2nd IFAC Conference on Intelligent Autonomous Vehicles, Helsinki University of Technology, Espoo, Finland, June 12-14, 1995
(c) Essex University 1995

“Fuzzy Hierarchical Control for Autonomous Vehicles”

Christos Voudouris, Paul Chernett, Chang J. Wang, Vic L. Callaghan

Department of Computer Science, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.

Abstract

The subject of this paper is the control of autonomous vehicles. A hierarchical approach is studied in the
context of fuzzy systems and a programming language for the mid to low level control of autonomous
vehicles is described. The language, called FDTL (Fuzzy Decision Tree Language), is based on a com-
putational model that combines fuzzy rule based control with the hierarchical nature of decision trees.
Encouraging results are obtained from both the simulator and a real autonomous vehicle.

1. Introduction

Fuzzy rule based systems have been found useful in low-level control in applications ranging from kiln
control to helicopter flight. The principle advantages cited for such systems are the ease of incorporating
the knowledge of human experts into the prototype of a new controller and the robustness of the results.

The first seems to stem from the expression of the controller as a database of rules each of which maps
the current state, at each iteration of the controller, to desired control outputs. The introduction of the
notion of “fuzziness” makes the form of the rules closer to the intuitions of expert operators to whom
the system developer must turn where the a dynamic predictive models is difficult to develop, as is often
the case.

Traditional fuzzy systems only allow outputs to be fuzzy variables that normally map directly to the
actuators. This tends to restrict its applicability to low-level systems. We extend the model to allow the
outputs of rules to influence other fuzzy systems. In other words, the model becomes recursive, allow-
ing systems to be expressed as hierarchies, nested to arbitrary depth. Complex behaviours can be
decomposed, top-down, into simpler behaviours that can be designed independently.

The approach taken is based (but not dependent) on the Fuzzy Logic of Zadeh (Zadeh, 1965) and the
fuzzy systems described in (Kosko, 1992a). Such fuzzy systems have been widely used to describe con-
trollers that implement particular desired behaviours of robotic systems such as obstacle avoidance
(Beom and Cho, 1992; Song and Tai, 1992) or navigation (Pin et al., 1992; Joo et al., 1993; Baxter and
Bumby, 1993).

We use the rule combination feature provided by fuzzy inference to activate competing behaviours
simultaneously but to differing degrees, thus providing a smooth transition between them. This fusion
has previously been proposed in the case of obstacle avoidance and navigation by (Baxter and Bumby,
1993). However, they suggest a mechanism which lacks generality. Saffiotti et al. (1993) present a more
general method based upon an activation scheme for the behaviours. They consider activation levels for
behaviours implemented by fuzzy rulebases. The activation levels are determined by fuzzy meta-rules
which arbitrate the dominance of different behaviours to the control outputs. Sugeno et al. (1993) move
in the same direction considering fuzzy meta-rules that activate the flight modes of an unmanned heli-
copter at different degrees during a flight. Behaviours that are activated to various degrees using neural
nets can be also found in Gachet et al. (1993). There, the emergent behaviour of an agent is defined as
the weighted sum of the primitive behaviour outputs.

We further generalise this approach by taking up the proposal by Chang and Pavlidis (1977) to extend
the classical decision tree such that all leaf nodes are assigned “degrees of activation” rather than only

2nd IFAC Conference on Intelligent Autonomous Vehicles, Helsinki University of Technology, Espoo, Finland, June 12-14, 1995
(c) Essex University 1995

one being selected. The final result is a controller in which complex behaviours can be decomposed in
a top down manner into behaviours that can be developed independently.

2. The Computational Model

The processing stages in a classical fuzzy controller are fuzzification, fuzzy inference, rule combination,
and defuzzification (Figure 1). Fuzzy inference and rule combination are often referred to jointly as
fuzzy inference. Recent advances on this basic model incorporate rule strengths (weights) that provide
an extra parameter for these systems (Kosko, 1992a; Cox, 1993). This extra parameter can be exploited
by adaptive mechanisms or, as in our case, to build hierarchical structures. Fuzzy systems that incorpo-
rate rule weights are also known as FAMs (Fuzzy Associative Memories).

e Fuzzy Rule . .
Furzification _> Inference ‘» Combination _>DefuZZlﬁCa“°"_>

FIGURE 1. The processing stages in a fuzzy controller.

Our model only departs from the FAM theory, as given by Kosko (1992a), in allowing the consequent of
a rule to be an entire fuzzy ruleset (fuzzy system) as well as a fuzzy set (Voudouris,1993). In this case
the “firing level” of the rule will have a “scaling” effect on the weights of the consequent fuzzy system.
This recursion allows fuzzy systems to be expressed hierarchically as fuzzy decision trees. Internal
nodes of the tree contain decision making rules where the leaf nodes are traditional fuzzy systems map-
ping inputs to outputs. In the context of autonomous vehicles the leaf nodes are the behaviours (Brooks,
1986) of the autonomous vehicle. Fuzzy decision making takes place in internal nodes. Activation prop-
agates from the root to all the leaf nodes activating all behaviours to various degrees.

The rule combination process combines these contributions from the various leaf nodes, instead of
choosing between them as in other inference schemes. We have employed the “weighted additive” com-
bination scheme as presented by Kosko (1992a, 1992b) but extended to multiple rulebases. In the sim-
ple case, where all the leaf nodes operate on the same output, Z, the resulting fuzzy set, C, (it is actually
a distribution) in the domain of Z fr(,)m this inter-rulebase combination is given by the weighted sum of
the individual rule contributions C;; where i indexes the rulebase and j the particular rule of the i-th
rulebase (EQ 1).

n

m;
Cc = 2 Zw..'C..'
i i

i=1j=1

(EQ 1)

The fuzzy set C is usually normalized to [0,1]. The rule weights wy; differ from rulebase to rulebase as a
result of the fuzzy decision tree scheme which activates fuzzy systems to different degrees by scaling
the weights of their rules. The output value is given by producing a normal “crisp” value from the distri-
bution C. Various methods have been proposed for this (see for example Klir & Folger, 1988). We
employ fuzzy centroid defuzzification also known as COA (centre of area) defuzzification. The reader is
referred to Voudouris (1993) for a fuller account.

Figure 2 presents the fuzzy decision tree architecture. It is a feed forward system. The incoming infor-
mation from the sensors together with internal variables (goal positions, battery level, damage detectors,
state variables etc.) are fed to the tree. The tree, in a feed forward manner, spreads activation from the
root to the leaf nodes. The inputs of all nodes (leaf and nonleaf) are external to the tree. It is actually
possible for outputs to be fed back to the tree forming feedback loops although this avenue is yet to be
explored by us.

2nd IFAC Conference on Intelligent Autonomous Vehicles, Helsinki University of Technology, Espoo, Finland, June 12-14, 1995
(c) Essex University 1995

Inputs
FS: Fuzzy System 1
root FS ‘J
Inputs Inputs
F < » F
5 |~ Decision Making 7 S
Inputs Inputs Inputs Inputs Inputs
| | | | |
v v , ¥ 3 v
| ps e b ps | Behavius f ps g [ops el Fs |
I I I I I
v v v
[Fusion of Behaviours by Rule Combination |
[Defuzzification |
Outputs

FIGURE 2. The Fuzzy Decision Tree Architecture.

3. The Language

FDTL is a language in which fuzzy decision trees are described. The language is a tool for program-
ming robots and intelligent systems in general. The C code produced by the compiler of the language
can be executed in a variety of platforms as embedded or independent programs. We use FDTL pro-
grams as embedded controllers in both a mobile vehicle and its simulator.

3.1 Grammar

The grammar of FDTL in EBNF notation is given below (some lexical details are omitted for brevity):

<system> ::= system <identifier> begin <inputs><outputs><rules>end.

<inputs> : inputs begin <var_declarations> end;

<outputs> ::= outputs begin <var declarations> end;

<var_declarations> ::= <var_declaration> {<var_declarations>}

<var_declaration> ::= numeric <identifier> ’{’ <fuzzy sets> '}’ |

symbolic <identifier> ’{’ <values> '}’

<fuzzy sets> ::= {<fuzzy set}

<fuzzy set> ::= triangular <identifier><number><number><number>; |
trapezoidal <identifier><number><number><number><number>;

<values> ::= {value}

<value> ::= <string>;

<rulebases> ::= rulebases begin <rb_declaration> end;

<rb_declaration> ::= <identifier> begin <rules> {<rb_declaration>} end

<rules> ::= <rule> {<rule>}

<rule> ::= if <conditions> then <actions>;

<conditions> : i

<condition> ::= <left operand><relop><right operand>

<left operand> ::= <identifier>

<right operand> ::= <identifier> <number> | <string>

<relop> ::=< | <= | == | I= | > | >=

<actions> = <action> {and <action>}

<action> ::= <identifier><assignop><term>

<term> ::= <identifer> | <string>

3.2 An Example

In order to give a flavour of FDTL we will describe the most complex of the controllers that we have
implemented and which we call GC. The controller is for an autonomous vehicle that steers by differen-
tial velocities of it’s two driving wheels. The vehicle is also assumed to be equipped with ultrasonic

2nd IFAC Conference on Intelligent Autonomous Vehicles, Helsinki University of Technology, Espoo, Finland, June 12-14, 1995
(c) Essex University 1995

proximity sensors together with other sensors that can give the angle and distance to various goals. The
overall task is to collect and dispose of garbage, while avoiding obstacles, and moving to a recharging
point, if the battery condition is low, and to a service point if damage is detected.The fuzzy decision tree
for GC is presented diagrammatically in Figure 3. Each node represents a complete rulebase. All leaf
nodes in this example have only two outputs, the velocities of each wheel. Where a rulebase outputs to
an internal node the output value will act to “scale” the relative contribution of the rulebase at that node.
For instance, root of the tree spreads activation progressively to Obstacle Avoidance as the vehicle
approaches obstacles. Otherwise, it spreads activation to the right-subtree and so on.

Thus any of the leaves can potentially have an effect on the output velocities but this effect is moderated
by the activation level of its ancestor nodes.

Root

Obstacle Avoidance | | Goals |

Go_to_charger | Go_to_Servicel | Garbage_disposal |

| Go_to_rubbish | | Go_to_bin |

FIGURE 3. The fuzzy decision tree for the garbage collection task, GC.

3.3 Variable Declarations

The first step in expressing this in FDTL is to define each of the input and output variables. In our case
we have many input variables, readings from the ultrasonic sensors, the minimum proximity reading,
the relative angles and distances from the various goals, the state of the battery and damage detectors,
and so on. Most of these are represented as fuzzy variables as described in Mamdani (1977). For exam-
ple the FDTL definition for d, one of the distance sensor readings might be:

numeric d

trapezoidal VN 0 0 80 120; // Very Near
triangular NE 80 120 160; // Near
trapezoidal FR 120 160 255 256; // FAR

}

(Characters between ’//° and end of line are comments). Which could be represented graphically as

m(d),

1 VN NR FR

»
80 120 160 255 d~

FIGURE 4. The fuzzy sets an input variable d representing the reading of an ultrasonic sensor.

A non-fuzzy numeric variable can be declared simply by including no fuzzy sets. Its value can then be
used in the rulebases directly and will not be modified by the system.

The third possibility is to declare an input as “symbolic”. These are analogous to the enumerated types
of PASCAL (or the enums of C) and are intended for inputs that switch abruptly between a relatively
small number of states. In the example the state of the “has_rubbish” detector could be expressed as:

symbolic hold rub // carry rubbish

'yes';
o'

}

2nd IFAC Conference on Intelligent Autonomous Vehicles, Helsinki University of Technology, Espoo, Finland, June 12-14, 1995
(c) Essex University 1995

3.4 Leaf Rulebase Declarations

The rules of leaf rulebases connect fuzzy input variables to fuzzy output variables. In FDTL a couple of
rules that are part of a rulebase expressing obstacle avoidance behaviour might be:

ObstacleAvoidance
begin
if d1==VN and d2==VN and d3==VN and d4==VN then Vleft:=NS and Vright:=NS;
if dl==VN and d2==NE and d3==NE and d4==VN then Vleft:=PS and Vright:=PS;
end

The input variables d1 - d4 represent ultrasound readings pointing at -90°, -45°, 45°, and 90° with
respect to the front of a vehicle. The fuzzy output variables Vleft and Vright represent the velocity of
the two driving wheels. The first rule above is meant to say that if the vehicle finds obstacles “very near”
on all sides it should back up “slowly” (Vleft and Vright “Negative Small”). The second rule says that if
we have obstacles “very near” on either side but only “near” to the front then we should move forwards
slowly. Of course, these being fuzzy variables the meaning of the first rule could perhaps be rephrased
as “on this control cycle contribute *backing up’ behaviour to the final effective behaviour to the extent
to which d1 - d4 are reading 'very near’. Of course the second rule should be interpreted similarly

To make this clearer imagine that the vehicle was approaching a cul-de-sac at the end of a corridor. Ini-
tially d3 and d4 would be mostly in the “near” region and only just in the “very near” region. The first
rule would only “fire” to a small degree. The negative velocities of the “backing up” behaviour would
only have the effect of slightly reducing the positive velocities appropriate when the obstruction has just
come into view. As the obstruction comes closer the vehicle will slow down and eventually come to a
stop when the equilibrium point is reached. At no point would there be abrupt changes in velocity. The
proportionality between inputs an outputs necessary for stability in the controller would be preserved. In
a real rulebase the second rule would perhaps more usefully rotate the vehicle about its axis.

3.5 Building the Tree

So far all has been standard fuzzy control. However we now come to the internal nodes that will mediate
in a similar way between entire rulebases. The representation is entirely uniform with what has gone
before and should give the reader little trouble to understand. The FDTL for the overall GC rulebase is
given below (omitted rules denoted by °..."):

rules
begin
GC
begin
if dmin==NEAR then ObstacleAvoidance;
if dmin==FAR then Goals;
ObstacleAvoidance
begin

end
Goals
begin
if energy<=20 and damage=='yes' then go_to_charger;
if energy>20 and damage=='yes' then go_to_service;

if energy>20 and damage=='no' then do_jobs;
go_to_charger
begin

end
go_to_service
begin

end
do_jobs
begin
if hold rub=='yes' then go_to_bin;
if hold rub=='no’' then go_to_rub;
go_to_bin
begin

end
go_to_rub
begin

end
end // end of do jobs
end // end of Goals
end // end of GC
end; // end of rules

2nd IFAC Conference on Intelligent Autonomous Vehicles, Helsinki University of Technology, Espoo, Finland, June 12-14, 1995
(c) Essex University 1995

4. Results

Our test vehicles (VME based, VxWorks OS) are equipped with only 4 ultrasound range finders and a
very simple infrared system that can find the bearing and identify a small set of beacons (Figure 5).

FIGURE 5. One of the test vehicles

Steering is by differential velocity of the two driving wheels. We also have a simulator for this vehicle.
Simulated vehicles can also find the range and bearing of a number of targets and detect various internal
“states” such as damage, possession of rubbish, and battery charge. We have implemented a compiler
for the language whose output is ANSI standard C. Both the simulator and the real vehicles run execut-
ables compiled from identical sources.

We have implemented a controller that combines goal-seeking and obstacle avoidance behaviour both
on the simulator and on a real vehicle. The behaviour was sufficiently similar to give us confidence in
our simulator. In both environments the vehicle consistently moved smoothly to the goal only deviating
from its path enough to clear the obstacles with a small margin of safety.

The vehicle was able to react quickly to avoid an experimenter suddenly standing in front of the vehicle.
This in fact exceeded our expectations since the vehicle is equipped with only four simple ultrasonic
range finders and we have put very little effort into making the implementation efficient.

Oscillations at corners and in cul-de-sacs were avoided by simply always turning to the right in such sit-
uations. However there are no inherent properties of the system that can ensure the absence of such
oscillations since the model is essentially for a purely reactive controller and has no internal state
although feedback is theoretically possible (See section 2.). However since we are interested in extend-
ing the FAM model to operate at higher levels in architectures for autonomous control addressing this
issue is a high priority.

We have also implemented the “GC” controller described above on the simulator only. As can be seen
from the simulator output in Figure 6, the path of the vehicle (which moved to the targets in the speci-

2nd IFAC Conference on Intelligent Autonomous Vehicles, Helsinki University of Technology, Espoo, Finland, June 12-14, 1995
(c) Essex University 1995

fied order) was smooth and took efficient trajectories to the targets while keeping a safe distance from
the obstacles.

Datbery _charger Shart
-\1“‘-\. t
T _I e
./"
L ‘..:_E.1rh.'|:-:_|r.~:-€" .
- - - i e N
o - " . Carbaged
’ B, "/-‘. L.'\
Carbage Wy :
- T ! 11 \
[N i A
[/
| i Pt
...Jdr bagel ; i ./. — I
i Il ! carbage? i
4 f |
| [+ |
H I
. =.
! oo f
| i J
Vol \ I,
S '\ /
i ¢
Y - \ |
et h | -
. \ r

e)
T % Aar_nin

1 .Carhaqes
y s _,__.__:.;1_.‘_.:...----».

._h‘-_ —

FIGURE 6. The simulator running the GC controller.

5. Conclusions

We believe that we have successfully demonstrated that Kosko’s FAM model for fuzzy rule based con-
trollers can be extended to form a basis for a practical system for programming medium to low level
controllers for autonomous vehicles.

We make no claims for high efficiency in the running controller although the speed of execution of our
initial implementation on the real vehicle was pleasing. We intend to explore the inherent parallelism of
the model in a multi-processor implementation.

The most immediate thrust of our research will be to integrate FDTL sourced controllers into a com-
plete architecture for autonomous vehicles. We see this as happening in two ways. Firstly we would like
to introduce internal state to our model together with “actions” that can operate on that state. In this way
perhaps a task like map-making could be expressed as a further “behaviour” of the system. The avenue
that we are exploring is in an interface to higher level planners, possibly written in a language that is
built on an entirely different model. We have already ported PROLOG to our vehicles for this purpose.

2nd IFAC Conference on Intelligent Autonomous Vehicles, Helsinki University of Technology, Espoo, Finland, June 12-14, 1995
(c) Essex University 1995

6. References

Baxter J.W. and Bumby J.R. (1993) Fuzzy Logic Guidance and Obstacle Avoidance Algorithms for
Autonomous Vehicle Control. Proceedings of the 1st International Workshop on Intelligent Autono-
mous Vehicles, Southampton, April 1993, pp. 259-264

Beom H.R. and Cho H.S. (1992) A Sensor-based Obstacle Avoidance Controller for a Mobile Robot
Using Fuzzy Logic and Neural Network. Proceedings of the 1992 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS '92), Vol. 2, pp. 1470-1475.

Brooks R.A. (1986) A Robust Layered Control System for a Mobile Robot. IEEE Journal of Robotics
and Automation, RA-1, March 1986, pp. 14-23.

Chang R.L.P. and Pavlidis T. (1977) Fuzzy Decision Tree Algorithms. IEEE Transactions on Systems,
Man, and Cybernetics, Vol. 7, No. 1, pp. 28-35.

Cox E. (1993) Adaptive Fuzzy Systems. IEEE Spectrum, February 1993, pp. 27-31.

Gachet D. et al. (1993) Neural Network Approaches for Behavioural Control of Autonomous Systems.
Proceedings of the 1st International Workshop on Intelligent Autonomous Vehicles, Southampton,
April 1993, pp. 330-334.

Joo Y. H. et al. (1993) Intelligent Navigation Control of An Autonomous Mobile Robot. Proceedings of
the 1st International Workshop on Intelligent Autonomous Vehicles, Southampton, April 1993, pp. 259-
264.

Klir G.J and Folger T.A (1988), Fuzzy Sets, Uncertainty and Information, Englewood Cliffs: Prentice-
Hall

Kosko B. (1992a) Neural Networks and Fuzzy Systems: a Dynamical Systems Approach to Machine
Intelligence. Englewood Cliffs: Prentice-Hall.

Kosko B. (1992b) Fuzzy Systems as Universal Approximators. Proceedings of the IEEE International
Conference on Fuzzy Systems, San Diego, California, March 1992, pp.1153-1162.

Mamdani E.H. (1977) Application of Fuzzy Logic to Approximate Reasoning Using Linguistic Sys-
tems. IEEE Transactions on Computers, Vol. 26, No. 12, pp. 1182-1191.

Pin F.G. et al. (1992) Using Custom-Designed VLSI Fuzzy Inferencing Chips for the Autonomous Nav-
igation of a Mobile Robot. Proceedings of the 1992 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS '92), Vol. 2, pp. 790-795.

Saffiotti A. et al. (1993) Blending Reactivity and Goal-Directedness in a Fuzzy Controller. Proceedings
of the Second IEEE International Conference on Fuzzy Systems, San Francisco, California, March 28 -
April 1, 1993, pp. 134-139.

Song K.T. and Tai J.C. (1992) Fuzzy Navigation of a Mobile Robot. Proceedings of the 1992 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS '92), Vol. 1, pp. 621-627.

Sugeno et al. (1993) Fuzzy Hierarchical Control of An Unmanned Helicopter. Proceedings of the Inter-
national Fuzzy Systems and Applications conference (IFSA'93), Korea.

Voudouris C. (1993) Fuzzy Hierarchical Control for Autonomous Mobile Robots. MSc dissertation,
Department of Computer Science, University of Essex, 1993.

Zadeh L.A. (1965) Fuzzy Sets. Information and Control 8, pp. 338-353.

