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Abstract - this article describes “SPREAD”, a simulation tool kit and 
its use in building “Virtual Robots”, a simulation of multiple mobile 
robot vehicles used  in the teaching of Computer Science at 
university level. A novel aspect of the simulator is the use of PVM [1] 
to achieve high performance at low cost by using spare CPU cycles 
on large numbers of networked workstations. 

1. INTRODUCTION 

The computer science department at the University of Essex (in 
common with other universities contributing to this issue) has for 
some time used simple robot vehicles, which we characterize as 
Intelligent Autonomous Vehicles (IAVs), in the teaching of 
undergraduate computer scientists. We believe that having to test 
their science in the physical world provides an antidote to the 
increasingly theoretical direction that computer science has taken in 
recent years. Further, in building, from the ground up, an even 
modestly autonomous robot, it quickly becomes evident to students 
that they must draw upon and integrate many areas of the 
computer science curriculum from register-level interfacing, 
through adaptive control to full-blown AI issues such as planning, 
machine vision and world modeling..  

 

Fig. 1-1 “Trillian”, one of the Essex robots. 

One way to provide wider access to limited and expensive physical 
resources such as robots is by simulation. By allowing students to 
prepare their work before their allocated time-slot on the real 
robots, that time can be more efficiently and productively spent. In 
addition, once programs have been verified in the “real” world, 
simulation  can be used to run experiments that go beyond the 
physical resources of the laboratory. A prime example of this is in 
the area of multi-agent AI where simulation can allow 
experimentation with large numbers of virtual robots where only a 
few may be available in reality. 

There are, of course, several commercially available packages for 
supporting this type of simulation. Unfortunately the cost of these, 
and the specialist workstations needed to run them put them 
beyond the means of departments that only require the facility as a 

relatively small part of their overall activity. There are several low-
cost or shareware simulation packages available but many (for 
example Simderella [2]) assume static robots with manipulator arms 
rather than IAVs. Other popular robot vehicle simulators, such as 
Xmouse [3], are usually built on very simple models that have little 
relation to any real robots and can often only deal with single 
robots. Those that do simulate multiple robots such as Mission Lab 
[4] are often at a very high level and don’t allow detailed simulations 
of individual robots. Yet others such as Khepera [5] are tied to 
particular vehicles.  

Our approach has thus been to develop the SPREAD simulation 
engine to supports the simulation of complex worlds, inhabited by 
multiple autonomous vehicles, each of which may be modeled as 
many parallel embedded processes. Overall performance is 
maintained by distributing execution across a network of 
computers. An important design aim was machine independence so 
that the system could be used in a wide range of institutions while 
still taking advantage of whatever hardware they happened to have 
available. This portability extends to the worlds to be simulated as 
well as to the simulator itself. 

In this paper SPREAD is discussed in the context of the “Virtual 
Robots” simulation tool used in the Brooker Laboratory for 
Intelligent Embedded Systems at Essex. Virtual Robots was built 
using the SPREAD toolkit and has been in use in the department 
for several years.  

We will first describe the architecture of SPREAD and its use in 
Virtual Robots. This will be followed some performance figures 
and a brief description of our future plans. 

2. THE SPREAD ARCHITECTURE 

 

Fig. 2-1 Overall Architecture of the Simulator 

The simulator structure (see Fig. 2-1) consists of the following types 
of module: console, display, world, collision control, actuator, 
sensor, memory, controller, moving obstacle and active target.  

A single world server and collision control server form the kernel 
of the simulator. The world server maintains a database of the 
position of all objects in the simulated world. The collision control 
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module negotiates with objects that have collided and reports back 
the result to the world server. 

Each robot consists of a controller, an associated set of sensors 
and, if the I/O to be modeled is memory mapped, a memory 
module. 

 The console, of which there must be exactly one, provides control 
of the simulation itself and is responsible for starting and 
terminating the simulation as well as making run-time adjustments 
such as the level of detail to be simulated. Display modules, of 
which there may be several, present the current state of the 
simulation to the users. 

Along with the modules of the simulation itself the complete 
Virtual Robots package includes graphical editors for designing 
environments and setting up initial conditions for simulator runs, 
such as the position and orientation of the IAVs. 

3. THE USER INTERFACE 

1. There are four classes of SPREAD user:  
2. those that simply use it via a GUI like Virtual Robots, together 

with an accumulated set of robot and robot parts, 
3. those that want to write and test robot controllers, normally in 

parallel with testing the same controllers on real robots, 
4. those that want to add new simulations of robot parts, and 

finally 
5. those that want to build new GUIs on top of SPREAD 
The way each of these groups interacts with SPREAD is discussed 
below: 

3.1 Using an existing GUI 

The only reasonably complete GUI to be written so far is the 
“Virtual Robots” simulator that we use at Essex although a start 
has been made on an X version. Virtual Robots is described in 
more detail below.  

There are three tasks that the GUI has to perform: 

First the initial conditions for a simulator run have to be set up. 
This includes placing all the static objects into the environment, 
including boundary walls, obstacles, detectable tracks on the floor 
and so on. Active targets such as beacons need to be placed and 
have their characteristics defined such as aperture angles, ranges 
and identification numbers. Robots need to be “built” by placing 
sensors and actuators and deciding their characteristics. Finally the 
initial position and orientation of the robots need to be decided.  

The second task of the GUI is to start up the display processes. 
There can be as many of these as desired and they can be placed on 
any of the participating workstations. Virtual Robots has only one 
sort of display that is described below.  

Finally provision must be made for controlling the simulation itself. 
There can only be one of these and in Virtual Robots it comprises a 
simple panel with “START”, “Stop”, “Reset” and “Exit” buttons. 
In addition it has a slider that sets the amount of real time that each 
“tick” of simulated time represents. 

3.2 Writing new robot controllers 

Assuming that a simulated robot has been set up that matches the 
real robot under test the SPREAD API imposes very few changes 
on the C or C++ source code in which controllers are normally 
written. Programmers must provide a parameterless function that 

reads from memory mapped sensor locations and writes to similarly 
mapped actuator “registers”. Code must be “bracketed” by 
initialization calls that subscribe the controller program to the 
simulation and cleanup code that is called on simulation exit.. 
Assignments to mapped memory have to replaced by the “peek” 
and “poke” functions of the API. 

A final optional job is to add a simple polygon definition to a 
textual configuration file that enables the simulation GUI to display 
the new robot in a distinctive way. 

3.3 Writing simulations of  new hardware 

The main task here is to write a program that has three main 
functions: 

The first registers the program with the simulation, retrieves 
parameters from a text based configuration file including the 
location of its memory-mapped registers, and retrieves a copy of a 
list of all the static objects in the world and the current length of the 
time quantum. 

The second is called when the simulator terminates and allows the 
program to perform any cleaning up such as removing temporary 
files. 

The third implements the model itself and is called at the start of 
each time quantum. At each call the program must retrieve the new 
locations of all mobile objects and use these together with the list of 
static objects to calculate its output values. For sensors this is 
straightforward; it just has to “poke” them into the relevant 
locations and send an “end quantum” notification back to the 
world server.  

For actuators, the output value represents the new position that the 
controlled object would occupy in the absence of any mobile 
obstacles. This, may lead to anomalies if some other actuator 
process has placed another object in the same position. In the real 
world the objects would have collided and rebounded in some way. 
At present the provisional positions are sent to a collision server 
that resolves the anomaly and returns the resultant position back to 
the actuator process for use in the next time cycle.  

3.4 Writing new GUIs 

SPREAD makes this easy by providing many functions to register 
with and leave the simulation, to register as a member and to leave 
“process groups” such as the display group, to send and wait for 
architecture independent messages, to start, pause,  and reset a 
simulation run, to terminate properly the engine itself and all the 
processes on participating machines, to read and write 
configuration files and so on. 

4. THE VIRTUAL ROBOTS INTERFACE 

SPREAD itself only provides a machine independent 
computational engine. To be useful as a teaching tool an interactive 
graphical user interface must be provided.  

4.1 The configuration file editor 

The purpose of this is to set up the initial conditions for a 
simulation run. It uses the “drag and drop” paradigm to place and 
parameterise robots and  active targets. When complete it will also 
allow the placing of all object types such as obstacles and followable 
tracks which at present have to be entered into the configuration 
files by hand. We also intend to take a similar approach to the 
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“building” of virtual robots so that a kit of robots parts can be 
assembled interactively. 

Fig. 4-1 shows the editor in action. The smaller polygon represents 
an obstacle and the larger one represents the a track that can be 
detected and followed. The icon at bottom left has been used to 
add several robots by dragging and dropping in the desired 
position. When this is done the user is asked to supply the path to 
that robot’s configuration file. Once placed the arrow representing 
the robot’s initial heading can be dragged to point in the desired 
direction. 

Active targets can be placed similarly by using the “lighthouse” 
icon. Double clicking on the placed target brings up the “Goal 
Parameters” panel shown in the illustration. This allows the 
identification code, aperture angle and range to be selected. These 
are also shown in the view window although this is not apparent in 
the illustration. Clicking on any object also causes its current 
settings to be shown at the bottom of the window. Also not shown 
is a menu to load and save configuration files. 

Robots and targets can be removed simply by dragging them out of 
the editor window. Two methods of tracing the robots’ routes are 
given: a trail of dots or, as in Fig 4-2 a trace of the robot’s bounding 
polygon. The particular robot shown was equipped with eight 
ultrasonic range finders. These only give the distance to the closest 
sensed object within the sensing angle. This is shown by drawing 
both the circle segment representing  the area that can be sensed by 
each sensor and the arc representing the possible positions of a 
sensed object. This can most clearly be seen as the robot in the 
picture senses the obstacle on its left hand side. An alternative 
method of showing the possibilities of accumulating the range data 
is provided where a trace is left of the arcs where an object may 
possibly be. This has proved invaluable in illustrating methods of 
building maps from such cumulative and uncertain data such as the 
popular “occupancy grid” methodology pioneered by Elfes [6] 
Other sensors’ activity can be viewed by similar methods.  

 

 

Fig. 4-1 A screen dump showing the interactive configuration file editor 

4.2 The Virtual Robots Simulation Viewer 

This is the most developed part of Virtual Robots and has many 
facilities to help users to see the world as the robots see it by 
making the sensors’ fields of view and their outputs visible. Some 
of these facilities are shown in Fig 4-2 below. The depicted robot 

has started at the top right of the picture moved in a straight line 
until detecting and following the track. Near the bottom left it has 
detected the obstacle and switched from track following behavior 
to an edge following behavior. The test run subsequently shows an 
error in the control algorithm where rather than reverting to track 
following as intended when the track is found again it continues to 
follow the edges of the obstacle.  

 

Fig 4-2 A screen dump of a simulator run. 

Options are also provide for zooming into particular areas for more 
detailed observation and for scrolling around the simulation area. 

 

5. PERFORMANCE ANALYSIS 

Throughout the development of the SPREAD project we have 
striven for simplicity, portability, transparency with respect to 
programming, and ease of use. In particular this has led us to make 
the simplest of mapping of “objects” to processes. Ideally, to 
preserve transparency this should be without regard to the placing 
of processes on machines and the computational and 
communication demands of each process. Finding practical ways to 
overcome the performance inefficiencies that arise from this naïve 
approach is to play an important part in future development of the 
project. As a first step we have made some tests to establish a 
benchmark against which to measure future improvements. 

The testing that is described below was performed on a typical 
cluster of 12 ‘486 DX2 66MHz PC’s running NeXTSTEP. The 
network was a standard Ethernet isolated from the rest of the 
campus network by a managed bridge. The experiments were run at 
night when none of the machines were being used. The tests were 
only of the SPREAD engine and none of the graphical front end 
was involved.  

All tests were run at least 10 times and the figures shown below 
represent a straightforward mean of all runs. The method was to 
run a typical simulation with on a varying number of machines and 
simulating a varying number of robots. All robots were configured 
identically and were running the same control program. In each 
case the simulation was run for a fixed number of time quanta 
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representing the same amount of simulated time. Performance was 
measured by the mean (real) time taken per time quantum. 

The general trend of the curves met our expectations; times 
obtained for more machines are generally shorter than for fewer 
machines. However there are many cases were adding machines 
actually make the performance worse. It can be seen from  

Fig. 5-1 that the best performance is for six machines whereas the 
worst is for seven. The traffic between controller and memory is 
the key to this anomaly. In the current implementation no attempt 
is made to place processes in the best places so it is quite possible 
that processes that communicate a great deal, might be placed on 
different machines. In the 6 host case controllers and their 
associated memory processes happened to be placed  on the same 
physical nodes and the network traffic did not play a prominent 
role. With one more machine (7 hosts) memories and controllers 
tended to be placed on differing machines needed the network to 
communicate, creating an I/O bounded system. The best effective 
speedup we obtained was for 35 robot simulations which ran about 
5 times faster on 12 machines than on one. 

We conclude from this that we need to: 

• place processes more intelligently - maybe simply placing 
all processes for a robot together would be sufficient; 

• reduce network traffic - use of true multicast will be a 
great improvement as much information such as updates 
to the world database could be read simultaneously by 
many processes; 

• reduce network collisions. Switching hubs are now 
inexpensive. Even at a nominal 10Mb/s with one 
machine on each switched outlet an order of magnitude 
increase in total bandwidth. This would also enable gains 
to be made by delegating collision processing to the 
colliding actuator processes. At present the collision 
server is a bottleneck.  

• use faster network technology. We will soon be installing 
fast (100Mb/s) Ethernet in the laboratory with uplinks to 
FDDI that will eventually link to other 
laboratories

 

Fig. 5-1 Average time per quantum using different numbers of computers 

and simulated robots 

6. FUTURE WORK 

Future versions will allow the definition of processes to be kept 
together where possible and eventually we hope to allow process to 
migrate during a simulation run. 

Although PVM gives high portability and a simple programming 
model it has many inefficiencies in its implementation and search 
for alternatives are a high priority. 

Work is underway to make the underlying world model fully 3-
dimensional. Virtual Reality type viewers are being constructed to 
take advantage of this. 

We are installing a fiber network that should make the network 
bandwidth an order of magnitude more favorable.  

7. SUMMARY 

The high quality of work completed by many students over the 
years that the simulator has been in use have convinced us that 
there is much to be gained by making this type of simulator more 
widely available.  

The advantages to be gained by using cluster computing 
methodologies to improve performance remain tantalising but not 
yet proven. We certainly feel encouraged by our experience so far.  

We are pleased to have received funding for two years of 
development of the system for commercial use in the offshore 
industry.  
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