
Presented	at	IE13,	Athens,	Greece,	16‐19th	July	2013	

1
© Essex University 2013

Crowd Intelligence in Intelligent Environments: a

Journey from Complexity to Collectivity

Idham Ananta
Department of Computer Science and Electronics

Universitas Gadjah Mada
Yogyakarta, Indonesia

idham@ugm.ac.id

Vic Callaghan, Matthew Ball, Michael Gardner
School of Computer Science and Electronics Engineering

University of Essex
Colchester, UK

Jeannette Chin
Department of Computing and Technology

Anglia Ruskin University
Cambridge, UK

Abstract: One form of complexity in intelligent environments
arises from their heterogeneous nature. The growing variety of
environments and countless stereotypes of users operating
Intelligent Environments will, theoretically, increase the
complexity and resources needed to utilise them. However we
argue that utilizing Crowd Intelligence techniques in Intelligent
Environments offer several advantages for dealing with these
complexities. A novel architecture called a Crowd Based
Heterogeneous Ambient Environment Framework (CHAMBER)
is introduced, which proposes the use of hierarchical clustering to
discover similarities between the infrastructures of individual
Intelligent Environments, which are then offered for use by other
users wishing to construct their own intelligent environments.

Keywords: Intelligent Environment, Crowd Intelligence,
Collective Intelligence

I. INTRODUCTION

In the twenty years since Mark Weiser [1] published his vision
about pervasive and ubiquitous computing, there has been a
steadily increasing interest in this area of research. The
number of publications in the area has been growing
constantly as new kinds of intelligent environment
infrastructures and applications are introduced. Researchers
offer various points of view, including cross-disciplinary
discussions, and combine them with appropriate emerging
technology; this continuous variance in perspectives has led to
the area of Intelligent Environments becoming very
heterogeneous.

Many researchers aim to bridge this heterogeneous gap by
investigating features like mobility, adaptability, and security.
However, in most cases, expanding the scale of heterogeneity
means increasing its complexity which, in turn, leads to more
computing overheads and increases the complexity further.
This work offers a collective approach to overcome the

complexity problems by gathering crowd sourced experiences
and information to prompt the user with appropriate options.

II. THE COMPLEXITY PROBLEMS

A. Related Work

We believe that complexity results from the multi-
dimensional heterogeneity of intelligent environments,
involving numerous physical devices, and individual
preferences and needs of the user. This section describes the
range of research undertaken previously, spanning problems
of device diversity, mobility, portability, and adaptability to
the complexity of differing environments and the preferences
of the people involved. As a consequence we propose a model
for describing the complexity that includes a taxonomy to
categorize the different aspects involved.

 One of the earliest research projects involving
heterogeneous devices was undertaken by Wang and Garlan
[2]. The problem they tried to solve was how to enable users
roaming through environments with differing sets of devices,
to request generic system services that are independent of
specific hardware . In solving this problem they introduced the
notion of Task-Driven Computing, using several applications-
independent primitives that bound the actual services available
in the environment to a generic goal (the task). All of its
dynamic configurations were handled by a proprietary
protocol. Jiang et al worked on a similar idea, and introduced
task computing to fill the gap between task and services and
proposed the use of a task hierarchy that supported reusability
and shielded the user from low-level complexity using abstract
representations. These two approaches, while able to offer
some degree of portability, had adopted a tightly coupled
system, which made them more difficult to interoperate with
different environments.

Presented	at	IE13,	Athens,	Greece,	16‐19th	July	2013	

2
© Essex University 2013

Masuoka [3], introduced a more open approach in the
notion of STEER (Semantic Task Execution Editor), by
adopting a Service Oriented Architecture. Masuoka make use
of SSD (Semantic Service Description) in their system, which
was computed with the help of inference, execution, and a
discovery engine to deliver semantic services requested by the
user. Jiang et al took a different approach using context
dependent task modelling to work across different platforms,
based on the fact that each single environment had a different
configuration, and that each should share a common
understanding about the context. Both approaches promised a
higher degree of openness, but still engendered the issue of
increasing computing demand, as the level of heterogeneity
grows, to an extreme level.

The approaches described above used tasks as a higher
level abstraction and utilized them as a means of interaction
between people and the intelligent environments surrounding
them. There was some work, which involved the notion of
‘programming’ especially for the end user. The MIT Alfred
project [4] sought to allow users to compose a program via
teaching-by-example, using the concepts of ‘goals’ and
‘plans’. Their system proposed to make use of a macro
programming approach that could be generated by the verbal
or physical interaction. Hague [5] proposed a tangible media
metaphor to represent programming logic in which
programming was undertaken by turning appropriate faces of
a cube. Humble [6] proposed a jigsaw puzzle metaphor as
graphical programming representation to build applications.

The PiP framework [7][8], has several key concepts, which
are relevant to our research. It introduced Programming-by-
Example as a new way to program/customize simple tasks in
digital homes ; this involved the end-user performing their
desired activity using devices in the environment which the
system encoded as a “program” that was executed later when
the same condition(s) reoccur. For example, an end-user
might always reduce the volume of an mp3 player when the
phone rings, and so PiP system allowed the user to automate
this by utilizing a programming-by-example technique (the
user simply demonstrated the system behaviour they required).
In this way digital home customization could be performed
intuitively by non-technical end-users with very little training
required.

In addition to reducing complexity, using an end-user
driven approach, enabled users to unleash their creativity and
promoted a sense of ownership and trust as all preferences are
their own work (not machine generated preferences); however,
these approaches also require a significant amount of
cognitive work from the user, which may not be suitable for
some people[9][14]. From this viewpoint, Ball [9] proposed
the concept of adjustable autonomy utilizing human and agent
teamwork to manage and program an Intelligent Environment.

The ATRACO project [10] introduced the metaphor of
Ambient Ecologies to describe smart environments enriched
with connected sets of devices and services, and the interaction
between them, the environment itself, and its users. The
interesting aspect of Ambient Ecologies is their scalability and
adaptability: an Ambient Ecology could be composed of a
number of artefacts that make up composable building blocks,
which not only offer a higher degree of scalability, but also the
ability to adapt to changes. Their approach was based on well-
known software engineering principles which used the SOA
model combined with intelligent agents and ontologies.

 ATRACO used a local ontology to support what was
termed an application sphere (a self-contained but connected
environment). A combination of a Fuzzy task agent with
ontology management allowed application sphere to adapt to
local changes. However, while it represented a commendable
advance on earlier ideas, it required relatively high
computational resources on the client/local side.

B. Model for Multilevel Complexity

This study of Complexity is motivated by an increasing
number of intelligent environments which tend to have a
different set of devices and services, along with diverse
occupants who frequently have different preferences and
needs. Figure 1 shows our model of types of Intelligent
Environment used to differentiate the variety of users,
environments and preferences. The work described in this
paper is situated as a single user and single environment space
where the operations of the system are primarily focused on
how to fulfil user preferences (expressed as rules/sets of
activities via end-user programming, as previously described)
within the resources available in the environment. However,
when more than one user is involved in a single environment
the complexity level rises because the system must adapt to
and accommodate additional user preferences using the same
available resources. Furthermore, for the case of a single user
who moves from one environment to another, the issue of
mobility is raised as another facet of complexity. On top of all
this, the system must also account for the complex changes in
user preferences occurring over time; these could be attributed
to a large variety of reasons, such as changes in the
environmental state, changes in the user’s experience and
confidence in the system, or the personal mood and feelings of
the user at any given point in time [14].

To capture these issues we created a model of multi-level
complexity, as shown in Figure 1. We identified that there are
three main variables which define the complexity:

1) Physical World. – This consists of a set of devices and
services. Environments will change, when new devices are
introduced, new configurations are set up, state variable
changes (like temperature, humidity, brightness level etc.), or
if a new user enters the environment.

This project is sponsored by Directorate General of Higher Education
Republic Indonesia

Presented	at	IE13,	Athens,	Greece,	16‐19th	July	2013	

3
© Essex University 2013

2) Preferences - Are a set of rules defined by user. A user
can change his/her preferences based on changes in the
environment, or his needs.

3) Users - As social creatures, it is common for
environments to have more than one person. More people
bring more preferences, resulting in the need to represent
differing and sometimes changing group preferences.

III. CROWD INTELLIGENCE

A. Motivation

Crowd Intelligence or as it is more commonly referred to
as, Collective Intelligence, is a means to harness group
knowledge. For example, searching particular keywords from
the millions of pages on the Internet might return unlimited
and irrelevant possibilities. However by using crowd
intelligence techniques, such as the Google PageRank scheme,
the knowledge or behaviour of other users can be harnessed.
Google PageRank uses outside links to a particular web page as
reference to define how important the page is. This mechanism
could be seen as akin to web pages voting for each other to
determine which one is the most important and more relevant.
This is a prime example of how Crowd (or Collective)
Intelligence operates. It works by harvesting knowledge from
the ‘crowd’ of human users who have used their own
intelligence to reason about information and services, which is
then captured in a way that can be used by the wider web
community (and the companies providing these services). In
that respect, it can be seen as an alternative to artificial
intelligence for reasoning about networked information or a
way of shifting the balance from artificial to natural
intelligence. These techniques have played a key role in the
success of companies such as Google, Amazon, Netflix etc
who use similarities between customers as part of their
recommendation mechanism.

We argue that Crowd Intelligence can offer similar
advantages to the Intelligent Environment World for the
following reasons:

1) Reduction of Computational Load - AI is known to be
computationally intensive employing complex knowledge
representations (e.g. Ontology) and reasoning engines. This
scheme replaces those mechanisms with a simpler mechanism
of recording people’s behaviours. The scheme is intrinsically
distributed (the reasoning tis undertaken by numerous human
clients).

2) Heterogeneous Capabilities - Crowd intelligence does
not require any strict hierarchy or formalism to make it work.
It does, however, require that hosts openly share information
in a common representation such as XML meta-data. While
there is a concern about privacy and security, the meta-data
provided, along with ‘behaviour’ logs collected, can be
anonymised.

3) Human Centric – This scheme alters the balance of
human versus artificial agent reasoning in favour of the
people. Of course this does not mean that such reasoning is
better but it does open up an interesting line of research that

could investigate how that balance might be optimized, or
even made adjustable.

4) Searching and Ranking - A typical page rank system on
a search engine works by assessing how relevant the
documents are, based on a list of keywords. A widely adopted
method for doing this is to collect documents (some call it
crawling), and index them, thereby enabling faster and more
effective searching. There are a variety of techniques used to
facilitate successful document ranking , for example:
frequency based metrics, page-rank algorithm metrics, and
neural networks. Frequency based metrics compose their page
rank based on how frequent particular words show up in the
documents. Page-rank algorithms, however, compose it by
looking at how many other pages link to the page in question,
as with Google PageRank (previously described). Neural
networks learn to associate searches with results based on the
links people click on after they get set of results.

In our intelligent environments framework, searching and
ranking is used to create a list of rules that are relevant to a
particular situation. However there are important differences
such as IE resources will not, in general, contain forwarding
links to each other, therefore ranking metrics based on linking
are less important in intelligent environments and are excluded
from our scheme. However, since IE devices will share
(exchange) rules/preferences between environments, we utilize
a neural network approach to learn from these crowd choices.
In our approach, we achieve this through the use of a
multilayer perceptron (MLP) network consisting of sets of
nodes and connections between them.

B. Clustering and Collaborative Filtering

Clustering is a mechanism to identify groups with similar
patterns or characteristics. It is a type of unsupervised learning
which is able to detect similarities in data. Our framework
uses this technique to discover groups of intelligent
environments that have a similar set of devices and services.

The purpose of our clustering mechanism is to discover
similar environments, so it can formulate recommendations or

Environmen

Users

Preferences

single multipl

single

single

multipl

multipl

Figure 1. Idham-Callaghan-Chin Complexity Model

Presented	at	IE13,	Athens,	Greece,	16‐19th	July	2013	

4
© Essex University 2013

find the appropriate rules from environments exhibiting
similar patterns of devices and services. Any rules that work in
one particular environment should also work in an identical
environment. In our proof of concept system, we search for
identical configurations but clearly, in practice there may
always be small differences which would need to be addressed
by employing appropriate agent technologies, such as fuzzy
logic [16].

Hierarchical clustering aims to organise data into a
hierarchical group structures, based on the observed
similarities between the data [15]. In the context of intelligent
environments, it could be used to find groups of similar
devices or services within/across environments at different
scales. An intelligent-school for example, might have
intelligent-classrooms as well as intelligent-staffrooms, each
with their own rules based on different devices and services
contained in each. However there might also be some rules
that are applicable to the scope of the entire school. So using
hierarchical clustering, it is possible to detect two small
groups, classrooms and staff room, and also a bigger group,
which is the school itself. This approach helps detect the scope
of particular rules.

Collaborative filtering is used to search a large set of
items, to find a smaller set, qualified by some variables. In a
movie recommendation application, for example, collaborative
filtering is used to search a large group of customers, and
create smaller groups of them who have similar tastes in
movies. It produces a ranked list of recommendations based
on aspects of their personal preferences.

In Intelligent Environments, this technique could be useful
to narrow down sets of user preferences and device rules,
based on specific relevant variables such as user-rating, energy
saving potential, the number of environments using them, etc.

This technique is not only useful for finding workable
solutions for similar environments, but also has potential for
recommending rules or actions for specific situations based on
either the similarity of the rules (e.g. the same category, such
as temperature management) or the specific rules chosen by a
similar user (e.g. based on age, gender, etc)

In the proposed framework, each intelligent environment
advertises its set of devices and services as meta-
configurations, creating a pool of configuration collections,
each of which can be individually ranked. To find a set of
environments that have similar configurations, a comparison
mechanism is required which, in our framework, is a similarity
score. We have investigated two ways for doing this:
Euclidean distance, and Pearson correlations, which will be
discussed later in this paper.

IV. CHAMBER

In this section we describe our Crowd Based
Heterogeneous Ambient Environment Framework
(CHAMBER). We start with the architecture, describing the
implementation and go on to detail the techniques used in this
framework.

A. Architecture

At a high-level, CHAMBER adopts a simple client-server
architecture shown in Figure 2. A server provides

computational resources, intelligence tools and a database to
store persistent information. The client in this framework is the
physical environment, consisting of its own processor devices,
sensors, and users. The client is required to provide some
essential information such as the environment’s configuration,
the rules adopted in the environment, and the user behaviour in
accessible interfaces.

There are two types of services provided by CHAMBER.
The first one is a synchronous service; this stateless service
takes the form of client queries to the server. It carries local
configuration and information, and waits for the results from
the server. The second service is an asynchronous service. This
service runs in the background and operates over a longer
period of time. One of the examples is a data aggregation
service, which will continuously crawl to every environment
accessible to update the current CHAMBER knowledge-base.

Recent work by Ball & Callaghan [11] [12], developed the
Adjustable Autonomy Intelligent Environment (AAIE) model;
this model allows rules (descriptions of desired automated
actions) to be created at varying levels of agent autonomy,
including either fully-autonomous (using agents to create rules
on behalf of users) and non-autonomous (users creating rules
via end-user programming). An important aspect of the AAIE
model is a confidence-based mechanism used by the agent in
creating/learning rules. The more evidence the agent collects
to support a learnt rule (e.g. by observing and matching user
actions in the environment), the higher the confidence level
grows for a particular rule. Confidence decreases can also
occur for a rule, however, if it was to trigger an undesirable
action that is corrected by the user. This confidence-based
mechanism provides a basic ranking system for the rules
generated within a single intelligent environment, by ensuring
that the more successful rules have a higher level of
confidence.

In the CHAMBER framework, such data will form the
‘MetaData’ made available to the CHAMBER ‘Aggregator’, as
shown in Figure 2. Other MetaData will revolve around the

Figure 2. CHAMBER Architecture

Presented	at	IE13,	Athens,	Greece,	16‐19th	July	2013	

5
© Essex University 2013

intelligent environment configuration, such as the types of
devices available, and any groups of devices that are
commonly used together; what’s more, the MetaData will
include information about the user of the environment, such as
any observable traits they may have, e.g., they may be very
conscientious with energy saving and keep device usage to a
minimum, or they may always require high levels of lighting.
By using crawling techniques, the Aggregator gathers the
MetaData from all intelligent environments on the CHAMBER
network to populate the central database.

The journey from complexity to collectivity starts from
collecting descriptions from multiple environments. The
description, regardless what kind of configuration in each
environment, should include configurations, rules and
attributes, plus user information. These three variables come
from our complexity model and play a key role as a core way
to structure the knowledge from heterogeneous environments.
While there might be several ways to parse unstandardized
descriptions, we opted to create a more standardized approach
for performance reason. Each implementation of CHAMBER
in a new environment would use a wrapper to present their
environment configuration and activity into a standardized
form, in this case an XML page.

A list of devices and services, middleware used, and any
other environment configuration related information are
presented in the description page. Several rules applied in the
environment and their attributes, such as confidence levels,
duration, and energy saving levels are listed in the documents.
User’s profile and its activities (list of rules used in a particular
environment) are also described in the document. While this
scheme opens other issues such as privacy and security, they
are considered out of the scope of this paper.

B. Clustering and Ranking Environments and Rules to
Organize Crowd Intelligence

The CHAMBER server will periodically mine the
information from the descriptions. It uses the stored set of
environment configurations to discover groups of similar
environments. This is undertaken by parsing the descriptions
and creating similarity vectors of the environment. The same
approach is used in the rules. It parses a rule, looks at its
similarity (from its antecedent and precedent) to create the
rule’s similarity vector. The environments’ similarity vector is
useful for discovering groups of similar environments and
identifying sets of rules that, hypothetically, might work in
each other’s environment. Later on, if some local environment
requires workable rules for its environment it will recommend
rules from the most similar or perhaps identical environment.
The environment’s similarity vectors will add weight to rule’s
rank since it means many environments use them. It can be
seen as every environment collectively “votes” for rules, so the
rules which have the most votes should have higher ranked in
the recommendation. A sample of the computation involved is
presented in Table 1.

The description of the rules provided by each environment
includes a description of the devices and services used,
enabling it to perform some degree of polymorphism. This
means that, though a particular rule, such as a lighting systems

rule was applicable to a classroom, it might be possible for it to
work in a bedroom, as long as the rules include set of
devices/services, which are available in both environments.

TABLE 1.RULES RECOMMENDATION COMPUTATION TABLE

Env.
ID

Crowd Intelligence Computation

(SS)
Rule1

CL
SSxCL

Rule2
CL

SSxCL
Rule
3 CL

SSxCL

001 1.0 3.0 3.0 2.0 2.0 4.0 4

002 0.80 3.5 3.76 4.0 3.2

003 0.60 2.0 4.0 2.5 1.5 2.5 1.5

Sum SSxCL 10.76 6.7 5.5

Sum SS 2.4 2.4 1.8

SSxCL/SS 4.48 2.79 3.05

EnvID = environment ID, SS= Similarity Score, CL=confidence Level/Rating. This computation
sample shows that the recommendations rank is: 1. Rule 1(4.48), 2. Rule3(3.05), and 3. Rule

2(2,79)

C. Involving user preferences

The CHAMBER framework can be run anonymously,
which is adequate for some routine activities such as managing
temperature, ambient light and energy conservation. However,
for more subjective rituals, such as studying, reading, sleeping,
etc. a user’s personal preference might differ significantly to
the average person, and thus need a more personalized
recommendation.

Adding user preferences into the system requires additional
information about the user: user’s attributes (such as age,
gender, personality, income, etc.) and user actions (searching,
rating, using, etc.). Some recommendations can be offered
based on similar attributes, or similar actions. In Chamber we
achieve this using the ‘similarity vector’ approach we
described earlier together with , collaborative filtering. This
technique tries to recognize the voting patterns for particular
rules. The recommendation system will search for other users
with similar patterns, and recommend those rules. Thus, this
approach offers a human centric agent vision since it bases
recommendations from the other user’s choices (rules) as
against rules generated by a machine (AI).

V. CONCLUSION

We have described the complexity of heterogeneous
intelligent environments and have modelled it using a
multidimensional complexity representation. We have argued
that in the future, with growing numbers of interconnected
intelligent environments on the network, there will be a huge
pool of online environments and devices raising the possibility
of harvesting this information to the benefit of the collective
users. In particular we suggest that this vast pool of
environments will produce an increasing likelihood that a user
of one particular environment will be able to find other
environments or devices with similarities between physical
configurations, rules/preferences applied, and user preferences
which could be applicable to their environments.

Presented	at	IE13,	Athens,	Greece,	16‐19th	July	2013	

6
© Essex University 2013

Thus, in this paper we have investigated how the collective
reasoning of the similarities from numerous intelligent
environment users can be harnessed by individuals to
customise their pervasive computing environments. We have
described the concept and provided an overview of related
work. In addition, we have presented a novel architecture that
builds on our earlier work in adjustable autonomy and end-user
programming enabling those schemes to be given crowd
sourced recommendations that replace intelligent reasoning in
existing schemes. The motivation for this work is to both
reduce the computational overheads (by replacing artificial
intelligence with natural intelligent) and to improve the quality
of decisions by making them more human centric in origin.

ACKNOWLEDGEMENTS

This project is part of two years collaboration research
between University of Essex and Universitas Gadjah Mada,
supervised by project chairman Prof. Dr. Jazi Eko Istiyanto,
from Department of Computer Science and Electronics
Universitas Gadjah Mada.

REFERENCES

[1] Weiser, M. (1991). Computer in the 21st Century.

[2] Wang, Z., & Garlan, D. (2000). Task-Driven Computing. CMU-CS-00-
154, Carnegie Mellon University, School of Computer Science,
Pittsburgh.

[3] Masuoka, R., Parsia, B., & Labrou, Y. (2003). Task Computing - the
Semantic Web meets Pervasive Computing. International Semantic Web
Conference.

[4] Gajos, K., Fox, H., & Shrobe, H., “End user empowerment in human
centered pervasive computing”, in Proceedings of Pervasive 2002,
(2002), 1-7.

[5] Hague, R. (2003). Towards Pervasive End-User Programming.
Proceedings of Ubiquitous Computing, (pp. 169-170).

[6] Humble, J., Crabtree, A., Hemmings, T., Åkesson, K.P., Koleva, B.,
Rodden, T., Hansson, P., “’Playing with the Bits’, User-Configuration of
Ubiquitous Domestic Environments”, Proceedings of UbiComp 2003,
Springer-Verlag (2003), 256-263.

[7] Chin, J., Callaghan, V., Clarke, G., “An End User Tool for Customising
Personal Spaces in Ubiquitous Computing Environments”, Lecture
Notes in Computer Science: Ubiquitous Intelligence and Computing,
Springer-Verlag (2006), 1080-1089.

[8] Chin, J., Callaghan, V., Clarke, G., “Soft-appliances: A vision for user
created networked appliances in digital homes”, Journal of Ambient
Intelligence and Smart Environments 1, (2009), 69–75.

[9] Ball, M., Callaghan, V., Gardner, M., & Trossen, T. (2009). Exploring
Adjustable Autonomy and Addressing USer Concern in Intelligent
Environments. Intelligent Environments 2009. Netherlands: IOS Press

[10] Goumopoulos, C., & Kameas, A. (2009). A Service Oriented
Architecture Combining Agents and Ontologies Towards Pervasive
Adaptation. In V. Callaghan (Ed.), Intelligent Environment 2009 (pp.
228-236). Barcelona: IOS Press.

[11] Hagras, H., Callaghan, V., Colley, M., Clarke, G., Pounds-Cornish, A.,
Duman, H., “Creating an Ambient-Intelligence Environment Using
Embedded Agents”, IEEE Intelligent Systems, Vol.19, No.6, (2004), 12-
20.

[12] Hagras, H., Colley, M., Callaghan, V., Clark, G., Duman, H. and
Holmes, A., “A fuzzy incremental synchronous learning technique for
embedded-agents learning and control in intelligent inhabited
environments,” in Proc. IEEE Int. Conf. Fuzzy Syst., HI, 2002, pp. 139–
145.

[13] Jiang, F., Li, J., & Zhu, Z. (2008). A user-centric Task Computing
Architecture for Pervasive Computing. Third International Conference
on Pervasivce Computing and Applications ICPCA, (pp. 491-496).
Alexandria.

[14] Ball, M., Callaghan, V., "Managing Control, Convenience and
Autonomy: A Study of Agent Autonomy in Intelligent Environments",
in Special Issue on Agent-Based Approaches to Ambient Intelligence in
the AISE book series, IOS Press (2012).

[15] Johnson, Stephen C. "Hierarchical clustering schemes." Psychometrika
32.3 (1967): 241-254.

[16] Lynch, C.; Hagras, H.; Callaghan, V., "Using Uncertainty Bounds in the
Design of an Embedded Real-Time Type-2 Neuro-Fuzzy Speed
Controller for Marine Diesel Engines," Fuzzy Systems, 2006 IEEE
International Conference on , vol., no., pp.1446,1453, 0-0 0

