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Abstract: One form of complexity in intelligent environments 
arises from their heterogeneous nature. The growing variety of 
environments and countless stereotypes of users operating 
Intelligent Environments will, theoretically, increase the 
complexity and resources needed to utilise them. However we 
argue that utilizing Crowd Intelligence techniques in Intelligent 
Environments offer several advantages for dealing with these 
complexities. A novel architecture called a Crowd Based 
Heterogeneous Ambient Environment Framework (CHAMBER) 
is introduced, which proposes the use of hierarchical clustering to 
discover similarities between the infrastructures of individual 
Intelligent Environments, which are then offered for use by other 
users wishing to construct their own intelligent environments.    

Keywords: Intelligent Environment, Crowd Intelligence, 
Collective Intelligence 

I.  INTRODUCTION  

In the twenty years since Mark Weiser [1] published his vision 
about pervasive and ubiquitous computing, there has been a 
steadily increasing interest in this area of research. The 
number of publications in the area has been growing 
constantly as new kinds of intelligent environment 
infrastructures and applications are introduced. Researchers 
offer various points of view, including cross-disciplinary 
discussions, and combine them with appropriate emerging 
technology; this continuous variance in perspectives has led to 
the area of Intelligent Environments becoming very 
heterogeneous. 

Many researchers aim to bridge this heterogeneous gap by 
investigating features like mobility, adaptability, and security. 
However, in most cases, expanding the scale of heterogeneity 
means increasing its complexity which, in turn, leads to more 
computing overheads and increases the complexity further. 
This work offers a collective approach to overcome the 

complexity problems by gathering crowd sourced experiences 
and information to prompt the user with appropriate options. 

II. THE COMPLEXITY PROBLEMS 

A. Related Work 

We believe that complexity results from the multi-
dimensional heterogeneity of intelligent environments, 
involving numerous physical devices, and individual 
preferences and needs of the user. This section describes the 
range of research undertaken previously, spanning problems 
of device diversity, mobility, portability, and adaptability to 
the complexity of differing environments and the preferences 
of the people involved. As a consequence we propose a model 
for describing the complexity that includes a taxonomy to 
categorize the different aspects involved. 

 One of the earliest research projects involving 
heterogeneous devices was undertaken  by Wang and Garlan 
[2]. The problem they tried to solve was how to enable users 
roaming through environments with differing sets of devices, 
to request generic system services that are independent of 
specific hardware . In solving this problem they introduced the 
notion of Task-Driven Computing, using several applications-
independent primitives that bound the actual services available 
in the environment to a generic goal (the task). All of its 
dynamic configurations were handled by a proprietary 
protocol. Jiang et al worked on a similar idea, and introduced 
task computing to fill the gap between task and services and 
proposed the use of a task hierarchy that supported reusability 
and shielded the user from low-level complexity using abstract 
representations. These two approaches, while able to offer 
some degree of portability, had adopted a tightly coupled 
system, which made them more difficult to interoperate with 
different environments. 
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Masuoka [3], introduced a more open approach in the 
notion of STEER (Semantic Task Execution Editor), by 
adopting a Service Oriented Architecture. Masuoka make use 
of SSD (Semantic Service Description) in their system, which 
was computed with the help of inference, execution, and a 
discovery engine to deliver semantic services requested by the 
user. Jiang et al took a different approach using context 
dependent task modelling to work across different platforms, 
based on the fact that each single environment had a different 
configuration, and that each should share a common 
understanding about the context. Both approaches promised  a 
higher degree of openness, but still engendered the issue of 
increasing computing demand, as the level of heterogeneity 
grows, to an extreme level. 

The approaches described above used tasks as a higher 
level abstraction and utilized them as a means of interaction 
between people and the intelligent environments surrounding 
them. There was some work, which involved the notion of 
‘programming’ especially for the end user. The MIT Alfred 
project [4] sought to allow users to compose a program via 
teaching-by-example, using the concepts of ‘goals’ and 
‘plans’. Their system proposed to make use of a macro 
programming approach that could be generated by the verbal 
or physical interaction. Hague [5] proposed a tangible media 
metaphor to represent programming logic in which 
programming was undertaken by turning appropriate faces of 
a cube. Humble [6] proposed a jigsaw puzzle metaphor as 
graphical programming representation to build applications.   

The PiP framework [7][8], has several key concepts, which 
are relevant to our research.  It introduced Programming-by-
Example as a new way to program/customize simple tasks in 
digital homes ; this involved the end-user  performing their 
desired activity using devices in the environment which the 
system encoded as a “program” that was executed later when 
the same  condition(s) reoccur. For example, an end-user 
might always reduce the volume of an mp3 player when the 
phone rings, and so PiP system allowed the user to automate 
this by utilizing a programming-by-example technique (the 
user simply demonstrated the system behaviour they required). 
In this way digital home customization could be performed 
intuitively by non-technical end-users with very little training 
required.  

In addition to reducing complexity, using an end-user 
driven approach, enabled users to unleash their creativity and 
promoted a sense of ownership and trust as all preferences are 
their own work (not machine generated preferences); however, 
these approaches also require a significant amount of 
cognitive work from the user, which may not be suitable for 
some people[9][14]. From this viewpoint, Ball [9] proposed 
the concept of adjustable autonomy utilizing human and agent 
teamwork to manage and program an Intelligent Environment.   

The ATRACO project [10] introduced the metaphor of 
Ambient Ecologies to describe smart environments enriched 
with connected sets of devices and services, and the interaction 
between them, the environment itself, and its users. The 
interesting aspect of Ambient Ecologies is their scalability and 
adaptability: an Ambient Ecology could be composed of a 
number of artefacts  that make up composable building blocks, 
which not only offer a higher degree of scalability, but also the 
ability to adapt to changes. Their approach was based on well-
known software engineering principles which used the SOA 
model combined with intelligent agents and ontologies. 

  ATRACO used a local ontology to support what was 
termed an application sphere (a self-contained but connected 
environment). A combination of a Fuzzy task agent with 
ontology management allowed application sphere to adapt to 
local changes. However, while it represented a commendable 
advance on earlier ideas, it required relatively high 
computational resources on the client/local side.      

B. Model for Multilevel Complexity 

This study of Complexity is motivated by an increasing 
number of intelligent environments which tend to have a 
different set of devices and services, along with diverse 
occupants who frequently have different preferences and 
needs. Figure 1 shows our model of types of Intelligent 
Environment used to differentiate the variety of users, 
environments and  preferences.  The work described in this 
paper is situated as a single user and single environment space 
where the operations of the system are primarily focused on 
how to fulfil user preferences (expressed as rules/sets of 
activities via end-user programming, as previously described) 
within the resources available in the environment. However, 
when more than one user is involved in a single environment 
the complexity level rises because the system must adapt to 
and accommodate additional user preferences using the same 
available resources. Furthermore, for the case of a single user 
who moves from one environment to another, the issue of 
mobility is raised as another facet of complexity. On top of all 
this, the system must also account for the complex changes in 
user preferences occurring over time; these could be attributed 
to a large variety of reasons, such as changes in the 
environmental state, changes in the user’s experience and 
confidence in the system, or the personal mood and feelings of 
the user at any given point in time [14]. 

To capture these issues we created a model of multi-level 
complexity, as shown in Figure 1. We identified that there are 
three main variables which define the complexity: 

1) Physical World. – This consists of a set of devices and 
services. Environments will change, when new devices are 
introduced, new configurations are set up, state variable 
changes (like temperature, humidity, brightness level etc.), or 
if a new user enters the environment. 

This project is sponsored by Directorate General of Higher Education 
Republic Indonesia 
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2) Preferences - Are a set of rules defined by user. A user 
can change his/her preferences based on changes in the 
environment, or his needs. 

3) Users - As social creatures, it is common for 
environments to have more than one person. More people 
bring more preferences, resulting in the need to represent 
differing and sometimes changing group preferences. 

III. CROWD INTELLIGENCE 

A. Motivation 

Crowd Intelligence or as it is more commonly referred to 
as, Collective Intelligence, is a means to harness group 
knowledge. For example, searching particular keywords from 
the millions of  pages on the Internet might return unlimited 
and irrelevant possibilities. However by using crowd 
intelligence techniques, such as the Google PageRank scheme, 
the knowledge or behaviour of other users can be harnessed. 
Google PageRank uses outside links to a particular web page as 
reference to define how important the page is. This mechanism 
could be seen as akin to web pages voting for each other to 
determine which one is the most important and more relevant. 
This is a prime example of how Crowd (or Collective) 
Intelligence operates. It works by harvesting knowledge from 
the ‘crowd’ of human users who have used their own 
intelligence to reason about information and services, which is 
then captured in a way that can be used by the wider web 
community (and the companies providing these services). In 
that respect, it can be seen as an alternative to artificial 
intelligence for reasoning about networked information or a 
way of shifting the balance from artificial to natural 
intelligence.  These techniques have played a key role in the 
success of companies such as  Google, Amazon, Netflix etc 
who use similarities between customers as part of their 
recommendation mechanism. 

We argue that Crowd Intelligence can offer similar 
advantages to the Intelligent Environment World for the 
following reasons: 

1) Reduction of Computational Load - AI is known to be 
computationally intensive employing complex knowledge 
representations (e.g. Ontology) and reasoning engines. This 
scheme replaces those mechanisms with a simpler mechanism 
of recording people’s behaviours. The scheme is intrinsically 
distributed (the reasoning tis undertaken by numerous human 
clients). 

2) Heterogeneous Capabilities - Crowd intelligence does 
not require any strict hierarchy or formalism to make it work. 
It does, however, require that hosts openly share information 
in a common representation such as XML meta-data. While 
there is a concern about privacy and security, the meta-data 
provided, along with ‘behaviour’ logs collected, can be 
anonymised. 

3) Human Centric – This scheme alters the balance of 
human versus artificial agent reasoning in favour of the 
people. Of course this does not mean that such reasoning is 
better but it does open up an interesting line of research that 

could investigate how that balance might be optimized, or 
even made adjustable.  

4) Searching and Ranking - A typical page rank system on 
a search engine works by assessing how relevant the 
documents are, based on a list of keywords. A widely adopted 
method for doing this is to collect documents (some call it 
crawling), and index them, thereby enabling faster and more 
effective searching. There are a variety of techniques used to 
facilitate successful document ranking , for example: 
frequency based metrics, page-rank algorithm metrics, and 
neural networks. Frequency based metrics compose their page 
rank based on how frequent particular words show up in the 
documents. Page-rank algorithms, however, compose it by 
looking at how many other pages link to the page in question, 
as with Google PageRank (previously described). Neural 
networks  learn to associate searches with results based on the 
links people click on after they get set of results. 

 

In our intelligent environments framework, searching and 
ranking is used to create a list of rules that are relevant to a 
particular situation. However there are important differences 
such as IE resources will not, in general, contain forwarding 
links to each other, therefore ranking metrics based on linking 
are less important in intelligent environments and are excluded 
from our scheme. However, since IE devices will share 
(exchange) rules/preferences between environments, we utilize 
a neural network approach to learn from these crowd choices. 
In our approach, we achieve this through the use of a 
multilayer perceptron (MLP) network consisting of sets of 
nodes and connections between them.    

B. Clustering and Collaborative Filtering 

Clustering is a mechanism to identify groups with similar 
patterns or characteristics. It is a type of unsupervised learning 
which is able to detect similarities in data. Our framework 
uses this technique to discover groups of intelligent 
environments that have a similar set of devices and services.  

The purpose of our clustering mechanism is to discover 
similar environments, so it can formulate recommendations or 
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Figure 1. Idham-Callaghan-Chin Complexity Model 
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find the appropriate rules from environments exhibiting 
similar patterns of devices and services. Any rules that work in 
one particular environment should also work in an identical 
environment. In our proof of concept system, we search for 
identical configurations but clearly, in practice there may 
always be small differences which would need to be addressed 
by employing appropriate agent technologies, such as fuzzy 
logic [16]. 

Hierarchical clustering aims to organise data into a 
hierarchical group structures, based on the observed 
similarities between the data [15]. In the context of intelligent 
environments, it could be used to find groups of similar 
devices or services within/across environments at different 
scales. An intelligent-school for example, might have 
intelligent-classrooms as well as intelligent-staffrooms, each 
with their own rules based on different devices and services 
contained in each. However there might also be some rules 
that are applicable to the scope of the entire school. So using 
hierarchical clustering, it is possible to detect two small 
groups, classrooms and staff room, and also a bigger group, 
which is the school itself. This approach helps detect the scope 
of particular rules. 

Collaborative filtering is used to search a large set of 
items, to find a smaller set, qualified by some variables. In a 
movie recommendation application, for example, collaborative 
filtering is used to search  a large group of customers, and 
create smaller groups of them who have similar  tastes in 
movies.  It produces a ranked list of recommendations based 
on  aspects of their personal preferences.  

In Intelligent Environments, this technique could be useful 
to narrow down sets of user preferences and device rules, 
based on specific relevant variables such as user-rating, energy 
saving potential, the number of environments using them, etc.  

This technique is not only useful for finding workable 
solutions for similar environments, but also has potential for 
recommending rules or actions for specific situations based on 
either the similarity of the rules (e.g. the same category, such 
as temperature management) or the specific rules chosen by a 
similar user (e.g. based on age, gender, etc) 

In the proposed framework, each intelligent environment 
advertises its set of devices and services as meta-
configurations, creating a pool of configuration collections, 
each of which can be individually ranked. To find a set of 
environments that have similar configurations, a comparison 
mechanism is required which, in our framework, is a similarity 
score. We have investigated two ways for doing this: 
Euclidean distance, and Pearson correlations, which will be 
discussed later in this paper.  

 

IV. CHAMBER 

In this section we describe our Crowd Based 
Heterogeneous Ambient Environment Framework 
(CHAMBER). We start with the architecture, describing the 
implementation and  go on to detail the techniques used in this 
framework. 

A. Architecture 

At a high-level, CHAMBER adopts a simple client-server 
architecture shown in Figure 2. A server provides 

computational resources, intelligence tools and a database to 
store persistent information. The client in this framework is the 
physical environment, consisting of its own processor devices, 
sensors, and users. The client is required to provide some 
essential information such as the environment’s configuration, 
the rules adopted in the environment, and the user behaviour in 
accessible interfaces. 

There are two types of services provided by CHAMBER. 
The first one is a synchronous service; this stateless service 
takes the form of client queries to the server. It carries local 
configuration and information, and waits for the results from 
the server. The second service is an asynchronous service. This 
service runs in the background and operates over a longer 
period of time. One of the examples is a data aggregation 
service, which will continuously crawl to every environment 
accessible to update the current CHAMBER knowledge-base. 

Recent work by Ball & Callaghan [11] [12], developed the 
Adjustable Autonomy Intelligent Environment (AAIE) model; 
this model allows rules (descriptions of desired automated 
actions) to be created at varying levels of agent autonomy, 
including either fully-autonomous (using agents to create rules 
on behalf of users) and non-autonomous (users creating rules 
via end-user programming).  An important aspect of the AAIE 
model is a confidence-based mechanism used by the agent in 
creating/learning rules.  The more evidence the agent collects 
to support a learnt rule (e.g. by observing and matching user 
actions in the environment), the higher the confidence level 
grows for a particular rule.  Confidence decreases can also 
occur for a rule, however, if it was to trigger an undesirable 
action that is corrected by the user.  This confidence-based 
mechanism provides a basic ranking system for the rules 
generated within a single intelligent environment, by ensuring 
that the more successful rules have a higher level of 
confidence. 

In the CHAMBER framework, such data will form the 
‘MetaData’ made available to the CHAMBER ‘Aggregator’, as 
shown in Figure 2.  Other MetaData will revolve around the 

 
 

Figure 2. CHAMBER Architecture 
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intelligent environment configuration, such as the types of 
devices available, and any groups of devices that are 
commonly used together; what’s more, the MetaData will 
include information about the user of the environment, such as 
any observable traits they may have, e.g., they may be very 
conscientious with energy saving and keep device usage to a 
minimum, or they may always require high levels of lighting.  
By using crawling techniques, the Aggregator gathers the 
MetaData from all intelligent environments on the CHAMBER 
network to populate the central database. 

The journey from complexity to collectivity starts from 
collecting descriptions from multiple environments. The 
description, regardless what kind of configuration in each 
environment, should include configurations, rules and 
attributes, plus user information. These three variables come 
from our complexity model and play a key role as a core way 
to structure the knowledge from heterogeneous environments. 
While there might be several ways to parse unstandardized 
descriptions, we opted to create a more standardized approach 
for performance reason. Each implementation of CHAMBER 
in a new environment would use a wrapper to present their 
environment configuration and activity into a standardized 
form, in this case an XML page. 

A list of devices and services, middleware used, and any 
other environment configuration related information are 
presented in the description page. Several rules applied in the 
environment and their attributes, such as confidence levels, 
duration, and energy saving levels are listed in the documents. 
User’s profile and its activities (list of rules used in a particular 
environment) are also described in the document. While this 
scheme opens other issues such as   privacy and security, they 
are considered out of the scope of this paper. 

B. Clustering and Ranking Environments and Rules to 
Organize Crowd Intelligence  

The CHAMBER server will periodically mine the 
information from the descriptions. It uses the stored set of 
environment configurations to discover groups of similar 
environments. This is undertaken by parsing the descriptions 
and creating similarity vectors of the environment. The same 
approach is used in the rules. It parses a rule, looks at its 
similarity (from its antecedent and precedent) to create the 
rule’s similarity vector. The environments’ similarity vector is 
useful for discovering groups of similar environments and 
identifying sets of rules that, hypothetically, might work in 
each other’s environment. Later on, if some local environment 
requires workable rules for its environment it will recommend 
rules from the most similar or perhaps identical environment. 
The environment’s similarity vectors will add weight to rule’s 
rank since it means many environments use them. It can be 
seen as every environment collectively “votes” for rules, so the 
rules which have the most votes should have higher ranked in 
the recommendation. A sample of the computation involved is 
presented in Table 1.  

The description of the rules provided by each environment 
includes a description of the devices and services used, 
enabling it to perform some degree of polymorphism. This 
means that, though a particular rule, such as a lighting systems 

rule was applicable to a classroom, it might be possible for it to 
work in a bedroom, as long as the rules include set of 
devices/services, which are available in both environments. 

TABLE 1.RULES RECOMMENDATION COMPUTATION TABLE  

Env. 
ID 

Crowd Intelligence Computation 

(SS) 
Rule1 

CL 
SSxCL 

Rule2 
CL 

SSxCL 
Rule 
3 CL 

SSxCL 

001 1.0 3.0 3.0 2.0 2.0 4.0 4 

002 0.80 3.5 3.76 4.0 3.2   

003 0.60 2.0 4.0 2.5 1.5 2.5 1.5 

Sum SSxCL 10.76  6.7  5.5 

Sum SS 2.4  2.4  1.8 

SSxCL/SS 4.48  2.79  3.05 

EnvID = environment ID, SS= Similarity Score, CL=confidence Level/Rating. This computation 
sample shows that the recommendations rank is: 1. Rule 1(4.48), 2. Rule3(3.05), and 3. Rule 

2(2,79) 

C. Involving user preferences 

The CHAMBER framework can be run anonymously, 
which is adequate for some routine activities such as managing 
temperature, ambient light and energy conservation. However, 
for more subjective rituals, such as studying, reading, sleeping, 
etc. a user’s personal preference might differ significantly to 
the average person, and thus need a more personalized  
recommendation.  

Adding user preferences into the system requires additional 
information about the user: user’s attributes (such as age, 
gender, personality, income, etc.) and user actions (searching, 
rating, using, etc.). Some recommendations can be offered 
based on similar attributes, or similar actions. In Chamber we 
achieve this using the ‘similarity vector’ approach we 
described earlier together with , collaborative filtering. This 
technique tries to recognize the voting patterns for particular 
rules. The recommendation system will search for other users 
with similar patterns, and recommend those rules. Thus, this 
approach offers a human centric agent vision since it bases 
recommendations from the other user’s choices (rules) as 
against rules generated by a machine (AI).   

V. CONCLUSION 

We have described the complexity of heterogeneous 
intelligent environments and have modelled it using a 
multidimensional complexity representation. We have argued 
that in the future, with growing numbers of interconnected 
intelligent environments on the network, there will be a huge 
pool of online environments and devices raising the possibility 
of harvesting this information to  the benefit of the collective 
users. In particular we suggest that this vast pool of 
environments will produce an increasing likelihood that a user 
of one particular environment will be able to find other 
environments or devices with similarities between physical 
configurations, rules/preferences applied, and user preferences 
which could be applicable to their environments. 
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Thus, in this paper we have investigated how the collective 
reasoning of the similarities from numerous intelligent 
environment users can be harnessed by individuals to 
customise their pervasive computing environments. We have 
described the concept and provided an overview of related 
work.  In addition, we have presented a novel architecture that 
builds on our earlier work in adjustable autonomy and end-user 
programming enabling those schemes to be given crowd 
sourced recommendations that replace intelligent reasoning in 
existing schemes. The motivation for this work is to both 
reduce the computational overheads (by replacing artificial 
intelligence with natural intelligent) and to improve the quality 
of decisions by making them more human centric in origin. 
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