mazes sizes. Figure (16) shows third the robot size

parameter in equation (8) with different robot sizes. Note

that these curves stay the same as figure (13) but they

converge faster as the maze size increases. But we still

have the best convergence results with the original robot

length in equation (9). When we substitute half the length

of the robot in equation (9), a small improvement in the

robot performance will falsely cause the robot to decrease

the mutation so much thus causing the robot to take long

time to converge, the same applies for any smaller length.

Figure 12:The convergence rate specified by the number of

iterations plotted against the crossover probability for

different mutation rates.

 The

Robot

In he 8th International Conference on Fuzzy Systems (FUZZ-IEEE'99), Seoul, Korea, August 22-25, 1999

© Essex University 1999

14

Figure 13: The effect of variation of the robot length in

equation (8) over the rate of convergence (the number of

iterations).

Figure 14: The robot with its original length parameter

with varying maze sizes.

Figure 15: The robot with its half length parameter with

varying maze sizes.

 We use binary coding in the GA. For each rule there are

two actions which are the left and right wheel velocities. As

we have 4 output membership function, so we decode each

action by two bits as follows, Very Low is 00, Low is 01,

Medium is 10 , High is 11. So by doing this we have a

chromosome length of 4 bits.

 Figure (17) shows a description of the GA operation in

which rule number 5 of the obstacle avoidance and rule 7 of

the left wall following are chosen for reproduction by

roulette wheel selection due their high fitness (they have

contributed more with their actions to final action which

caused improvement, or contributed less with their actions

to final action which caused degradation). The crossover of

probability 1.0 was applied to both chromosomes and the

adaptive mutation as well. The resultant off springs were

used to replace the consequent of rules 1 of the obstacle

avoidance and rule 2 of the right wall following which were

mostly blamed at SB. The same technique is used to replace

the consequents of the two dominant rules in the FB.

Figure 16: The robot with third its length with varying maze

sizes.

Figure 17: An example of GA processes in our proposed

classifier system in which rule 5 and rule 7 (which were

selected due to their higher fitness values) are generating

new consequent for rules 1,2 of the FB reversal . The same

will happen with two SB rules.

 However to speed search we will use the ultra sound

information in order to narrow the search space of the GA

and make it avoid regions which will not provide any

solutions, for example it is not a good idea to turn left when

the sensors sense that the left end is blocked or there is

1 0 1 1

0 1 0 1

Rule 5

Rule 1

Rule 7

Rule 2

0 0 0 1

0 0 1 1

Left

Velocity

Right

Velocity

Right

Velocity

Left

Velocity

Right

Velocit

Right

Velocity

Crossover

Point

Crossover

Point

Left

Velocity Left

Velocity

Mutation

Point

Mutation

Point

In he 8th International Conference on Fuzzy Systems (FUZZ-IEEE'99), Seoul, Korea, August 22-25, 1999

© Essex University 1999

15

larger space to turn right. The Mechanism using the

ultrasound sensors works as follows.

 We will call the Left Front Sensor k1, the Right Front

Sensor k2, the Left Side Front sensor k3, the Right Side

Front (RSF) k5. First the robot at the SB checks if k1>k2

and k3>k5 then the direction is left , if k2>k1 and k5>k3

then the direction is right, if k3=k5 check if k1>k2 then the

direction is left if k2>k1 then the direction is right. If all

these condition are violated check the same for the FB to

determine the direction. If every thing fails then either there

is no solution and no turns can be done here and the robot

must go back (which will be done any way by the robot

through the backing procedure, because the robot backs off

till it finds good place to start its turn) or the readings are

the same because going to the left or the right is the same

like going around a wall you can rotate around it from left

or right so have an arbitrary direction say left.

E. The Ending Criteria of a situation:

 We will try also to evaluate this criteria to be robot

independent and maze independent.

 We cannot use time as ending criteria because we are

using variable speed, and also we cannot use the distance

produced by infrared triangulation because this implies

calculating the bearing while the robot is moving, and as we

are using a rotating tarret to get the bearing of the beacons

this implies that high imprecision in distance determination.

 So we calculate the distance moved by calculating the

average speed (average of the left and right speeds) over

one second. Multiplying the average speed by one second

should give the average distance by the robot.

 As in the SB we are at minimum 2W from the front

obstacle and X1 from the left and X2 from the right. If we

assumed that the robot moved W without doing the right

moved and at the position of FB it made the right turn , this

should be rotating with a quarter a circumference of a

circle of radius W making the robot moving . In

order to make sure it is out of this situation, the robot

should escape with its sides L (maximum of L1, L2). Then

the total distance moved by the robot to end a situation is

given by :

W + + L (10)

 So the robot calculates the average distance moved by it

every second. If this distance exceeds the distance given by

equation (10), then the robot had successfully found a

solution to this situation. If the number of generations

exceed 6 then the distance given by (10) is reduced by half,

to split this situation into two situations as described earlier.

V. EXPERIMENTS AND RESULTS

 The robots learns rule bases of different behaviors by

learning different situations while if navigates. The robot

does not learn special situations, but it learn general rules

like if the right sensor is low and the medium sensor is low

and the left sensor is high then go left. By encountering

different situations the robot can fill its rule base. The robot

learns when it needs, for example if the robot was launched

in a corridor, it will learn the rules needed to navigate in

this corridor and it can generalize as we will see later and

navigate in different shapes of corridors, because it had

learnt general and not specific rules. But when the robot is

introduced to a complicated maze with left and right turn

the robot must learn more rules in order to survive. This

also means if the robot after learning a complete rule base,

had changed its kinematics or the ground conditions is

changed, the robot can still adapt itself to the environment

by only adjusting small set of rules with no need to start

learning from the beginning as in learning by simulation. In

the first part of this section we will first introduce our

system to solve difficult situations and develop a rule base

that can solve other mazes easily. Next we will compare our

work with some of the important work in the literature of

using GA (On-line and off-line).

Figure (18): a)The robot learning cycle. (b) The robot path

after learning.

 In the following experiments we want the robot to learn

the coordinated behaviors of obstacle avoidance, left, right

wall following from scratch to get out of a maze without

collision with obstacles. The goal seeking behavior is

specified using human experience to arrive to goal after

getting out of a maze. We have introduced the robot to

difficult situations so that if it learnt hard situations it can

learn easy situations.

Transparent
sheets to

ease

taking
pictures.

The Infra-red

beacons used

for

triangulation

The robot
path

The robot
target

The

modified
robot path

The First
Path

The First
Backing

The First
Backing

In he 8th International Conference on Fuzzy Systems (FUZZ-IEEE'99), Seoul, Korea, August 22-25, 1999

© Essex University 1999

16

Figure (19) : a) The robot response when started from

different starting position., (b) The robot response when

rules are generated with different raw rules.

 In these experiments we assume that the membership

functions are constant and also the behavior co-ordination

membership functions and rules are the constant and are set

to the same values as shown above in section 2.

 We have initialized the rule bases of the behaviors to be

learnt randomly to move the robot forward (biased to right

or left, or with no bias with different speeds not including

zero), this action was done in order to be sure that the robot

is moving and not sitting doing nothing.

 The robot learning cycle discussed above is shown in

figure (18-a) in which the robot moves then collides then it

first backs (FB) and second backs (SB) and generate a

modified set of rules to that situation and then it passes

safely until the rules fail again and the learning cycle

repeats.

 The robot was first introduced to the complicated maze

in figure (18-b) which contains many general situations to

learn such as how to navigate in a corridor, how to do left

turn and how to do right turn, and how to navigate in wide

areas with dead ends. The robot had all its initial rule base

suggesting to go forward with normal speed irrespective of

any obstacles facing the robot.

 After only 44 generations the robots had succeeded in

getting out safely from the maze after modifying the actions

of 15 rules in the obstacle avoidance behavior and 6 rules

in the left wall following behavior and 6 rules in the right

wall following.

 Although the experiment last for about 35 minutes , most

of the time elapsed concerns moving backward and forward

as this takes long time due to the low speed of the robot.

The computation time for each rule generation is 200 ms

using 68020 20Mhz microprocessor.

 After the robot gets safely out of the maze, we replace it

in the starting position to test the robot repeatability and

stability for 8 experiments, the robot have shown that the

robot path is repeatable with in a 92 % in average and stable

as it didn’t crash again.

Figure (20): The control surface produced by the algorithm

for the right wall following behavior, the left graph

represents the RSF sensors and RSB plotted against left

wheel speed, the right graph represents the RSF sensors and

RSB plotted against right wheel speed.

 The robot’s path is shown in figure (18-b) showing it to

have a smooth path through the whole maze, getting safely

out towards its target. Note that the generated control

surface in figure(20) is smooth and continuous

 We have tried the robot at a different starting position as

shown in figure (19-a) and the robot, got out safely which

implies that the robot had not learnt a specific path starting

from a certain point. In order to guarantee repeatability of

the robot, we have started the robot with a different raw

rule bases. The robot got out of the maze and found a

solution after 49 generations, modifying the actions of 14

new rules in the obstacle avoidance behavior, and 6 rules in

the left wall following behavior, and 6 rules in the right

wall following behavior. The robot final response is shown

in figure (19-b).

 Although the rule bases of figure(18-b),(19-b) are

slightly different, they produced a very similar response. It

is difficult to determine which solution is better than the

other as both solutions produce smooth control surfaces and

they have a very similar response. Also almost similar rules

are modified by the algorithm, which are the efficient rules

in the robot motion. Thus we can assume that the solutions

are almost the same. In order to be more confident in our

method and be sure that the robot had learnt general rules

and not a certain geometry. We have tried the robot on

completely different geometry maze. This had very tight

corridors and difficult turns and sparsely distributed

objects. We have tried both solutions on this mazes as

The robot

path

The robot

target

The robot

starting position
RSB

RSF
RSB

RSF

Left speed Right speed

In he 8th International Conference on Fuzzy Systems (FUZZ-IEEE'99), Seoul, Korea, August 22-25, 1999

© Essex University 1999

17

shown in figure(21-a,21-b). The robot in both situations

showed a good response in spite of navigating tight

corridors and making difficult turns. Both solutions

produced similar response. In both solutions we have tried

the robot with no long time memory and we have found that

the robot gives the same solution after 80 iterations. This

justifies the idea of LTM as besides preserving the system

experience, it also speeds up the GA search as starting the

GA from the best found point in the space.

 The distance improvement against the number of

generations (in the situation shown in figure (18-a)) is

shown in figure (22), this figure show how the GA explores

the space first, identifying bad regions and trying to avoid

them and at the sixth iteration it succeeds in finding the

solution (represented by the high improvement of 60).

Figure (21):a)The robot response with the first learnt rule

base tried to different geometry. b)The robot response with

the second learnt rule base tried to different geometry.

 In the next section, we will compare our performance

with three of the most important work in the literature ,

Leitch [17] and Bonarini[2] and Hoffmann[12]. Leitch have

used simulation in his work and Bonarini had used

simulation for his robot then implemented it real robot, as

hoffmann.

Figure (22) The Distance Improvement caused by GA to

the situation of figure (18-a).

(a) (b)

Figure 23: The corridor experiments that were conducted by

Leitch and Bonarini a) Tight corridor b)wide corridor.

 In simulation the problem of distance determination and

robot backing and robot moving speed is completely

ignored because it easy to be done while in training with

real robot most of the time is consumed in moving along

the maze and testing the new solutions, while generating

new solutions does not occupy 5% of the whole learning

time. So when comparing our work with the other research

we will compare with the number iterations needed to find a

solution.

 We start the comparison with [17], [2] with the

conventional corridor tracking problem. We will compare

The robot
start position

The robot
path

The robot
target

The robot
starting position

The robot
target

Transparent
sheets to

ease

taking
pictures.

The robot
path

In he 8th International Conference on Fuzzy Systems (FUZZ-IEEE'99), Seoul, Korea, August 22-25, 1999

© Essex University 1999

18

the results first with [2] in which he places his 60 c.m wide

robot in 3m wide corridor then he moved it to 4m and 2m

wide corridors, then he placed the robot in a complicated

corridor as shown in figure(24-b) . We have done our

experiments with our 25 c.m wide robot preserving the

same ratios with our corridors starting with 1.25 meters and

then moving to 1.67m corridors and 83 cm corridors to test

the portability of the rule bases[2]. But we started the

learning by the hard corridor in figure (24-a) to learn most

of the situations that the robot might face in a corridor. It

took the robot 16 minutes (including backing time and the

slow speed of the robot) to get out of the corridor and to

learn the rule bases of the co ordinated behaviours. It had

learnt 7 rules in the obstacle avoidance behavior, 4 rules in

the left wall following behavior, 4 rules in the right wall

following behavior (i.e. total of 15 rules). It have learnt

these rules in an average of 20 iterations (episodes) over 4

experiments, and it follows the path shown in figure (24-a).

(a) (b)

Figure 24: comparison between our work and Bonarini’s

work a) Our algorithm b)Bonarini’s method

 (a) (b) (c)

Figure 25: comparison between our work and Hoffmann’s

work a) Hoffmann’s method b) Our method with target to

the right c) other method with the target to the right.

 The robot was started from different positions in the

maze for 8 times and the robot had followed the path in

figure (24-a) with a 95% degree of repeatability and with

100% degree of stability as the robot did not crash at all

(note the smooth response of the robot). The robot was

then tried in the tight corridor and the wide corridor in

figure (23-a), figure (23-b) and we tested the degree of

repeatability for 8 times, it was found that the degree of

repeatability of the path was again 95% and the stability

was 100 %. Note that the system objective function is to

maximize the distance moved by the robot before crashing,

and in spite of this the robot tend follow approximately the

center line of the corridor, this is because every wall

following behavior tries to avoid collision with its wall and

because of the final balanced action, the robot follows the

center line of the corridor. Leitch have tried only simple

corridor following using the context depending coding and

he succeeded in generating a solution after 40 generations

(and his rules base should be modified again to solve the

problem of figure (24-b). Bonarini have used his algorithm

on a simulated robot and then he transferred this controller

to the real robot. To solve the problem in figure (24-a) he

needed 471 leaning episodes (iterations).

 In [12] Hoffmann introduces his method of incremental

tuning of fuzzy controllers by means of an evolution

strategy and he gives the bench mark problem at figure

(26-a), he had succeed in finding a solution after 50

iterations with a rule base of 9 rules. In his previous work

he had used messy GA to learn the fuzzy controller and he

had given the example in figure (25-a) (he didn’t give

information about the converging rate). In our algorithm we

have started learning the rule bases for figure (25-a), (We

The robot
target

The robot
path

The robot
start position

The robot
target

The robot
start position

The robot
path

In he 8th International Conference on Fuzzy Systems (FUZZ-IEEE'99), Seoul, Korea, August 22-25, 1999

© Essex University 1999

19

didn’t learn the rule base of goal seeking as Hoffmann).

After 18 minutes (including backing times and the low

robot speed) the robot have achieved its goal successfully

in an average of 20 iterations, learning 7 rules in the

obstacle avoidance behavior and 4 rules in the left wall

following behavior, and 4 rules in the right wall following

behavior. The robot was tried for 8 experiments to test its

repeatability and stability and it had given a path

repeatability of 93% and stability of 100%. The robot is

reactive as shown in figure (25-b), (25-c), as the target

changes its position from the left to the right, the robot

changes its path responsively following the shortest path.

 The same controller was tried to the problem of figure

(26-a) in which the robot moves from a tight corridor to a

wide area then it finds a dead end and then it begins turning

back until it is out of the whole maze. We have done the

same experiment with the previous controller to test its

generality. The robot successfully done the required job (

following the tight corridor, finding the dead end , returning

back and getting out of the corridor). This proves the

generality of the learnt rules.

Figure 26: comparison between our work and Hoffmann’s

work a) Hoffmann’s method b) Our method .

VI. CONCLUSIONS AND FUTURE WORK

 We have developed an on-line fast learning algorithm for

learning and modifying robot behaviors from scratch. The

technique uses online GA to generate the rule bases for 3

fuzzy co-operating behaviors organized in a hierarchical

form. All the behaviors are learnt online with real robots

and through interaction with the real world, satisfying the

definition of an agent.

 We have also solved the real world problems associated

with learning online such as distance determination ,

determination of how much the robot should back when it

collides with an obstacle and determination of ending

condition of each situation. All these parameters were

designed to be robot independent so that if the robot

changes the algorithm can still work by changing only the

parameters that depend on the robot size.

 We have also developed a long time memory technique

in which the robot memorizes all its previous solutions so

that it can use them when faced by similar situations in the

future, this aids the robots to find solutions with out even

needing GA learning and if the robot still crashes it selects

the most appropriate solution to this solution to serve as a

starting point to GA which was shown to reduce the

learning time.

 The proposed system can be viewed as a double

hierarchy system in which the fuzzy behaviors are

organized in a hierarchical form and the online learning

algorithm is also a hierarchy in which in the higher level we

have a population of solutions stored in the LTM and they

are tested in a queue , if one of these stored experiences

leads to a solution then the search ends, if none of these

stored experiences leads to a solution then each of these

experiences acquires a fitness by finding the distance it had

moved before failing. The highest fitness experience is used

as a starting position to the lower level GA which is used to

produce new solution to the current situation.

 This technique is adequate for outdoor robots where the

dynamics of the robot as well as the environment is rapidly

changing and requires the robot to quickly modify itself to

these changes .

 The algorithm is very fast in finding an appropriate

solution; it finds a solution fast compared even with

simulation techniques and the methods found in the

literature for fuzzy robot controller design using GA.

 In order to test the generality of our technique we have

experimented with starting from different points and using

different initial populations, we have also used completely

different geometrical mazes. The robots have shown a

constant response and smooth response to all these changes

which suggest that it had learnt general and not specific

rules.

 The learnt rules will not be frozen as they can be

modified when they fail a certain situation. In this event the

whole behavior will not be learnt, as only the part of the

rule base that has done badly.

 For the future work we will try to learn how to

coordinate these behaviors together. We will also try to

learn the membership functions of the different behaviors

and apply these technique to outdoor robots.

REFRENCES

[1] J. Albus, “Mechanisms of planning and problem solving in the

brain”, Mathematical biosciences, pp 247-295, 1979.

[2] A. Bonarini F. Basso, “ Learning Behaviours implemented as

fuzzy logic and reinforcement learning”, second online workshop on

evolutionary computation ,1996.

[3] P. Bonelli, “ A new Approach to fuzzy classifier systems.

Proceedings of the fifth International conference on genetic

algorithms , pp223-230, 1993.

The robot

path

The robot

starting position

In he 8th International Conference on Fuzzy Systems (FUZZ-IEEE'99), Seoul, Korea, August 22-25, 1999

© Essex University 1999

20

[4] R. Brooks, “ Artificial life and real robots “, MIT press , 1992.

[5] M. Dorigo, M. Colombetti, “ Robot Shaping : Developing situated

agents through learning”, Artificial Intelligence Journal , 1993

[6] M. Dorigo, “ Genetics-based machine learning and behaviour

based robotics: A new synthesis”, IEEE transactions on system, man

and cybernetics, pp 141-154, 1993.

[7] T. Furuhashi, O. Nakaoka” Controlling excessive fuzziness in a

fuzzy classifier system”, Proceedings of the Fifth International

conference on genetic algorithms, pp. 635-637, 1993.

[8] D. Goldberg , “ Genetic Algorithms in search, optimization and

machine learning”, Addison-Wesley, Reading , MA , 1989.

[9] S. Goodridge, M. Kay, R.Luo, “ Multi-layered fuzzy behaviour

fusion for reactive control of an autonomous mobile robot”, Fuzz-

IEEE 1997, pp. 579-584, 1997.

[10] H. Hagras, V. Callaghan, M. Colley, M. West, “ A behavior

based hierarchical fuzzy control architecture for agricultural

autonomous robots”, The International Conferenence on

computational intelligence for modelling, control and automation,

1999.

[11] F. Herrera, O. Cordon, “GA and Fuzzy logic in control

processes”, technical report # DECSAI-95109, University of

Granada, March 1995.

[12] F. Hoffmann , “Incremental tuning of fuzzy controllers by means

of evolution strategy”, GP-98 Conference, Madison, Wisconsin,

1998.

[13] J. Holland , “Genetic Algorithms and classifier systems :

foundations and future directions”, The MIT Press, Cambridge ,

Massachusetts, The MIT Press edition ,1992.

[14] C.Karr , “ Applying Genetic algorithms to fuzzy logic”, AI

Expert , March 1991, pp38-43.

[15] C. Lee, “ Fuzzy logic in control systems: Fuzzy logic controller,

PartI, II, “, IEEE Trans on syst, Man, Cybern, Vol.20 , pp. 404-432,

1990.

[16] C. Lee, Takagi , “Embedding Apriori knowledge into an

integrated fuzzy system design methodbased on genetic algorithm”,

Proc of the Fifth IFSA World Congress, pp1293-1296, 1993.

[17] D. Leitch, “A new genetic algorithm for the evolution of fuzzy

systems, PhD thesis, University of Oxford, 1995.

[18] G. Linkens, O. Nyongeso, “GA for fuzzy control, part2: Online

system development and application “, IEE proc control theory appl,

Vol. 142, pp. 177-185, 1995.

[19] O. Miglino , H. Lund, S. Nolfi., “ Evolving Mobile Robots in

Simulated and Real Enviroments. Artificial Life” Technical Report

NSAL-95007, Reparto di Sistemi Neurali e Vita Artificiale, Istituto

di Psicologia, Consiglio Nazionale delle Ricerche, Roma.

[20] M. Minsky , “Berechung: Endliche and unendliche Maschinen.

Verlag Berliner Union GmbH, Stuttgart.

[21] J. Qin , M. Walters, “A GA-based learning algorithm for the

learning of fuzzy behaviour of a mobile robot reactive control

system”, GA in Engineering systems, Innovation and applications, pp

251-258 , 1997.

[22] P. Reigniev, “ Fuzzy logic techniques for mobile robot obstacle

avoidance”, Robotics and Autonomous system, 12/3-4, pp 143-153,

1996.

[23] V. Rendon ,. “ A classifier system for continously varying

variables”, Proc of the Fourth Int. Conf. On genetic algorithms ,pp.

346-353, 1991.

[24] A. Saffiotti ; Fuzzy Logic in Autonomous Robotics : behavior

coordination.; proceedings of the sixth IEEE Int Conference on

Fuzzy systems , Vol .1 pp 573-578, 1997.

[25] M. Srinivas, L. Patnaik, “ Adaptation in genetic algorithms”, Ga

for pattern recognition, pp. 45-64, 1996.

[26] S. Wilson, “ Hierarchical credit allocation in a classifier system

“, In genetic algorithms and simulated anealing, pp.104-105, 1987.

[27] H. Zhou, “ A computational model of cumulative learning”,

Machine learning journal, pp. 383-406, 1990.

