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Abstract.   This paper describes the design and implementation of a real-time

autonomous mobile robot aimed at navigating in real farms with no operator

intervention. The agricultural environment being targeted consists of an irregular

terrain supporting crops or sparsely populated with objects which gives rise to

complex problems of identification, monitoring and control.

    In this paper we introduce a fuzzy hierarchical controller for such agricultural

robots. The controller utilises co-operating behaviours (obstacle avoidance, edge

following, goal seeking) to navigate in tight spaces and navigate towards its target

(bales of hay, boxes of fruit/vegetables). It can also be used to follow crop edge (for

purposes of crop cultivation, irrigation, etc.). The work advances the subject by

providing a novel hierarchical architecture that simplifies fuzzy controller design

and provides a control architecture with a fast response, robust performance, and

the ability to deal with dynamic outdoor environments.

1. Introduction

    The need for increased farm productivity set against a declining workforce is driving work on

developing fully automated farm machinery, including the development of unmanned agricultural

vehicles[2]. In a factory such automation is relatively simple but in an agricultural setting  the

inconsistency of the terrain, the irregularity of the product and the open nature of the working

environment result in complex problems of identification, sensing and control. Problems can range

from the effects of varying weather conditions on vehicle sensors and traction performance,

through to the need to deal with the presence of unauthorised people and animals. All these

problems provide good opportunities for fuzzy systems as they excel in dealing with imprecise and

varying conditions which characterises such situations.

    Producing fully autonomous farm vehicles is a difficult objective although there have been

notable steps in this direction, such as the Aurora greenhouse robot[6], but the application and

environment variation in the greenhouse is restricted with respect to the outdoor situations. Other

research [5, 7] has investigated using vision in crop harvesting. Also Cho[3] has developed fuzzy

control for unmanned operation of rice combine in simulation.

    The agricultural robot must react to dynamic events in unstructured agricultural environments,

using multiple sensors. For mobile robots, the size of the input space requires a complicated

control function. This mapping can be made more manageable by breaking down the space for

analysis by multiple agents, each of which responds to specific types of situations, and then
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integrating the recommendations of these agents. Agents also called behaviours, pioneered by

Brooks[1], and composed of many simple co-operating units, have produced very promising

results when applied to the control of mobile robots.

    There are many forms of behaviour co-ordination. Classical robot architectures such as the

subsumption architecture[1] use an on-off switching schema: in each situation, one behaviour is

selected and is given complete control of the effectors. This simple scheme may be inadequate in

situations where several criteria should taken into account. Also this rigid organisation contrasts

with the requirement that an autonomous robot can be programmed to perform a variety of

different tasks in a variety of environments[9]. Later proposals relied on dynamic arbitration

policies, where the decision of which behaviour to activate depends on both the current (sub-goal),

given by the planner and the environmental  conditions. Both fixed and dynamic arbitration

policies can be implemented using the mechanisms of fuzzy logic. The two main advantages in

doing so are the ability to express partial and concurrent activation of behaviours and the smooth

transition between behaviours.

    In this paper we present a Hierarchical Fuzzy System. The example we shall present utilises

four basic fuzzy behaviours which are left/right edge following, goal seeking, obstacle avoidance.

We also use the concept of fuzzy context rules developed by [9] in order to have smooth transition

between the behaviours in a reactive way. The proposed system provides a simple design
procedure and achieves smooth behaviour transitions. The system was tested on an indoor mobile

robot navigating an environment consisting of irregular geometrical objects and layout. The robot

successfully escaped from mazes, followed edges, avoided obstacles, and reached its goals. The

same control architecture was then moved to our outdoor robots (a large diesel powered

agricultural vehicle, and an electrical vehicle) with newly developed sensors to deal with

agricultural domain. The robot have been applied under different out-door conditions for large

periods to test the repeatability and stability of the control architectures. The robot has shown a

smooth and stable response, It had shown the ability to deal with various sorts of irregular and

sparse crop edges ranging from weeds and hay to bush hedges. In the following sections we

explain the system and the robots in more detail.

2. The Hierarchical  Fuzzy Logic Controller (HFLC) Design

Lotfi A. Zadeh introduced the subject of fuzzy sets in 1965[11], where he proposed that one of the

reasons humans are better at control than conventional controllers is that they are able to make

effective decisions on the basis of imprecise linguistic information.

    The work described in this paper suggests a solution based on using fuzzy logic to both

implement individual behaviour elements and the necessary arbitration (allowing both fixed and

dynamic arbitration policies to be implemented). We achieve this by implementing each behaviour

as a fuzzy process and then using other fuzzy processes to co-ordinate them. The resultant

architecture takes a hierarchical tree structure form and is shown in figure 2.

    The benchmark tasks targeted by this work are collecting field based objects (e.g. hay bales,

fruit boxes) and cutting crops. In this paper a hierarchical fuzzy controller was developed

(consisting of numerous co-operating fuzzy processes) which aims at facilitating farm vehicles to

safely navigate to target objects such as hay bales. The initial design and experimentation has taken

place within our laboratory and have tested the crop following and object collection tasks

successfully. Then the control architecture was transferred to our out-door robots, and the crop

following task was successfully implemented. In the next stage, we will implement the object

collection task, by adding a vision system developed by our group[10] for bales of hay location

detection which supplies x-y co-ordinates of the bales location.

    In the following design of each single behaviour we will use singleton fuzzifier, triangular

membership functions, product inference, max-product composition, height defuzzification. The
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selected techniques are chosen due to their computational simplicity. The equation that maps the

system input to output is given by
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Where M is the total number of rules , y is the crisp output for each rule, αAip  is the product of

the membership functions of each rule inputs, G is the number of inputs. More information about

fuzzy logic can be  found in [4].

      Figure 1: The indoor robot and its sensor configuration                Figure 2: The behaviour co-ordinated system.

Ruspini [8] defines fuzzy command fusion as interpretation of each behaviour producing unit as

an agent expressing preferences as to which command to apply. Degrees of preferences are

represented by a possibility distribution (or fuzzy as in our case) over the command space. In our

HFLC architecture  a fuzzy operator to combine the preferences of different behaviours  into a

collective preference is used. According to this view, command fusion is decomposed into two

steps: preference combination and decision. In figure 2 each behaviour is treated as an independent

fuzzy controller and then using fuzzy behaviour combination we obtain a collective fuzzy output

which is then deffuzzified to obtain a final crisp output. The proposed system  enables more
flexible arbitration policies to be achieved by using fuzzy meta-rules or context rules. These have

the form IF context THEN behaviour [9] which means that a behaviour should be activated with a

strength determined by the context (i.e. a formula in fuzzy logic). When more then one behaviour

is activated , their outputs will have to be fused and each behaviour output will be scaled by the

strength of  its context. In case of using fuzzy numbers for preferences, product-sum combination

and height defuzzification. The final output equation is given by:
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Where i represent the active behaviours activated by context rules which can be  right/left edge

following behaviour, obstacle avoidance, goal seeking. Ci  is the behaviour command output (left

and right velocity in our case). These vectors have to be fused in order to produce a single vector

C to be applied to the mobile robot. Bwi  is the behaviour weight. The behaviour weights are

calculated dynamically taking into account the situation of the mobile robot. For example, the

obstacle avoidance behaviour weight increases as the obstacle comes closer this can be done by

calculating the minimum distance of the front sensors d1 in figure 6 and then calculating the
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weight of the obstacle avoidance behaviour using the membership functions in figure 6. Then using

the context rules we can determine which behaviours are active and apply equation 2 to obtain the

final output.  By doing this we do not need any pre-plan as the system plans for its self depending

on the current situation of the environment.

    The behaviours implemented in this system are the minimum set of behaviours we need to

demonstrate this architecture working in our target “farm object fetch” application and crop edge

following.

3. The Proposed Architecture

    As explained earlier, the underlying principle is that the robot controller will be built from a set

of fuzzy processes each providing some basic machine behaviour. Thus the first task is to define a

set of basic behaviours that will allow the robot to complete the challenge. This work  uses 4 basic

behaviours, namely goal seeking, obstacle avoidance, right/left edge-following .

    The obstacle avoidance behaviour is used to avoid obstacles while navigating in a field. The

three front sensors of the robot are used , which are the Left Front Sensor (LFS), the Medium
Front Sensor (MFS), the Right Front Sensor (RFS), the configuration is shown in figure 1. We

use here only three input Membership Functions (MF) for each input as shown in figure 3, the rule

base was designed using human experience. The output MF is shown in figure 4 and they are for

left and right wheel velocities of the robot  which is the same for all behaviours.

    The left and right edge following are used to follow an edge on the right or left side of the

robot. The behaviours will be used to follow a crop when initially positioned near a crop and

deactivating the other behaviours. The left or right wall behaviours will be activated to cause crop

following. The right edge following behaviour uses two right side sensors RSF (right side front)

and RSB (right side back) . The left edge following behaviour uses two left side sensors LSF (left

side front) and LSB (left side back). The MF for each input as shown in figure 5. The fuzzy rule

base of the right edge following is shown in table 1 and its complement is the rule base for the left

edge following.

    In goal seeking behaviour, we have one input from the infrared detector and the goals are in the

form of infrared emitting beacons, the input is in the form of bearing of the robot from its goal

sensed by the infrared scanner sensor, its MF is shown in figure 7, the rule base was designed

using human experience. Note that the imprecision of the infrared detector is high which helps to

simulate the problems in the open environment and give our controller a real challenge. In the

outdoor robot, we will determine the bearing from our goal by using our machine vision technique

for locating bales of hay[10]. Note that all the MF and the rule bases will remain the same when

moving the control architecture to the outdoor robots except for the output  MF because in the

outdoor robots we have two independent motors for steering and speed, but we will still have 2

output variables each represented by 4 fuzzy set.

       Figure 3: The input MF of the front sensors.               Figure 4: The output MF of the velocities of the robot.
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    In  behaviour co-ordination there are some few parameters that must be calculated in the root

fuzzy system. These parameters are the minimum distance of the front sensors which is

represented by d1, the minimum distance of the left side sensors which is represented by d2 , the

minimum distance of the right side sensors is represented by d3. After calculating these values,

each of them is matched to its MF which are shown in figure 6 and these fuzzy values are used as

inputs to the context rules which are : IF d1 IS LOW THEN OBSTACLE AVOIDANCE. IF d2 IS
LOW THEN LEFT WALL FOLLOWING. IF d3 IS LOW THEN RIGHT WALL FOLLOWING. IF
d1 IS HIGH AND d2 IS HIGH AND d3 IS HIGH THEN GOAL SEEKING. These context rules

determines which behaviour is fired and to what degree, then the final robot output is calculated

using equation 2. The hierarchical architecture used in our system is shown in figure 2.

Table 1: The Fuzzy rule base of the right edge

RSF RSB LEFT

VELOCITY

RIGHT

VELOCITY

NEAR NEAR VERY LOW HIGH

NEAR MEDIUM VERY LOW HIGH

NEAR FAR VERY LOW HIGH

MEDIUM NEAR HIGH VERY LOW

MEDIUM MEDIUM MEDIUM MEDIUM

MEDIUM FAR VERY LOW HIGH

FAR NEAR VERY HIGH VERY LOW

FAR MEDIUM VERY HIGH VERY LOW

FAR FAR HIGH MEDIUM

                                                                                                               Figure 5:The MF of the side sensors

                                                                                        .

   Figure 6: The MF of the minimum distances,  for d1                             Figure 7: The goal seeking MF.

  A=40 c.m, B=100 c.m. For d2,d3 A=40 c.m., B=80 c.m.

                                 (a)                                                    (b)                                                 (c)

Figure 8: a)The indoor robot escapes a maze and achieves its goal. b) The electrical outdoor robot follows an

irregular fence using its US sensors. c) The diesel outdoor robot follows a real crop edge with its wand sensors.
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4.  Experimental Results

The performance of the architecture has been assessed in two main ways. Firstly we conducted

practical experiments with the indoor robots to track the robot paths and reactions to the

benchmark tasks (which are maze escaping, edge following and goal seeking), as well as trying the

robot in mazes with irregular geometrical shapes as shown in figure 8-a. The same architecture

was then transferred to the outdoor robots. We have used different outdoor sensors such as the

mechanical wands and Ultra Sound (US) sensors which are especially designed to work in the

outdoor environment. Figure 8-b shows the robot path of the electrical outdoor robot when tried

in the university outdoor squares. In this experiment the robot had succeeded in following this

irregular rectangular fence under different weather condition. In figure 8-c we tried the diesel

robot with the mechanical wand sensors in a hay field which has irregular edge and corners. The

robot had given stable, repeatable and robust response, and have tracked the crop edge

successfully within a tolerance of 1 inch.

5. Conclusion

    In this paper we have introduced a new fuzzy hierarchical controller for mobile robots for

application in agriculture. Its main advantages are that it provides a simple design procedure, good

real-time performance and achieves smooth behaviour transitions.
In our experiments the indoor robot navigated successfully in tight corridors, avoided obstacles

and escaped from mazes, dealt with all the irregular shapes that were presented to it. The robot

demonstrated a robust and fast performance. The same control architecture was moved to the

outdoor robots in which the robot gave a similar smooth and fast response and was able to track

various crop edges under different environmental and ground conditions.

    For the future work we will use our vision system to implement the object collection task in the

real field which was implemented in the indoor robots. We are also investigating the integration of

an on-line learning using genetic algorithms into the HFLC in order to learn the fuzzy membership

functions and the rule bases of the different behaviours and their co-ordination using real robots

with no need for simulation, this system is aimed to adapt the robot under different conditions that

the robot might encounter in the real field.
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