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Real-time vision is central to many embedded applications (e.g. vehicle guidance). It is a computationally intensive task
well beyond current general purpose computing platforms such as PCs and workstations. Thus, most real time vision
systems need special high performance computing platforms, commonly provided in the form of parallel processing
engines or dedicated hardware.

It is well known that dedicated hardware has the potential to provide the fastest execution speeds but its rigidity often
deters potential users. They prefer the economies of scale and flexibility which programmable systems offer. The
proposed architecture uses new generations of re-programmable logic devices and modularised hardware, thereby gaining
the performance advantage of hard-wired logic with the flexibility and associated economies of programmable systems.
The architecture takes the form of an extensible processing hierarchy consisting of a set of tightly coupled parallel
processors, each processing a portion of the image using a classic pipeline arrangement. A programmable image splitting
(and reconstruction) engine feeds this array and offers the potential of further enhancing the performance of the engines
by restructuring the pixel distribution (bit-shuffling) so as to match the requirements of the executing algorithms. The
physical implementation will be based on a modularised bus system together with EPLD processing devices.

The project is currently in a simulation phase and this paper will report the predicted performance of low level vision
functions running on this architecture.

Obijectives of Work. The motivation for this work was twofold. Firstly, our links with Altera provided the stimulus to
explore the potential of programmable logic to aid the development of programmable vision architectures and secondly
we had an internal need to create a reprogrammable and scalable real-rime image processing engine to support
experimental embedded vision and system architecture work being conducted at the University of Essex. The initial goal
of this work is to produce an embedded pre-processor which could perform the sort of “first steps” computations which
most visual methods have in common such as convolution, segmentation, grouping, thinning, and morphology (e.g. to
produce a general representation of the image such as David Marr's Primal Sketch (Marr 80)). Other goals are to facilitate
experimentation in the area of (re)active vision and motion (e.g. programming a robot to move towards moving objects).

Programmable and scalable systems are desirable to researchers who constantly need to change the system characteristics
as part of their experimentation procedures. They also frequently produce commercially enduring hardware and software
architecture by enabling systems to grow with changing needs and adapt to ever-advancing technology.

Embedded Vision Processors.Vision is undoubtedly one of our most useful senses and it is hardly surprising that we find
many machines which benefit from having an ability to view objects. Such machines, that have built into them an ability
to automatically extract and act on image data, are referred to as embedded vision systems (e.g. industrial inspection,
robotics). Real-time vision describes systems where the image data capture and processing are conducted in sufficiently
short time to allow their results to be usefully acted on.

Emulating the performance of human vision is a significant challenge to the scientific community and whilst much
commendable progress has been made, the level of vision performance we enjoy still remains well beyond current
technological capabilities. Even simple vision systems can involve prohibitive amounts of computations for traditional
architecture. For example, a 512x512 image has a quarter of a million pixels which, if operated on by a single basic
imaging algorithm such as convolution, may involve multiplications or additions to at least each of the pixel’s 8
neighbours: This results in a requirement for more than 7 million operations to be performed in less than 1/25th sec (i.e. if
every data frame is to be processed) or over 170 mega-operations per second (MOPS). Typically, many operations may
need to be performed on an image to deduce the required information so it is easy to see that massive computing power is
required to implement useful vision engines. As the functionality of the machine is frequently dedicated to some given
application, then so too is the vision domain often limited. Limiting the application domain often allows the vision
problem to be considerably simplified, resulting in working applications. Thus, whilst there may be no general purpose
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solution, working systems have been built within limited application domains. In addition to designing architectures to
satisfy such computational criteria, embedded systems frequently impose design constraints related to physical and
electrical requirements of the embedded environment. As stated in the introduction, the initial thrust of this work is
directed at the production of an embedded programmable pre-processor which could be used to perform the sort of “first
steps” computations which most visual methods have in common. Longer term goals are to develop more fully integrated
vision systems which could be used in embedded applications, such as small mobile robots of the type used at Essex.

Other Work. The proposed architecture makes use of some classic image processing architecture structures such as SIMD
and pipelining. As has been noted by many researchers (Brumfitt 89), vision systems need deal with at least two distinct
architectural needs, low-level pixel operations, such as edge detection which can exploit the intrinsic image parallelism
and higher level processing such as image understanding, needed to produce intelligent systems. As feature extraction can
be supported at either level it often falls into a slightly grey area between the two.

Architectures that deal with pixel level operations can be highly optimised to take advantage of the intrinsic image,
neighbourhood and algorithm parallelism associated with pixel arrays. These architectures are sometimes referred to as
vision pre-processors and often are constructed from hard-wired logic or ASIC devices such as the Plessey edge detection
chip (Beedie 86). The architecture being described belongs to this class of processor.

Image understanding is clearly a complex task and the focus of much Al research work. However within constrained
domains (e.g. traffic flow) workable systems can be produced (D'Agostino 92). An introduction to some of the problems
associated with object recognition and image understanding can by found in texts such as Fairhurst (Fairhurst 88) or
Sonka, Havac and Boyle (Sonka 93).

The coarse structure of the proposed engine is that of an SIMD machine (Fountain 86), the DAP being an example of this
class of architecture. In the proposed architecture a programmable pipeline based on EPLD’s forms the processor
elements. The Cytocomputer (Brumfitt 89) is the best early example of a programmable pipeline but differs in that it uses
LUTs as the programmable elements. Programming of the proposed architecture is accomplished by reprogramming the
EPLDS (logically equivalent to exchanging boards or VLSI chips). A notable example of a system using this approach is
the CRS 1000 (Alsford 85, D'Agostino 92) whose vision functionality may, in part, be customised via the use swapping of
VLSI chips. Incidentally, in keeping with many other embedded vision systems, CRS use a VME bus in conjunction with
a dedicated image bus. As was mentioned at the outset of this section processors optimised for pixel level processing are
not always suitable for higher level processing and vice-versa. For instance, Intel i860, which has established itself as
favourite choice amongst some vision practitioners (as it has many features that have been optimised for graphics work),
provides extensive floating point operations but lacks parallel structure to execute such algorithms as convolve, dilate,
neighbourhood operations (Yencharis 91). Thus, many commercial products will opt to combine a dedicated pixel
processor for low end processing with RISC technology for the higher levels. For example, the Max860, is a combination
of Datacube’s (of Danvers, MA) pipeline image processor maxVideo MaxVideo200 (7000MOPS) and CSPI (of Billerica,
MA) i860 based Supercard-2XL/VME (160MFLOPS).

There are many other architectures not mentioned in this short note. For information on these, reference to one of the
many excellent texts in this area such as Kittler and Duff (Kiuler 85) and Clark (Clark 91) or on-line archives! is
recommended.

Architecture Overview. It is well known that dedicated hard-wired logic can provide much higher throughputs than
conventional von-Neumann processors. Unfortunately, the complexities associated with realizing algorithms in hardware
and the resultant rigid nature of such implementations has always acted as a significant deterrent to those considering
adopting this approach. However, in recent years, advances in programmable logic device (PLD) technology have reached
the point where they contain sufficient logic within a single device to allow them to implement many popular image
operators (e.g. convolution, filters etc.). This architecture is an attempt at gaining the best of both of these approaches by
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basing the design around PLDs so as to obtain the performance advantages of hard-wired logic with some of the flexibility
of programmable systems. The basis of the architecture is an image processing engine which takes the form of a
conventional SIMD parallel architecture, where each processor is a SIMD pipeline. Each SIMD engine processes a
segment derived from a symmetrical partition of the image which provides the processor scalability. Images are normally
held in simple arrays (Callaghan 93).
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An unusual, if not novel, feature of the architecture is that the frame grabber can be programmed to output an
unconventional pixel map. For example, pixels may be duplicated or swapped, so as to reduce the need to move them
within the engine, thereby increasing the processing speed. This method is referred to as neighbourhood shuffling and is
discussed in a following section. To accommodate the potential for structure growth the image processor image memory is
4 times that of the digitised picture. Finally, the image segments are delivered from the image processing engine to the
output processor, where they are recombined to produce the whole image description.

Processor. In the planned implementation, each SIMD processor operates on segments of up to 128 x 128 pixels and is
implemented using Altera EPLDs in a 3-line MISD pipeline. Currently, the EPM72256 is the largest member of the Altera
PLD family. It offers some 5000 usable gates and initial estimates indicate two of these devices per pipeline processor will
be needed to implement basic operators such as convolution. However, EPLDs have been announced that are more than 4
times the size of these devices. Whilst a number of alternative manufacturers produce devices that might have been
considered for this design, Altera were considered most suitable due to their comparative size (large component count),
quality of the design tools, and their support. In the prototype, the image resolution has been set to a maximum of 768 x
768 x 8bits. This figure was set by the selection of components making up the input and output processors (e.g. ADCs)
which need to cope with a digitisation rate of 14.75 Mpixels/sec. The amount of memory for each pipeline image store has
been set at 64Kbytes. This is 4 times the size of the image segment (128x128), a factor that was selected by considering
the expansion effects of some algorithms.

As each SIMD processor operates on a segment of 128 x128 pixels the architecture is scalable by adding more processors
to deal with larger pictures. For example, to process a 256 x 256 picture, 4 SIMD processors are needed in the imaging
engine. Each EPLD will have programmed within it a computer vision algorithm. Algorithms can be changed by doing no
more than re-programming EPLD chips. The EPLD's also control the memory reading and writing. Each EPLD has two
framestores associated with it together with a small RAM for the storage of local variables. Using two frame stores
between each EPLD pipeline section enables the memory to be accessed continually without having to wait for the other
device.
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Vision Algorithms. There has been a lot of work done over the years on edge detection and boundary grouping (or
skeletonisation) algorithms. The amount of effort expended on these tasks indicates their continuing importance to
Computer Vision. The higher level visual tasks, such as object recognition, depend crucially on the quality of the output
from the early visual processing. It is not the purpose of this paper to discuss these tasks in much detail, rather to choose a
simple but effective algorithm and to see whether it can be executed in real time.

The edge detection algorithm used for this experiment is described in greater detail in (Spacek 93). It is partly inspired by
earlier work on edge detection, particularly (Spacek 86) and (Fleck 92). The main idea is to compute the finite differences
of symmetrically opposed pixels across an inter-pixel point, and to sum the squares of the differences in all possible
directions. This fulfills admirably the criteria of a simple, fast, yet effective edge finder and, furthermore, is quite similar
to the kind of locally parallel computations that are performed by the retina. The value returned at each point by this initial
convolution (with a non-linear filter) is a good approximation to the magnitude of the image gradient. These values are
typically normalised to lie in the range O to 1.

The next step, non-maximum suppression (or boundary thinning, skeletonisation), consists of identifying the boundary
points as the ridge points on the gradient magnitude map. It appears that one of the best solutions to this problem is again
a very simple one: mark all points which are a local maximum in at least two directions (assuming eight-connected grid).
Typically one of these directions is normal to the extended local boundary.

The final (third) stage of the Spacek Boundary Detection algorithm consists of simple encoding to represent the
connectivity of the boundary points, specifically the count (number) of adjacent boundary points. This operation is again
local, and hence suitable for parallel execution. It is particularly convenient for detecting end-points and junction points of
extended boundaries, which are perceptually significant, and hence very useful for tasks such as motion computation and
autonomous vehicle guidance applications.

Translating Algorithms for EPLD Implementation. The usual way to implement any algorithm into hardware is to
translate each part of the algorithm into a suitable mathematical function and then implement each of the functions as
hardware. Algorithms such as convolution of an image area are easily put into hardware. The numbers used to convolve an
image are usually small and for most of the time, not unique in the convolution square. This means the multipliers can be
implemented as adders which are ideally suited to this architecture. An example algorithm has been developed to prove
the theoretical system performance. This algorithm (described in the previous section) is an edge detection and thinning
algorithm. The first part of the algorithm has already been implemented onto EPLD as follows. Within an area of image
data that has equal and even pixel dimensions we find the sum of the absolute differences of all opposing pairs of pixels
whose joining line (pixel centre to pixel centre) passes exactly through the centre of the image data square. So for a 4*4




image data square we have the sum of 8 absolute differences.
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Other algorithms can be done in a similar way. Temporal edge detection can be performed by finding the difference
between two consecutive frames and passing the results on to the edge detector. This would be implemented as a simple
absolute difference function applied to pixels pairs (x,y) and (x',y") where the (x,y) and (x',y") represent the same pixel
location in a pair of consecutive frames.

Neighbourhood Shuffling. Neighbourhood shuffling refers to the local rearrangement of neighbourhood pixels to optimise
the overall processing speed (e.g. minimise data movement). At the time of writing insufficient work has been done on this
technique to give a proper assessment of its worth. However, clearly its use has to be considered very carefully as the time
and memory overheads to do the shuffling can quickly outweigh the benefits of doing such a task. Nevertheless it would
seem that there are performance gains to be had by this method in certain tasks. Take for example the temporal edge
detector described above. In order to find the absolute difference between two pixels we must make two memory accesses.
One to pixel (x,y) in frame 1 and another to (x,y) in frame 2. For most of the time the image data will be 8 bits but the
system has the option to work on 16 bits. By loading the first pixel into the 8 MSB's and the second pixel into the 8 LSB's
when the picture is being loaded to the processor boards, by the input board, the EPLD will only require one memory
access to get the pixel pair, thus doubling the performance.

Programming The Svstem. The pre-processor vision engine being described is intended to be a component making up a
larger embedded system whose operation is managed by a conventional von-Neumann based processor system. Thus,
when considering the system as a whole, there are many levels of programmability. High level system management (e.g.
set up modes, convolution size, start acquisition) is provided by the multi-tasking, real-time operating system VxWorks.
This is a cross development system and all program development takes place on a variety of Unix workstations including
PCs (running NeXTStep), HPs and Suns. The programming language is ANSI C. Once program modules are down-
loaded via ethernet the network cable can be detached for complete autonomy. Should a program reach maturity it could
be installed in the boot ROMs (which can be up to 1 MB in total) to form a stand-alone embedded system. It is intended
that the vision preprocessor will usually be programmed by inserting combinations of common vision function modules
obtained from a prefabricated library into the preprocessor. This can be regarded as analogous to the use of C functions
and OOPs objects in conventional software development. The implementation of EPLD modules requires knowledge of
logic and PLD design. Simple algorithms can be converted and programmed with relative ease but the larger the algorithm
the higher the degree of skill required to the design of the EPLD. Programming at this level is not appropriate for those
without hardware skills.

Performance. The system has been designed to work at 25fps. The engine characteristics in terms of procssing time and
operations per second are dependent on the algorithm being implemented. Provided the processing time is less than 40ms
(25fps) the system will function properely. For instance, an 8x8 finite difference followed by two 3x3 algorithms (see
Spacek algorithm above) can be executed in 37ms. By means of a comparison to dedicated hardware, the Plessey
PDSP16401 edge detection chip (a fixed 3x3 convolution) provides a performance of 225MOPS, a throughput of
450Mbits/s and a pixel latency of 1.3x10%. Considering the equivalent part of the SX architecture (the pipeline
processor), and running what we believe is a similar algorithm on a 512x512 image, we estimate it would achieve a
performance of the order 1GOPS, a throughput of 503Mbits/s, a pixel latency of 420ns and a frame processing time of
about 5.5ms. By way of another example, the Alacron “add-on” image processing card (i860 based) performs a 3x3



convolution on a lkx1k image in about 198.9ms. Considering programmable super-processors, the MP-1 from MasPar (of
Sunnyvale, CA) contains between 1024 to 16,384 processing units (32 per VLSI chip) each with 1kBytes can doa 10x10
convolution on a 1k image in less than 0.2 secs (Hogan 90). The architecture described in this paper has been estimated to
perform three 10x10 convolutions in 0.074secs. In this configuration the SX engine produces a performance of 14.31
GOPS and costs in the order of $20,000. The MP-1 ($170,00 to $810,00) is supposedly similar to MPP, DAP, Blitzen and
the Connection Machine (except in that multiple processors have the added ability to simultaneously access different
memory locations permitting the use of data structures such as queues and look-up tables).

Summary. The work described above is part of an ongoing project to investigate the feasibility of using EPLDs as the
basis of a programmable vision preprocessor. Although this work is only at an early stage the initial results obtained via
simulation indicate that EPLDs now contain sufficient components to allow many low level vision functions to be
implemented cost effectively in real-time without requiring prohibitive quantities of devices.
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