
"SPREAD- A Distributed Simulation Toolkit", Proc 29th Int. Symp. Robotics, April 1998, Birmingham, UK

© Essex University 1998 1

SPREAD: A Distributed Simulation
TOOLKIT

P.Chernett V. Callaghan, M. Colley, J.Standeven
email vic@essex.ac.uk

Abstract - this article describes “SPREAD”, a simulation tool kit and
its use in building “Virtual Robots”, a simulation of multiple mobile
robot vehicles used in the teaching of Computer Science at
university level. A novel aspect of the simulator is the use of PVM [1]
to achieve high performance at low cost by using spare CPU cycles
on large numbers of networked workstations.

1. INTRODUCTION

The computer science department at the University of Essex (in
common with other universities contributing to this issue) has for
some time used simple robot vehicles, which we characterize as
Intelligent Autonomous Vehicles (IAVs), in the teaching of
undergraduate computer scientists. We believe that having to test
their science in the physical world provides an antidote to the
increasingly theoretical direction that computer science has taken in
recent years. Further, in building, from the ground up, an even
modestly autonomous robot, it quickly becomes evident to students
that they must draw upon and integrate many areas of the
computer science curriculum from register-level interfacing,
through adaptive control to full-blown AI issues such as planning,
machine vision and world modeling..

Fig. 1-1 “Trillian”, one of the Essex robots.

One way to provide wider access to limited and expensive physical
resources such as robots is by simulation. By allowing students to
prepare their work before their allocated time-slot on the real
robots, that time can be more efficiently and productively spent. In
addition, once programs have been verified in the “real” world,
simulation can be used to run experiments that go beyond the
physical resources of the laboratory. A prime example of this is in
the area of multi-agent AI where simulation can allow
experimentation with large numbers of virtual robots where only a
few may be available in reality.

There are, of course, several commercially available packages for
supporting this type of simulation. Unfortunately the cost of these,
and the specialist workstations needed to run them put them
beyond the means of departments that only require the facility as a

relatively small part of their overall activity. There are several low-
cost or shareware simulation packages available but many (for
example Simderella [2]) assume static robots with manipulator arms
rather than IAVs. Other popular robot vehicle simulators, such as
Xmouse [3], are usually built on very simple models that have little
relation to any real robots and can often only deal with single
robots. Those that do simulate multiple robots such as Mission Lab
[4] are often at a very high level and don’t allow detailed simulations
of individual robots. Yet others such as Khepera [5] are tied to
particular vehicles.

Our approach has thus been to develop the SPREAD simulation
engine to supports the simulation of complex worlds, inhabited by
multiple autonomous vehicles, each of which may be modeled as
many parallel embedded processes. Overall performance is
maintained by distributing execution across a network of
computers. An important design aim was machine independence so
that the system could be used in a wide range of institutions while
still taking advantage of whatever hardware they happened to have
available. This portability extends to the worlds to be simulated as
well as to the simulator itself.

In this paper SPREAD is discussed in the context of the “Virtual
Robots” simulation tool used in the Brooker Laboratory for
Intelligent Embedded Systems at Essex. Virtual Robots was built
using the SPREAD toolkit and has been in use in the department
for several years.

We will first describe the architecture of SPREAD and its use in
Virtual Robots. This will be followed some performance figures
and a brief description of our future plans.

2. THE SPREAD ARCHITECTURE

Fig. 2-1 Overall Architecture of the Simulator

The simulator structure (see Fig. 2-1) consists of the following types
of module: console, display, world, collision control, actuator,
sensor, memory, controller, moving obstacle and active target.

A single world server and collision control server form the kernel
of the simulator. The world server maintains a database of the
position of all objects in the simulated world. The collision control

"SPREAD- A Distributed Simulation Toolkit", Proc 29th Int. Symp. Robotics, April 1998, Birmingham, UK

© Essex University 1998 2

module negotiates with objects that have collided and reports back
the result to the world server.

Each robot consists of a controller, an associated set of sensors
and, if the I/O to be modeled is memory mapped, a memory
module.

 The console, of which there must be exactly one, provides control
of the simulation itself and is responsible for starting and
terminating the simulation as well as making run-time adjustments
such as the level of detail to be simulated. Display modules, of
which there may be several, present the current state of the
simulation to the users.

Along with the modules of the simulation itself the complete
Virtual Robots package includes graphical editors for designing
environments and setting up initial conditions for simulator runs,
such as the position and orientation of the IAVs.

3. THE USER INTERFACE

1. There are four classes of SPREAD user:
2. those that simply use it via a GUI like Virtual Robots, together

with an accumulated set of robot and robot parts,
3. those that want to write and test robot controllers, normally in

parallel with testing the same controllers on real robots,
4. those that want to add new simulations of robot parts, and

finally
5. those that want to build new GUIs on top of SPREAD
The way each of these groups interacts with SPREAD is discussed
below:

3.1 Using an existing GUI

The only reasonably complete GUI to be written so far is the
“Virtual Robots” simulator that we use at Essex although a start
has been made on an X version. Virtual Robots is described in
more detail below.

There are three tasks that the GUI has to perform:

First the initial conditions for a simulator run have to be set up.
This includes placing all the static objects into the environment,
including boundary walls, obstacles, detectable tracks on the floor
and so on. Active targets such as beacons need to be placed and
have their characteristics defined such as aperture angles, ranges
and identification numbers. Robots need to be “built” by placing
sensors and actuators and deciding their characteristics. Finally the
initial position and orientation of the robots need to be decided.

The second task of the GUI is to start up the display processes.
There can be as many of these as desired and they can be placed on
any of the participating workstations. Virtual Robots has only one
sort of display that is described below.

Finally provision must be made for controlling the simulation itself.
There can only be one of these and in Virtual Robots it comprises a
simple panel with “START”, “Stop”, “Reset” and “Exit” buttons.
In addition it has a slider that sets the amount of real time that each
“tick” of simulated time represents.

3.2 Writing new robot controllers

Assuming that a simulated robot has been set up that matches the
real robot under test the SPREAD API imposes very few changes
on the C or C++ source code in which controllers are normally
written. Programmers must provide a parameterless function that

reads from memory mapped sensor locations and writes to similarly
mapped actuator “registers”. Code must be “bracketed” by
initialization calls that subscribe the controller program to the
simulation and cleanup code that is called on simulation exit..
Assignments to mapped memory have to replaced by the “peek”
and “poke” functions of the API.

A final optional job is to add a simple polygon definition to a
textual configuration file that enables the simulation GUI to display
the new robot in a distinctive way.

3.3 Writing simulations of new hardware

The main task here is to write a program that has three main
functions:

The first registers the program with the simulation, retrieves
parameters from a text based configuration file including the
location of its memory-mapped registers, and retrieves a copy of a
list of all the static objects in the world and the current length of the
time quantum.

The second is called when the simulator terminates and allows the
program to perform any cleaning up such as removing temporary
files.

The third implements the model itself and is called at the start of
each time quantum. At each call the program must retrieve the new
locations of all mobile objects and use these together with the list of
static objects to calculate its output values. For sensors this is
straightforward; it just has to “poke” them into the relevant
locations and send an “end quantum” notification back to the
world server.

For actuators, the output value represents the new position that the
controlled object would occupy in the absence of any mobile
obstacles. This, may lead to anomalies if some other actuator
process has placed another object in the same position. In the real
world the objects would have collided and rebounded in some way.
At present the provisional positions are sent to a collision server
that resolves the anomaly and returns the resultant position back to
the actuator process for use in the next time cycle.

3.4 Writing new GUIs

SPREAD makes this easy by providing many functions to register
with and leave the simulation, to register as a member and to leave
“process groups” such as the display group, to send and wait for
architecture independent messages, to start, pause, and reset a
simulation run, to terminate properly the engine itself and all the
processes on participating machines, to read and write
configuration files and so on.

4. THE VIRTUAL ROBOTS INTERFACE

SPREAD itself only provides a machine independent
computational engine. To be useful as a teaching tool an interactive
graphical user interface must be provided.

4.1 The configuration file editor

The purpose of this is to set up the initial conditions for a
simulation run. It uses the “drag and drop” paradigm to place and
parameterise robots and active targets. When complete it will also
allow the placing of all object types such as obstacles and followable
tracks which at present have to be entered into the configuration
files by hand. We also intend to take a similar approach to the

"SPREAD- A Distributed Simulation Toolkit", Proc 29th Int. Symp. Robotics, April 1998, Birmingham, UK

© Essex University 1998 3

“building” of virtual robots so that a kit of robots parts can be
assembled interactively.

Fig. 4-1 shows the editor in action. The smaller polygon represents
an obstacle and the larger one represents the a track that can be
detected and followed. The icon at bottom left has been used to
add several robots by dragging and dropping in the desired
position. When this is done the user is asked to supply the path to
that robot’s configuration file. Once placed the arrow representing
the robot’s initial heading can be dragged to point in the desired
direction.

Active targets can be placed similarly by using the “lighthouse”
icon. Double clicking on the placed target brings up the “Goal
Parameters” panel shown in the illustration. This allows the
identification code, aperture angle and range to be selected. These
are also shown in the view window although this is not apparent in
the illustration. Clicking on any object also causes its current
settings to be shown at the bottom of the window. Also not shown
is a menu to load and save configuration files.

Robots and targets can be removed simply by dragging them out of
the editor window. Two methods of tracing the robots’ routes are
given: a trail of dots or, as in Fig 4-2 a trace of the robot’s bounding
polygon. The particular robot shown was equipped with eight
ultrasonic range finders. These only give the distance to the closest
sensed object within the sensing angle. This is shown by drawing
both the circle segment representing the area that can be sensed by
each sensor and the arc representing the possible positions of a
sensed object. This can most clearly be seen as the robot in the
picture senses the obstacle on its left hand side. An alternative
method of showing the possibilities of accumulating the range data
is provided where a trace is left of the arcs where an object may
possibly be. This has proved invaluable in illustrating methods of
building maps from such cumulative and uncertain data such as the
popular “occupancy grid” methodology pioneered by Elfes [6]
Other sensors’ activity can be viewed by similar methods.

Fig. 4-1 A screen dump showing the interactive configuration file editor

4.2 The Virtual Robots Simulation Viewer

This is the most developed part of Virtual Robots and has many
facilities to help users to see the world as the robots see it by
making the sensors’ fields of view and their outputs visible. Some
of these facilities are shown in Fig 4-2 below. The depicted robot

has started at the top right of the picture moved in a straight line
until detecting and following the track. Near the bottom left it has
detected the obstacle and switched from track following behavior
to an edge following behavior. The test run subsequently shows an
error in the control algorithm where rather than reverting to track
following as intended when the track is found again it continues to
follow the edges of the obstacle.

Fig 4-2 A screen dump of a simulator run.

Options are also provide for zooming into particular areas for more
detailed observation and for scrolling around the simulation area.

5. PERFORMANCE ANALYSIS

Throughout the development of the SPREAD project we have
striven for simplicity, portability, transparency with respect to
programming, and ease of use. In particular this has led us to make
the simplest of mapping of “objects” to processes. Ideally, to
preserve transparency this should be without regard to the placing
of processes on machines and the computational and
communication demands of each process. Finding practical ways to
overcome the performance inefficiencies that arise from this naïve
approach is to play an important part in future development of the
project. As a first step we have made some tests to establish a
benchmark against which to measure future improvements.

The testing that is described below was performed on a typical
cluster of 12 ‘486 DX2 66MHz PC’s running NeXTSTEP. The
network was a standard Ethernet isolated from the rest of the
campus network by a managed bridge. The experiments were run at
night when none of the machines were being used. The tests were
only of the SPREAD engine and none of the graphical front end
was involved.

All tests were run at least 10 times and the figures shown below
represent a straightforward mean of all runs. The method was to
run a typical simulation with on a varying number of machines and
simulating a varying number of robots. All robots were configured
identically and were running the same control program. In each
case the simulation was run for a fixed number of time quanta

"SPREAD- A Distributed Simulation Toolkit", Proc 29th Int. Symp. Robotics, April 1998, Birmingham, UK

© Essex University 1998 4

representing the same amount of simulated time. Performance was
measured by the mean (real) time taken per time quantum.

The general trend of the curves met our expectations; times
obtained for more machines are generally shorter than for fewer
machines. However there are many cases were adding machines
actually make the performance worse. It can be seen from

Fig. 5-1 that the best performance is for six machines whereas the
worst is for seven. The traffic between controller and memory is
the key to this anomaly. In the current implementation no attempt
is made to place processes in the best places so it is quite possible
that processes that communicate a great deal, might be placed on
different machines. In the 6 host case controllers and their
associated memory processes happened to be placed on the same
physical nodes and the network traffic did not play a prominent
role. With one more machine (7 hosts) memories and controllers
tended to be placed on differing machines needed the network to
communicate, creating an I/O bounded system. The best effective
speedup we obtained was for 35 robot simulations which ran about
5 times faster on 12 machines than on one.

We conclude from this that we need to:

• place processes more intelligently - maybe simply placing
all processes for a robot together would be sufficient;

• reduce network traffic - use of true multicast will be a
great improvement as much information such as updates
to the world database could be read simultaneously by
many processes;

• reduce network collisions. Switching hubs are now
inexpensive. Even at a nominal 10Mb/s with one
machine on each switched outlet an order of magnitude
increase in total bandwidth. This would also enable gains
to be made by delegating collision processing to the
colliding actuator processes. At present the collision
server is a bottleneck.

• use faster network technology. We will soon be installing
fast (100Mb/s) Ethernet in the laboratory with uplinks to
FDDI that will eventually link to other
laboratories

Fig. 5-1 Average time per quantum using different numbers of computers

and simulated robots

6. FUTURE WORK

Future versions will allow the definition of processes to be kept
together where possible and eventually we hope to allow process to
migrate during a simulation run.

Although PVM gives high portability and a simple programming
model it has many inefficiencies in its implementation and search
for alternatives are a high priority.

Work is underway to make the underlying world model fully 3-
dimensional. Virtual Reality type viewers are being constructed to
take advantage of this.

We are installing a fiber network that should make the network
bandwidth an order of magnitude more favorable.

7. SUMMARY

The high quality of work completed by many students over the
years that the simulator has been in use have convinced us that
there is much to be gained by making this type of simulator more
widely available.

The advantages to be gained by using cluster computing
methodologies to improve performance remain tantalising but not
yet proven. We certainly feel encouraged by our experience so far.

We are pleased to have received funding for two years of
development of the system for commercial use in the offshore
industry.

8. BIBLIOGRAPHY

[1] Parallel Virtual Machine (PVM), Oak Ridge National
Laboratory, Oak Ridge, Tennessee.

[2] P. van der Smagt (1994) `` Simderella: a robot simulator for
neuro-controller design,'' Neurocomputing 6 (2), Elsevier Science
Publishers, pp. 281-285

[3] Webber A.D. Xmouse. Details at
ftp://ftp.essex.ac.uk/pub/robots/Simulators/Xmouse

[4] Douglas C. MacKenzie, Jonathan M. Cameron, and Ronald C.
Arkin, "Specification and Execution of Multiagent Missions," July,
1995. Available at http://www.cc.gatech.edu/ai/robot-
lab/research/MissionLab

[5] O. Michel, The Khepera Simulator, University of Nice, France.
Details can be found at URL http://wwwi3s.unice.fr/~om/khep-
sim.html

[6] Elfes, Alberto, “Occupancy grids : a probabilistic framework for
robot perception and navigation”, 1989. Thesis (Ph.D.), Carnegie
Mellon University. Photocopy. Ann Arbor, Mich. : UMI
Dissertation Information Service, 1994.

