
Presented	at	the	2nd	European	Immersive	Education	Summit,	26th	and	27th	November	2012,	École	
nationale	supérieure	des	Arts	Décoratifs,	Paris,	France.	

©	Anglia	Ruskin	University	and	Essex	University	2012																																																																									1	
	

A	Show‐Me‐By‐Example	Approach	to	
Teaching	Programming	the	Internet‐of‐

Things	in	Immersive	Education	

Jeannette Chin 
Computing and Technology 
Anglia Ruskin University 

Cambridge, United Kingdom 
jeannette.chin@anglia.ac.uk	

	
Vic Callaghan 

Computer Science and Electronic Engineering 
University of Essex 

Colchester, United Kingdom 
vic@essex.ac.uk 

	
Abstract	
	
In	 this	 paper	 we	 address	 the	 issue	 of	 how	 students	 can	 learn	 computer	
programming	 using	 a	 more	 natural	 approach	 that	 takes	 inspiration	 from	 an	
intuitive	 way	 people	 learn	 and	 of	 accomplish	 tasks	 (by	 example),	 a	 technical	
implementation	of	that	approach	(programming‐by‐example)	and	an	immersive	
educational	 environment	 (the	 eDesk)	 that	 combine	 to	 provide	 a	 novel	 and	
accessible	approach	for	students	wishing	to	learn	the	fundamentals	of	computer	
programming.	
	
1.0 Introduction	
	
Learning	 to	 read	 and	 write	 programs	 is	 a	 fundamental	 skill	 in	 computing.	
However,	many	students	struggle	to	master	the	basics	involved.	New	networked	
based	technologies,	such	as	the	Internet‐of‐Things	are	particularly	challenging	as	
they	 are	 effectively	 distributed	 computing	 systems.	 The	 graphical	 nature	 of	
immersive	educational	environments	offers	an	opportunity	to	approach	learning	
this	type	of	computer	programming	in	a	fundamentally	different	way.		There	has	
been	 some	 previous	 work	 on	 developing	 graphical	 programming	 tools	 that	
capture	 spacial	 and	 temporal	 relationships	 and	ease	 the	process	of	 learning	 to	
program.	For	example	MIT’s	Scratch	is	a	well‐known	teaching	tool	that	captures	
the	essence	of	“programming	”	in	a	way	that	simplifies	the	learning	process	and	
allows	users,	in	particular	young	people	or	children,	to	creatively	construct	their	
own	 programmed	 animated	 sequences	 via	 a	 graphical	 interface	 while	 at	 the	
same	time,	learning	the	important	concepts	of	programming	but	without	needing	
them	to	write	any	programming	code	[Malony	2004].	Likewise,	Carnegie	Melon’s		
Alice,	 aims	 at	 creating	 a	 3‐D	 programming	 environment	 for	 its	 users	 to	 learn	
fundamental	 programming	 concepts	 by	 creating	 “programs”	 that	 interact	with	
the	3‐D	virtual	environment	[Kellecher	2006].	 In	this	paper	we	look	at	another	
novel	approach	to	programming	called	Pervasive	Interactive	Programming	(PiP)	
that	was	originally	developed	for	programming	intelligent	environments,	such	as	
smart	homes.	PiP	is	part	of	a	larger	programming	family	that	is	more	generically	



Presented	at	the	2nd	European	Immersive	Education	Summit,	26th	and	27th	November	2012,	École	
nationale	supérieure	des	Arts	Décoratifs,	Paris,	France.	

©	Anglia	Ruskin	University	and	Essex	University	2012																																																																									2	
	

referred	to	as	“Programming‐by‐example”,	which	was	introduced	by	Smith	in	the	
mid‐seventies,	 and	 is	 based	 on	 the	 principle	 that	 required	 computational	
functions	 are	 converted	 to	 executable	 code	 through	 the	 user	 demonstrating	
required	 behaviour	 rather	 than	 trying	 to	 specify	 it	 using	 various	 abstractions,	
such	 as	 programming	 languages	 [Smith77].	 PiP	 differs	 to	 Scratch	 and	 Alice	 in	
that	it	targets	distributed	computer	systems,	such	as	the	Internet‐of‐Things.	
	

	
Figure	1	–		Advertisement	of	ePod	from	“Tales	from	a	Pod”	

	
2.0 The	Immersive	Learning	Environment	–	the	eDesk	
	
In	 the	 paper	 “Tales	 From	 A	 Pod”	 we	 described	 a	 futuristic	 student‐learning	
environment	called	the	educational‐pod	(ePod)	[Callaghan	2010].		In	Callaghan’s	
paper,	the	ePod	was	described	as	a	small	immersive	reality	cocoon	(see	figure	1)	
in	which	 individual	 students	 entered	 to	 find	 themselves	 in	 a	 graphically	 based	
interactive	environment	that	feigned	a	real	classroom.		
	
	
	
	
	
	
	
	
	
	
	
	
	

Figure	2	–	Practical	Realisation	of	the	ePod,	the	eDesk	

	
The	 environment	 featured	 numerous	 high‐tech	 functions	 including	 intelligent	
tutors	in	the	form	of	avatars	that	provided	teaching	and	learning	services	to	the	
student.	 Later,	 a	UK	 company	 specializing	 in	 the	manufacture	of	 virtual	 reality	



Presented	at	the	2nd	European	Immersive	Education	Summit,	26th	and	27th	November	2012,	École	
nationale	supérieure	des	Arts	Décoratifs,	Paris,	France.	

©	Anglia	Ruskin	University	and	Essex	University	2012																																																																									3	
	

environments,	Immersive	Displays	Ltd1,	took	this	vision	and	translated	it	into	a	
practical	 unit,	 the	 ImmersaStation2,	 which	 is	 the	 host	 immersive‐learning	
environment	of	 the	work	presented	 in	 this	paper,	 see	 figure	2.	 	The	concept	of	
the	 ePod	 features	 in	 two	 other	 projects,	 the	 Shanghai	 Jiao	 Tong	 Network	
Education	College	work	on	embodying	their	intelligent	student	answer	machine	
as	an	Avatar		[Zhang	2011]	and	Jeddha’s	King	Abduaziz	University	ScaleUp	work	
on	immersive‐mixed	reality	learning	[Pena‐Rios	2012].	The	ImmersaStation	runs	
a	 victual	 classroom	 called	 MiRTLE	 (Mixed	 Reality	 Teaching	 and	 Learning	
Environment)	 [Gardner	 2010],	 which	 provides	 a	 virtual	 classroom	 in	 which	
lessons	 are	 situated	 (shown	 in	 the	 screen	 of	 figure	 2).	 	 This	 then	 forms	 the	
immersive	learning	environment	that	our	novel	approach	to	teaching	computer	
programming	targets.	
	
	
3.0 The	Internet‐of‐Things	

	
Computer	 networks	 are	 becoming	 ever	 more	 pervasive	 resulting	 in	 a	 world	
where	 almost	 every	 “thing”	 can	 be	 connected	 to	 the	 Internet;	 the	 so‐called	
“Internet‐of‐Things”	(IoT).		In	this	connected	world	the	balance	between	the	real	
and	virtual	is	altered,	with	our	daily	interactions	being	split	between	the	physical	
and	electronic	domains.		For	example,	the	Internet	can	be	embedded	into	things	
ranging	 from	 bathroom	 scales	 through	 cookers	 to	 cars.	 	 There	 are	 no	 reliable	
estimates	 for	 the	 size	 of	 this	 market	 but	 a	 report	 by	 the	 “Arthur	 D.	 Little	
management	consultancy”	suggests	that	by	2020	the	IoT	market	could	be	worth	
between	22	billion	and	50	billion	dollars	 [Schlautmann	et	al	2011]	made	up	of	
some	 16	 billion	 connected	 devices	 [Vermesan	 &	 Friess	 2011].	 	 This	 rising	
demand	for	 Internet‐ready	“things”	 is	good	news	for	graduates	as	 there	will	be	
increasing	 job	 opportunities	 for	 them.	However,	 this	 new	 technology	demands	
the	 acquisition	 of	 difficult	 skills	 such	 as	 programming	 distributed	 embedded‐
computers	that,	in	turn,	raise	the	challenge	to	educators	as	to	how	best	to	teach	
these	 skills.	 	 In	 this	 paper	we	 present	 one	 potential	 solution	 to	 this	 challenge;	
Pervasive	 interactive	 Programming	 that	 we	 will	 introduce	 in	 the	 following	
section.	
	

	
4.0 Pervasive	Interactive	Programming	
	
End‐User	programming	is	characterised	by	the	use	of	techniques	that	allow	the	
end	users	of	an	application	to	create	“programs”	themselves,	without	needing	to	
write	 any	 code	 [Cypher	 et	 al].	 A	 common	way	 to	 achieve	 this	 goal	 is	 to	 create	
propriety	types	of	“scripting	languages”,	abstracting	conventional	programming	
algorithms	 into	 some	 form	 of	 representations	 (eg	 graphical	 objects)	 and	 then	
provide	a	platform	for	the	users	to	manipulate	these	representations	as	the	basis	
of	learning	how	to	create	a	program.	Most,	if	not	all	of	existing	work	on	end‐user	
programming	 targets	 the	 development	 of	 programs	 for	 a	 single	 centralised	
machine,	creating	programs	by	manipulating	abstract	graphical	objects.		

																																																								
1	http://www.immersivedisplay.co.uk/	
2	http://www.immersivedisplay.co.uk/immersastation.php	



Presented	at	the	2nd	European	Immersive	Education	Summit,	26th	and	27th	November	2012,	École	
nationale	supérieure	des	Arts	Décoratifs,	Paris,	France.	

©	Anglia	Ruskin	University	and	Essex	University	2012																																																																									4	
	

	
Pervasive‐interactive‐Programming	 (PiP)	 however	 is	 aimed	 at	 programming	
distributed	 computers,	 embedded	 into	 real	 physical	 appliances,	 such	 as	 those	
that	make	up	 the	 Internet‐of‐Things,	which	was	described	earlier.	The	 concept	
underlying	PiP	is	simple	in	that	it	mimics	the	traditional	‘playful’	method	that	has	
been	used	to	teach	children	for	generations	–	the	teacher	demonstrates	an	action	
by	showing	an	example;	the	learner	then	repeats	the	demonstrated	action.		
	
In	PiP,	the	‘things’	that	comprise	the	programming	environment	are	categorised	
into	2	 types:	 (a)	physical	 ‘things’	 (including	graphical	 representations	of	 them)	
which	we	call	“hard	things”,	(b)	abstract	things	(eg	application	software	such	as	
email,	 instant	messaging	 etc,)	which	we	 call	 “soft	 things”.	 Both	 types	 of	 ‘thing’	
provide	their	functionalities	in	a	form	of	services	that	are	network	discoverable	
and	accessible.	
	
The	 availability	 of	 numerous	 networked	 ‘things’	 and	 their	 services	 present	 an	
opportunity	 to	 group	 them	 together	 to	 provide	 meta‐services	 or	 meta‐
appliances.	 In	 PiP	 we	 called	 this	 the	 “deconstructed	 appliance	 or	 application	
model”	which	can	be	regarded	as	a	form	of	virtual	application	/	appliance	[Chin	
et	al	2006].	The	representation	(specification)	of	such	virtual	entities	is	referred	
to	 as	 a	 MAp	 (Meta‐Appliance/Application).	 It	 contains	 detailed	 information	
about	the	community	of	“things”	and	rules	that	govern	their	functionalities.	Rules	
are	created	by	the	end	user	as	part	of	programming	the	system.				
	
In	 our	 immersive	 education	 environment	 the	 student	 is	 presented	 with	 a	
stimulation	 of	 the	 lab	 environment	 that	 they	 use	 to	 show	 an	 example	 of	 the	
required	functionality	to	(which	the	system	encodes	as	a	set	of	rules).	This	is	also	
what	 we	 sometimes	 called	 “natural	 programming”.	 	 The	 user	 is	 then	 able	 to	
“play”	the	program	and	watch	the	animation	to	be	sure	it	works	as	they	intended.		
In	 this	 way	 PiP	 encourages	 user	 interaction	 as	 a	 way	 that	 helps	 the	 student	
visualise	 the	 programming	 concepts.	 In	 this	 way	 PiP	 acts	 as	 a	 computer	
programming	learning	tool,	which	uses	a	graphical	interface	that	sits	on	a	virtual	
reality	environment.	

	
	

5.0 Pervasive	Interactive	Programming	as	a	Teaching	Tool	
	

The	 inspiration	 for	 using	Pervasive‐interactive‐Programming	 to	 teach	 students	
how	 to	 program	 computers	 arose	 from	 two	 perspectives.	 First	 was	 the	
observation	that	much	of	the	learning	in	early	childhood	arises	from	replicating	
examples	 of	 behaviour	 that	 people	 observe	 in	 each	 other	 [Brown	 2008]	 and	
secondly,	 that	at	 the	heart	of	pervasive	 interactive	programme	(a	methodology	
based	learning‐by‐example)	are	IF‐Then‐Else	rules,	that	are	the	core	construct	of	
procedural	 programming	 languages	 [Chin	 et	 al	 2006].	 	 Thus,	 by	 providing	 a	
mechanism	 to	 translate	 behaviour	 examples	 into	 rules,	we	 have	 a	 natural	 and	
intuitive	 model	 of	 procedural	 programming.	 	 In	 the	 following	 sections,	 we	
explain	in	more	detail	the	reasoning	behind	this	approach.	

	



Presented	at	the	2nd	European	Immersive	Education	Summit,	26th	and	27th	November	2012,	École	
nationale	supérieure	des	Arts	Décoratifs,	Paris,	France.	

©	Anglia	Ruskin	University	and	Essex	University	2012																																																																									5	
	

5.1 People	as	a	program	emulation	
	

An	 approach	 that	 has	 been	 adopted	 by	 some	 teachers	 introducing	 students	 to	
programming,	 is	 to	 mimic	 the	 workings	 of	 a	 computational	 machine	 by	 using	
students	 to	 act	 as	 the	 various	 components	 in	 a	 processors	 [Kacmarcik	 	 2010].	
Thus,	for	example,	a	number	of	students	might	act	as	instruction	stores,	another	
might	be	a	program	counter,	another	might	be	an	instruction	fetch	unit,	another	
might	 be	 an	 arithmetic	 execution	 unit	 etc.	 Then	 by	 acting	 out	 the	 sequence	 of	
fetching	and	execution	of	instructions,	students	have	a	visual	physical	example	of	
how	a	computer	functions.	 	There	 is	something	very	 intuitive	 in	demonstrating	
or	 observing	 physical	 analogies	 of	 abstract	 processes;	 a	 feature	 that	 we	 have	
tried	 to	 capture	 in	 our	 use	 of	 PiP	 as	 a	 teaching	 tool,	 as	 the	 next	 section	 will	
explain.		
	

5.2 PiP		as	a		program	emulation	
	
The	basic	principle	of	Pervasive	Interactive	Programming	is	to	capture	the	macro	
behaviour	of	a	system	as	a	series	of	micro	tasks,	by	the	user	demonstrating	to	the	
system	examples	of	the	required	functionality.	PiP	captures	and	describes	these	
micro	tasks	by	means	of	rules.	Sets	of	these	rules	are	then	are	combined	to	form	
the	macro	level	behaviour	of	the	system.	In	PiP,	rules	are	normally	internalised	
by	the	system,	and	are	not	usually	visible	to	the	user.	However,	for	using	PiP	as	a	
teaching	 tool,	 making	 the	 rules	 visible	 becomes	 an	 important	 aspect	 of	 the	
pedagogical	 process.	 This	 is	 important	 because	 the	 core	 construct	 of	 both	 PiP	
behaviours	 and	 procedural	 programs	 are	 rules.	 This	 is	 illustrated	 in	 Figure	 3.	
Rules	 enable	 decision‐making	 and	 decision‐making	 is	 a	 key	 property	 for	 any	
entity	that	purports	to	be	smart.		Its	contribution	to	making	Von‐Neumann	style	
computers	the	powerful	and	flexible	problems	solving	machines	we	are	familiar	
with,	 is	 hugely	 attributable	 to	 there	 being	 a	 decision	 making	 mechanism	
embedded	into	its	structure.		

	
	
	
	
	
	
	
	
	
	
	
	

Figure	3	–	Equivalence	between	PiP	and	Programming	decision	constructs	

	
It	would	be	hard	to	exaggerate	the	importance	of	decision‐making	functionality	
in	 computation.	 Without	 the	 ability	 to	 make	 decisions	 computers	 would	 be	
relegated	to	machines	that	stepped	unidirectionaly	through	lists	of	instructions.	
Computers	would	 still	 be	 programmed,	 in	 the	 sense	 someone	wrote	 out	 those	
lists	of	instructions,	but	the	ability	of	a	computer	to	restructure	its	computational	

Regular	Programming	Example
Class	Rule	{	
			String	name;	
			String	description;	
			;;;	
void	run	()	{	
				//	the	"if"	clause:	some	
conditions	are	meet	
				if	(conditions){		
								//	the	"then"	clause:	excute	
some	tasks	
								doSomething;	
}

PiP	Rules	Example	
OWNER:	Jeannette	
RULE	DESCRIPTION:	test	
DATE	FORMED:		7.8.12	21.37	
	
IF	Telephone	active	THEN	
	 Light	ON	
	 Media	Stream	ON	

—	
—	
—



Presented	at	the	2nd	European	Immersive	Education	Summit,	26th	and	27th	November	2012,	École	
nationale	supérieure	des	Arts	Décoratifs,	Paris,	France.	

©	Anglia	Ruskin	University	and	Essex	University	2012																																																																									6	
	

strategy	 and	 adapt	 to	 new	 problems	 or	 contexts	 would	 be	 severely	 (perhaps	
fatally)	restricted.		The	use	of	a	decision	making	structures	comes	at	a	large	cost;	
understanding,	designing	and	handling	the	numerous	combinations	of	resulting	
program	 control	 flows,	 which	 has	 the	 potential	 to	 become	 a	 task	 of	 daunting	
complexity.	In	fact,	this	is	such	a	big	issue	it	is	one	of	the	key	targets	of	software	
engineering	 [Callaghan	 1982].	 Thus	 for	 students	 learning	 programming	 a	 key	
and	 complex,	 aspect	 is	 to	 understand	 the	 nature	 of	 decision	 constructs	 (their	
relationship	 to	 sense‐action	 pairs	 from	 data	 and	 physical	 domains),	 how	 such	
decision	constructs	are	 formed	and	how	they	contribute	 to	 the	 functionality	of	
the	overall	program.	Our	approach	is	to	focus	on	exposing	and	understanding	the	
role	of	rule	formation	as	the	key	construct	in	computer	programming.	We	do	this	
by	 employing	 PiP	 to	 show	 the	 linkage	 between	 sense‐action	 pairs	 in	 the	 real	
world,	 and	 the	 creation	 of	 corresponding	 rules	 in	 the	 computational	machine.	
We	 then	 link	 these	 rules	 to	 the	 if‐then‐else	 programming	 constructs	 in	
procedural	 programming	 languages,	 which	 we	 then	 use	 as	 the	 launch‐pad	 for	
students	 entering	 and	 following	 the	 more	 traditional	 route	 to	 learning	 to	
program.	 In	 this	 sense	 our	 technique	 is	 to	 provide	 an	 intuitive	 and	 interactive	
(constructionist)	 pedagogy	 for	 introducing	 programming	 concepts	 to	 students	
who	are	not,	initially,	technically	literate.	
	
	

5.3 A	distributed	computing	programming	example	
	

To	 illustrate	 the	 principle	 of	 how	we	 use	 PiP	 as	 a	 tool	 for	 teaching	 computer	
programming,	 we	 will	 first	 present	 a	 scenario	 that	 involves	 programming	 a	
community	of	‘things’	to	provide	some	coordinated	functionality.	In	this	example	
there	are	three	main	components	being	controlled;	a	telephone,	light	and	media	
player.	The	basic	 idea	is	that	the	system	should	be	programmed	to	provide	the	
behaviour	such	that	when	an	incoming	call	arrives,	the	lights	would	raise	and	the	
media	player	would	stop.		Figure	4	–	6	illustrates	PiP	in	use.	In	a	typical	teaching	
session,	 before	 logging	 the	 system	 the	 student	 is	 provided	 with	 examples	 of	
regular	 programs	 (eg	 C	 and	 Java)	 that	 have	 the	 important	 constructs	 such	 as	
rules,	highlighted.	At	this	point	they	are	not	expected	to	understand	the	program,	
just	 to	 appreciate	 the	 main	 elements.	 The	 students	 are	 also	 shown	 simple	
examples	of	programmed	coordinated	activity	 (eg	 a	media	player	 coordinating	
actions	with	a	 light).	 	The	student	 is	asked	 to	write	down	the	behaviour	of	 the	
system	they	wish	 to	create,	as	a	simple	state‐action	 list.	 	The	student	 then	 logs	
into	 the	 system	 and	 begin	 to	 translate	 the	 specification	 they	 written	 into	
“programs”	 using	 PiP	 interface	 –	 via	 steps	 (1)	 exploring	 things	 (2)	 selecting	
things	 by	 dragging	 and	 dropping	 them	 into	 the	 ‘programming	 area’	 via	 the	
graphical	 interface	 control	 panel.	 In	 the	 second	 phase	 the	 student	 then	
demonstrates	the	actions	(ie	the	specified	behaviour),	which	PiP	translates	into	a	
set	of	rules,	see	figure	5.	Once	the	student	finishes	their	“programming	exercises”	
they	will	able	to	see	the	program	descriptions	in	the	form	of	plain	text	(showing	
the	sense‐actions)	or	actual	programming	code	(the	PiP	 translation	comprising	
rules).	 The	 student	 is	 then	 encouraged	 to	 replay	 the	 program	 to	 verify	 the	
intended	behaviour	occurs	 (ie	 that	 the	specification	 is	met)	before	saving	 their	
program,	 see	 Figure	 6.	 In	 the	 third	 phase	 the	 student	 is	 invited	 to	 look	 at	 the	
constructed	 rules	 and	 relate	 them	 to	 the	 actions.	 	 It	 is	 then	 explained	 to	 the	



Presented	at	the	2nd	European	Immersive	Education	Summit,	26th	and	27th	November	2012,	École	
nationale	supérieure	des	Arts	Décoratifs,	Paris,	France.	

©	Anglia	Ruskin	University	and	Essex	University	2012																																																																									7	
	

student	that	a	simple	procedural	language	uses	these	rules	as	the	core	decision	
construct.		
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Figure	5	‐		a)	constructing	rule									 						b)	rule	formed	(Jeannette_Rule708)	

Figure	6	‐	a)	deleting	MAps	(rules)															b)	saving	MAps	(rules)

Figure	4	‐		a)	User	log	in	screen												b)	select	‘things’	by	dragging	to	composing	area	



Presented	at	the	2nd	European	Immersive	Education	Summit,	26th	and	27th	November	2012,	École	
nationale	supérieure	des	Arts	Décoratifs,	Paris,	France.	

©	Anglia	Ruskin	University	and	Essex	University	2012																																																																									8	
	

	
The	student	is	then	invited	to	re‐execute	the	program	to	verify	it’s	action	before	
being	invited	to	alter	the	rules	manually	via	the	interface,	without	going	through	
the	 demonstration	 cycle	 again,	 to	 make	 the	 environment	 achieve	 a	 modified	
behaviour.	 The	 student	 is	 then	 shown	 how	 such	 rules	 can	 be	 translated	 into	
actual	 programming	 code	 (by	 the	 addition	 of	 supporting	 code	 such	 as	
declarations	 and	operators).	 Finally,	 students	 are	 then	 encouraged	 to	 compare	
the	 manual	 and	 automatically	 generated	 code	 to	 deepen	 their	 understanding.	
Thus,	 this	 forms	 the	 basic	 introduction	 to	 programming	 and	 the	 task	 may	 be	
progressively	made	more	complex	to	increase	the	confidence	and	programming	
skills	 of	 the	 student.	 In	 our	 prototype	 (figures	 4‐6)	we	 are	 still	 experimenting	
with	a	2D	view	but	our	next	step	is	to	take	better	advantage	of	the	3D	view	that	
our	 MiRTLE	 immersive	 application	 facilitates	 to	 provide	 a	 better	 immersive	
experience.	
	
	
6.0 Summary	
	
In	 this	 paper	we	have	 introduced	 a	novel	 end‐user	programming	 environment	
called	 Pervasive‐interactive‐Programming	 (PiP)	 which	 we	 contend	 offers	 a	
particularly	 intuitive	 and	 simple	way	 to	 introduce	 new	 students,	 or	 those	 not	
majoring	 in	computer	science,	 to	programming.	 	The	 tool	goes	beyond	existing	
teaching	 tools,	 such	 as	 Scratch,	 in	 that	 it	 introduces	 students	 to	 the	 basics	 of	
distributed	 programming,	 an	 intrinsic	 feature	 of	 the	 newer	 computing	
paradigms	 such	 as	 the	 Internet‐of‐Things,	 Pervasive	Computing	 and	 Intelligent	
environments	etc.	We	advocate	this	methodology	for	immersive	education,	as	it	
is	 inherently	compatible	with	 the	graphical	nature	of	 immersive	environments.		
Concerning	 future	 directions	 for	 our	 work,	 there	 are	 many	 possibilities.	 Our	
current	trials	of	the	system	have	concerned	only	small	numbers	of	people,	which	
have	allowed	us	to	prove	the	concept,	but	we	like	to	expand	and	formalise	this.	
Also,	 although	 we	 have	 not	 exploited	 this	 in	 our	 current	 work,	 the	 ability	 of	
immersive	reality	environments	to	materialise	abstract	programming	concepts,	
such	 as	 data	 structures,	 semaphores	 etc	 offers	 much	 potential	 for	 the	
development	 of	 the	 tool	 in	 a	way	 that	 capitalises	more	 fully	 on	 the	 immersive	
reality	nature	of	the	environment	we	have	created.		Apart	from	moving	from	our	
current	2D	(proof	of	concept)	to	a	3D	representation,	another	area	we	would	like	
to	advance	our	work	is	to	move	from	what	is	essentially	a	single	user	system	to	a	
co‐creative	 team	 based	 programming	 environment.	 Thus	 there	 remain	 many	
opportunities	for	our	research	to	develop	which	we	hope	to	be	able	to	report	in	
later	papers.	
	
	
Acknowledgement:	
	
We	are	pleased	to	acknowledge	our	colleague	Anasol	Pena‐Rios	whose	work	on	
end‐user	 programming	 applications	 for	 mixed‐	 reality	 learning	 which	 both	
motivates	and	complements	this	research.	
	
	



Presented	at	the	2nd	European	Immersive	Education	Summit,	26th	and	27th	November	2012,	École	
nationale	supérieure	des	Arts	Décoratifs,	Paris,	France.	

©	Anglia	Ruskin	University	and	Essex	University	2012																																																																									9	
	

References	
	
[Brown	2008]	 Ann	 L	 Brown	 “Preschool	 children	 can	 learn	 to	 transfer:	

Learning	 to	 learn	 and	 learning	 from	 example”,	 Cognitive	
Psychology,	 Volume	 20,	 Issue	 4,	 October	 1988,	 Pages	 493–
523	

[Callaghan	2010]	 Victor	 Callaghan	 “Tales	 from	 a	Pod”,	 Creative	 Science	 2010,	
Kuala	Lumpur,	Malaysia,	19‐21	July,	2010	

[Callaghan	1982]	 Callaghan	V,	Barker	K,	"SAS‐an	experimental	tool	for	dynamic	
program	 structure	 acquisition	 and	 analysis",	 Journal	 of	
Microcomputer	Applications,	vol.	5	issue	3	July,	1982.	p.	209‐
223,	Elsevier	Science,	ISSN:	0745‐7138	

[Chin	et	al	2006]	 Chin	 J,	 Callaghan	 V.	 Clarke	 G,	 "An	 End	 User	 Tool	 for	
Customising	 Personal	 Spaces	 in	 Ubiquitous	 Environments",	
IEEE	 the	 3rd	 International	 Conference	 on	 Ubiquitous	
Intelligence	 and	 Computing	 (UIC‐06),	 Wuhan	 and	 Three	
Gorges,	China,	3‐6	September	2006	

[Cypher	93]		 Cypher	A,	Halbert	DC,	Kurlander	D,	 Lieberman	H,	Maulsby	D,	
Myers	BA,	and	Turransky	A,	“Watch	What	I	Do:	Programming	
by	Demonstration”	The	MIT	Press,	Cambridge,	Massachusetts,	
London,	England	1993	

[Kacmarcik		2010]	 Gary	 Kacmarcik	 (Google	 Inc)	 “How	 Computers	 Work”,	
cse4k12.org,	 2010	
(http://cse4k12.org/how_computers_work/index.html)	

[Kellecher	2006]	 Kelleher,	C.	and	R.	Pausch.		“Lessons	Learned	from	Designing	a	
Programming	System	 to	Support	Middle	School	Girls	Creating	
Animated	 Stories”.	 2006	 IEEE	 Symposium	 on	 Visual	
Languages	and	Human‐Centric	Computing	

[Malony	2004]	 Maloney,	 J.,	 Burd,	 L.,	 Kafai,	 Y.,	 Rusk,	 N.,	 Silverman,	 B.,	 and	
Resnick,	 M.	 (2004).	 “Scratch:	 A	 Sneak	 Preview”,	 Second	
International	 Conference	 on	 Creating,	 Connecting,	 and	
Collaborating	through	Computing.	Kyoto,	Japan,	pp.	104‐109.	
(http://llk.media.mit.edu/projects/scratch/ScratchSneakPreview.pdf)	

[Pena‐Rios	2012]	 Anasol	 Peña‐Ríos,	 Vic	 Callaghan,	 Michael	 Gardner,	
Mohammed	 J.	 Alhaddad	 "Towards	 the	 Next	 Generation	
Learning	Environments:	An	 InterReality	 Learning	 Portal	 and	
Model",	 The	 8th	 International	 Conference	 on	 Intelligent	
Environments	‐	IE'12,	Guanajuato,	Mexico,	26‐29	June	2012	

[Schlautmann	2011]	Schlautmann	 A,	 Levy	 D,	 Keeping	 S,	 Pankert	 G,	 (2011)	
“Wanted:	 Smart	 market‐makers	 for	 the	 Internet	 of	 Things”,	
Arthur	 D.	 Little,	 management	 consultancy,	 see	
http://www.adlittle.se/prism_se.html?&view=383	 (February	
2012)	

[Smith	77]	 Smith,	 D.	 C.,	 “Pygmalion:	A	Computer	Program	 to	Model	and	
Stimulate	 Creative	 Thought”,	 Basel,	 Stuttgart,	 Birkhauser	
Verlag.	1977.	

[Vermesan	2011]	 Vermesan	 O,	 Friess	 P,	 (2011),	 “Internet	 of	 Things	 ‐	 Global	
Technological	 and	 Societal	 Trends�Smart	 Environments	 and	



Presented	at	the	2nd	European	Immersive	Education	Summit,	26th	and	27th	November	2012,	École	
nationale	supérieure	des	Arts	Décoratifs,	Paris,	France.	

©	Anglia	Ruskin	University	and	Essex	University	2012																																																																									10	
	

Spaces	 to	 Green	 ICT”,	 River	 Publishers,	 Denmark,	 ISBN‐10:	
8792329675	

[Zhang	2012]	 Tongzhen	 Zhang,	 Vic	 Callaghan,	 Ruimin	 Shen	 ,and	 Marc	
Davies	 “Virtual	 Classrooms:	 Making	 the	 Invisible,	 Visible”	
(Presentation),	 Intelligent	Campus	2011	(iC’11),	Nottingham	
26th	July	2011	

	
 


