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Abstract—Cyclic instabilities can impact the performance of a 

multi agent system, especially in terms of the user’s point of view. 

Different strategies can be use in order to prevent this problem. 

In this paper we present two strategies, ONL1 and ONL2 that 

aim at minimizing the collateral consequences of locking. These 

two strategies focus on minimizing the number of nodes locked, 

and also the total weight.  These strategies performed better than 

the current strategy, INPRES, especially in very dense systems.   

Keywords-component; cyclic instability; locking; multiagent 

ststems; complexity.  

1. Introduction 
Ambient Intelligence and in particular rule-based multi agent 

systems have been found to suffer from a fundamental problem 

of cyclic instability, rooted in rule based interaction between 

agents. Circular dependencies arising from agent rules are a 

necessary condition for this behaviour; however, other aspects 

should be taken into account, such as the rules themslves, and 

the initial conditions of the system. One solution that has been 

reported to solve this condition is called INPRES (Instability 

Prevention System) and is based on locking agent actions [15, 

16, 17]. However, this strategy can impact noticeably on the 

services provided to the user, as the flux of information 

throughout the system is diminished.  In this paper we propose 

an innovative refinement to INPRES called Optimized Node 

Locking ONL that aims to minimize the number of agents 

locked choosing those with less importance on the network. 

 

2. Theoretical background 

2.1 Interaction Networks and Agents 

Interaction Network (IN) is a digraph 



(V ,E) in which the 

vertex 



vk  V  is a pervasive intelligent device or agent 



Ak  

and 



(vi,v j ) E if the Boolean functions 



 j  or 



 j  
of the 

pervasive intelligent device 



A j  
depends on the state 



si  of the 

device 



Ai . An example of an Interaction Network can be seen 

of Fig. 1. Interaction Networks are able to represent the 

topological properties of the system. In particular, the 

presence of feedback or loops in the system is a necessary 

condition for the instabilities to emerge.  

 
Figure 1 - An Interaction Network showing a loop in dashed lines. 

 

An agent 



Ak is an autonomous device consisting of a triplet    



[sk ,rk ,wk ] where 



k  is the agent number for 



k 1,2,3,...n , 

with 



n   being the total agents number and:  

 



sk : is the binary state of the k-agent defined over 



{0,1}  



wk : is the importance or weight over 



{Low,Medium,High}  



rk : is the set of Boolean rules of the k-agent 



{ k ,k} defined 

as: 

If 



 k  then 



sk 1                                  (1) 

The authors want to thank ITESM Campus León and ITL for their 
support to this research.  
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If 



k  then 



sk  0                                 (2) 

 

With  



 k ,k :S{0,1}                               (3) 

 

If we have 



n  autonomous devices 



A1,A2,...,An    the state of 

the system is



S  (s1,s2,...,sn) . 

The rules defined in (1) and (2) are consistent in the sense 

that 



 k k
1

.With this, the case of contradictory rules (e.g. 

one device ending up with two different states simultaneously) 

is avoided. 
The set of rules defined over the agents can be used to build 

a network capturing the functional dependencies between the 
agents, as will be shown in the next section.  

The factor of importance corresponds to the inherent weight 
of the agent, taking into account the following aspects [18]: 
inherent importance (devices can have different importance 

according to the services or functionality provided) and user’s 

preferences (users could have different preferences). As it can 

be seen, this model is very similar to a state machine, in 

particular, Boolean networks [18].  However, in the case of 

Boolean networks the rules are homogeneous, and the 

connections are symmetric and time-independent.  

 

Based on these topological properties on the digraph, different 

strategies can emerge. In particular, the strategy based on 

locking a set of agents with less connectivity has been proven 

to be effective [15, 16]. However, in the case of complex 

topologies and in particular with coupled loops i.e., with 

common vertex between loops, this strategy (Instability 

Prevention System-INPRES) tends to overlock the system, as 

for each loop or feedback circuit found in the IN, there is a 

locked agent. Another strategy c-INPRES [18] is based on 

analysing local rules of coupled agents (ie belonging to two or 

more cycles). The strategy presented on this paper does not 

analyze rules, and therefore is more general and easier to 

implement.  

3. Optimized Node Locking 
In this paper we introduce two new algorithms, ONL1-

INPRES or ONL1, and ONL2-INPRES or ONL2 for future 

reference. These algorithms are a further refinement of 

INPRES which aims to solve the problem of cyclic instability. 

The main advantage of these algorithms is that they approach 

the problem in a more general way, locking nodes to achieve 

stability in the system while minimizing the number of locked 

nodes and the total sum of weights of locked nodes. In the 

same way, ONL1 and ONL2 don’t search for, or expect, 

certain topologies, properties or the formation of specific rules 

in the system. Thus, they will perform efficiently in any kind 

of environment, however, it should be stated that they work 

best in very dense and coupled environments, where their 

benefits are amplified. 

 

3.1 ONL1-INPRES 

ONL1-INPRES is the acronym for Optimized Node Locking 

for the Instability Prevention System. As a general overview, 

the algorithm will remove the instability from the system by 

locking a node for each cycle. Just after a node is locked, the 

algorithm will search for the same node in the remaining 

cycles and if it is found, that cycle is marked also as stable. 

This way, the algorithm tries to maximize the effect of locking 

a node. 

 Because the environment in which the algorithm is 

designed to perform is expected to be very dense and coupled, 

the number of locked nodes needed to achieve stability 

decreases dramatically in comparison to INPRES. 

   
 onl1(Graph g) 

1 cycles = findCycles(g) 

2 ∀ cycle Є cycles 
3 stableCycles.add(cycle) 

4 cycle.findMinWeightNode() 

5 cycle.lockedNode(cycle.minNode) 

6 ∀ insCycle Є cycles 
7 if (cycle.minNode Є insCycle) 

8 insCycle.lockedNode(cycle.minNode) 

9 stableCycles.add(insCycle) 

10 cycles.remove(insCycle) 

  

 

Considering the above, line 1, the function findCycles(g) is 

a modified version of the Depth First Search (DFS) algorithm. 

We want to iterate over all the cycles that the DFS found (line 

3), except for those that have been found already as stable 

(line 9).  In line 3 we add the current cycle to a set of stable 

cycles. In line 4 and 5 we find the node with the minimum 

weight of the cycle, and then we lock that node (hence, the 

cycle can no longer perturb the system). After locking the 

minimum node, we search the graph for that node. If it is 

found, the cycle that has it is also in a stable state, so we mark 

the node of the cycle as locked (line 8), add the cycle to the set 

of stable cycles (line 9) and remove that cycle from the ones 

the algorithm needs to go through (line 10). In this way, we 

considerably need less locked nodes to bring the system to a 

stable state. 

 

3.2 ONL2-INPRES 

This algorithm is similar to ONL1-INPRES. The main 

difference is that this one will try to lock the  least weighted 

nodes first with the objective of diminishing the overall sum 

of weights in locked nodes. 

 
 onl2(Graph g) 

1 cycles = findCycles(g) 

2 ∀ cycle Є cycles 
3 cycle.findMinWeightNode() 

4 sort(cycles) 

5 ∀ cycle Є cycles 
6 stableCycles.add(cycle) 

7 cycle.lockedNode(cycle.minNode) 

8 ∀ insCycle Є cycles 
9 if (cycle.minNode Є insCycle) 

10 insCycle.lockedNode(cycle.minNode) 

11 stableCycles.add(insCycle) 

12 cycles.remove(insCycle) 
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In line 2 and 3 we can see that we are first finding the 

least-weighted nodes, so that we can sort the cycles later on 

(line 4). The Quicksort algorithm was used to sort the cycles, 

using the minimum weighted node of each as the comparison 

value; the sorting is ascendant. The rest of the algorithm is 

almost the same as ONL1; with the exception that line 5 of 

first algorithm is not present in this one. 

Even though the algorithms are similar, they lead us to 

some conclusions that we did not expect, so we chose to 

include both in this paper. Those conclusions will be 

explained later in the discussion. 

 

 

4. Experimental results 
 

4.1 Experiment 1 - coupled in one point 

 

Several experiments were performed, using well known 

benchmarks reported in  [17].  The first topology tested had 64 

nodes, each with coupled cycles in one point,  as shown in Fig. 

3.  

 

 

 
Figure 2 – Topology of experiment 1 

 

The following graph shows that the system is currently in an 

instable state. 

 

 
Figure 3 – Initial stability experiment 1 

 

After running the algorithms INPRES, ONL1-INPRES and 

ONL2-INPRES with the current experimental configuration, 

the locking vector produced by each algorithm are: 

 

INPRES  
{0,1,0,1,1,0,1,1,0,1,1,0,1,1,1,1,0,1,0,1,1,0,1,1,0,1,1,0,1,1,1,1,0,1, 

0,1,1,0,1,1,0,1,1,0,1,1,1,1,0,1,0,1,1,0,1,1,0,1,1,0,1,1,1,1} 

ONL1-INPRES 
{1,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,0,0,0,0,0,1,0, 

0,0,0,0,1,0,0,0,1,0,0,1,0,0,1,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0} 

ONL2-INPRES 
{0,0,0,0,0,1,1,0,1,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,0,0,0,0,0,1,0, 

0,0,0,0,1,0,0,0,1,0,0,1,0,0,1,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0} 

Table 1 – Resulted locking vectors per algorithm, experiment 1 

 

To following graphs show the algorithms are achieving 

stabilization of the system: 

 

 
Figure 4 - Stability with ONL1-INPRES 

 
 

 
Figure 5 – Stability with ONL2-INPRES 

 

In this experiment, INPRES locked 44 nodes whereas ONL1-

INPRES and ONL2-INPRES both locked 16 nodes (less than 

half). The sum of the weights of the locked nodes in INPRES 

was 253 and both new algorithms summed 44 in total. This 

shows an advantage for the new algorithms in the number of 

locked nodes and clearly allows a stable and less-disabled 

system. 

  

 
Figure 6 – System modifications performed by each algorithm 

 

The previous graph shows how each algorithm modifies the 

system in which these are run. Both ONL1 and ONL2 stopped 

modifying the system after locking the 16
th

 node, while 
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INPRES kept modifying the environment until it locked its 

44
th

 node. This graph shows the first noticeable difference 

between ONL1 and ONL2: We can observe that ONL2 begins 

by choosing the bests nodes to lock based on their weights and 

resulting in an initial lower partial sum. Nevertheless, when 

both algorithms finish locking their respectives nodes, the sum 

of weights of locked nodes are equal.  

The remaining experiments will show that ONL2 will not 

be able to produce a total lower sum of weights of the locked 

nodes in comparison to ONL1. ONL2 will get the same total 

sum that ONL1, and in some cases, a little bit higher. This is 

not a behaviour we expected since ONL2 was designed from 

the beginning to produce lower total sums of weights of 

locked nodes. This result and its complexity will be addressed 

later in this paper. 

 

4.2 Experiment 2 - coupled in two points 

 

This experiment was used a system with nodes coupled in two 

points, as shown in fig. 8.  

 

 
Figure 7 – Topology of experiment 2 

 

Again, in the following graph we can see that the system is not 

stable. 

 

 
Figure 8 – Original unstable system of experiment 2 

 

The following table shows the locking vector of each 

algorithm. 

 

INPRES  
{0,0,1,0,1,0,1,0,0,1,1,1,1,1,0,1,0,0,1,0,1,0,1,0,0,1,1,1,1,1,0,1,0,0, 

1,0,1,0,1,0,0,1,1,1,1,1,0,1,0,0,1,0,1,0,1,0,0,1,1,1,1,1,0,1} 

ONL1-INPRES 
{1,0,0,0,0,0,1,0,1,0,0,1,0,1,0,0,0,0,1,0,0,1,0,0,0,1,1,0,0,0,0,0,1,0, 

1,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,1,0,1,0,0,1,0,0,0,0,1,0} 

ONL2-INPRES 
{1,0,0,0,0,1,1,0,1,0,0,1,0,1,0,0,0,0,1,0,0,1,0,0,0,1,1,0,0,0,0,0,1,0, 

1,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,1,0,1,0,0,1,0,0,0,0,1,0} 

Table 2 - Resulted locking vectors per algorithm, experiment 2 

 

The following graphs show the stabilization achieved by 

ONL1 and ONL2. 

 

 
Figure 9 - Stability with ONL1-INPRES 

 
 

 
Figure 10 - Stability with ONL2-INPRES 

 

INPRES locked 36 nodes, whereas ONL1-INPRES and 

ONL2-INPRES locked 18 and 19 nodes respectively. The sum 

of the weights of the locked nodes in INPRES was 176, the 

sum of ONL1-INPRES was 18 and 19 for ONL2-INPRES. 

 

 
Figure 11 - System modifications performed by each algorithm 

 

In the previous graph we can observe the behaviour we 

described in the first experiment, where ONL2 produced a 

total sum of weights of locked nodes higher than ONL1 

despite it began with a partial sum lower than its counterpart. 

 

4.3 Experiment 3 - arbitrary system  
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This last experiment consists of an arbitraty system, shown in 

Fig. 13.   

 

 
Figure 12 – Topology of experiment 3 

 

 

 

 
Figure 13 – In experiment 3, the system was unstable.  

 

INPRES  
{1,1,1,1,1,0,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1, 

0,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,0} 

ONL1-INPRES 
{0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0, 

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0} 

ONL2-INPRES 
{0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0, 

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0} 

Table 3 - Resulted locking vectors per algorithm, experiment 3 

 

The locking vector for ONL1-INPRES and ONL2-INPRES 

are the same. However, the algorithms did not lock the nodes 

in the same order. In the following graph we can observe the 

stability achieved by both ONL1-INPRES and ONL2-

INPRES. 
 

 
Figure 14 - Stability with ONL1-INPRES and ONL2-INPRES 

 

INPRES locked 55 nodes, whereas ONL1-INPRES and 

ONL2-INPRES both locked 5 nodes. The sum of the weights 

of the locked nodes in INPRES was 262 and the sum of the 

weights for both ONL1-INPRES and ONL2-INPRES were 9. 

 

 

Figure 15 - System modifications performed by each algorithm 

 

This experiment clearly shows the benefits of using the 

algorithms in a dense and coupled system. With only a few 

nodes locked, the system can be brought to a stable state 

whereas INPRES needed many more locked nodes to achieve 

stability. 

 We observe that ONL1 and ONL2 produced equal numbers 

of locked nodes and total sums of weights in locked nodes, 

however, if we look closer to the order in which the nodes were 

locked, we can realize that the results are not totally equal. 

ONL1 locked the system in the order {10,17,30,33,59}, 

whereas ONL2 locked the environment in the order 

{30,33,17,10,59}. 

 

5. DISCUSSION 

 

 INPRES ONL1-INPRES ONL2-INPRES 

Experiment 

number 

# 

locked 
 nodes 

Σ  
locked 

nodes 

# 

locked 
nodes 

Σ  
locked 

nodes 

# 

locked 
nodes 

Σ  
locked 

nodes 

1 44 253 16 44 16 44 

2 36 176 18 34 19 39 

3 55 262 5 9 5 9 

4   5 13 8 16 

5   6 10 9 13 

6   7 16 9 18 

Table 1 – Summary table, performance comparison between algorithms 

 

5.1 INPRES vs. ONL-INPRES 

As we can see in the previous table and the experiments 

presented, in general, both ONL1-INPRES and ONL2-INPRES 

produced better results than INPRES, both in the number of 

locked nodes as in the total sums of weights of locked nodes.  

In experiment 1, ONL1-INPRES and ONL2-INPRES 

locked just 36.6% of the number of nodes that INPRES did. In 

experiment 3, the new algorithms locked just 9% of the nodes 
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in comparison to INPRES. In experiment 3, ONL-INPRES’ 

algorithms accounted for just the 3.4% of the total sum of 

weights in locked nodes in comparison to INPRES.  

It is clear that applying these algorithms in a real-time 

environment would lead to a much less-disabled system while 

avoiding cyclic instabilities in the system. 

 

5.2 ONL1-INPRES vs. ONL2-INPRES 

5.2.1 Number of locked nodes 

The greater the density and coupling of the system, the less 

nodes the algorithms need to achieve stability. This is actually 

logical: it only needs to lock a few nodes to lock all the cycles 

of the system (because they are so interconnected).  

With the experiments presented, one can observe that both 

algorithms are producing a similar number of locked nodes. In 

some cases, ONL1 and ONL2 produced exactly an equal 

number of locked nodes (experiment 1 and 3) and in other 

experiments, ONL2 locked a slightly higher number of nodes 

(experiment 2, 4, 5 and 6). 

The difference between ONL2 and ONL1 is that the former 

tries to pick the less weighted nodes overall. However, because 

the system is dense and very coupled, when any of the two 

algorithms decide to lock a node, they affect the system in a 

considerable way, meaning that many of the cycles will have 

the node that the algorithms decided to lock in the first place, 

so more than a few cycles will be stabilized by deciding to lock 

that one first node. 

 In other words, what ONL2 is doing is trying to find the 

best node in the system to start locking. Experiments have 

pointed out that it really does not matter where the algorithms 

start locking, the system is so dense and coupled that the result 

will be very similar as picking the first node of the system (as 

ONL1 does). This leads us to think that the configuration space 

of the system is, in this sense, isotropic. However, this does not 

mean that the algorithms will pick the same nodes, it just 

means that the number of picked or locked nodes, tend to be 

equal (as shown in experiment 3). 

 

5.2.2 Total sum of weights of locked nodes 

The results of the presented experiments have a tendency to 

point out that the algorithms are likely to produce similar total 

sums of weights in locked nodes. We believe this is a behavior 

that arises due to the conjunction of some other circumstances. 

 First, we must realize that the algorithms tend to produce an 

equal number of locked nodes to stabilize the environment (as 

stated before). 

 The set of possible weights in the experiments performed 

consists of 3 possible values {1, 5, 10}. At running time, ONL1 

picks the first cycle it finds, and then finds the minimum 

weighted node in that cycle. Thus, we can realize that there is a 

high probability that that first node will be a node with a 

weight of 1 (the probability of having a 1, 5 or 10 as a weight, 

is equal). ONL 2 tries to pick the best nodes overall (the ones 

with less weights). Therefore, the best ONL2 will be able to do, 

is pick a node with a weight of 1 (just the same as ONL1), and 

because the algorithms are likely to lock the same number of 

nodes, we can realize why they also tend to produce a similar 

total of weights of locked nodes (even though ONL2 was 

designed to perform better in this objective). We believe that a 

non-homogeneous allocation of the weights for the nodes 

would allow ONL2-INPRES to exhibit a higher performance in 

comparison to ONL1, for the reasons previously mentioned.  

 

6. CONCLUSIONS AND FUTURE WORK 
In this research we analyzed experimentally two algorithms, 

ONL1-INPRES and ONL2-INPRES. These two algorithms 

have been proven to find a set of nodes to lock, in order to 

eliminate cyclic behaviour. These algorithms not only stabilize 

the system, but also minimize the number of nodes locked 

(minimizing the loss of functionality of the system) and total 

weight of the nodes locked (impacting the less important agent 

in the system). These are clearly very important results in 

terms of the services provided to the user.   

Additionally, the experimental results showed that the two 

algorithms –one focused on minimizing the number of nodes 

locked, and the other on minimizing the total weight of nodes 

locked- performed in a very similar way, as it can be seen on 

table 7.  

ONL1 and ONL2 performed much better compared to 

INPRES. Also, from the previous analysis it has been found 

that ONL1 and ONL2 performed in a very similar way, 

despite the fact that ONL2 should have achieved better results, 

as it was designed to minimize the weight of the locked nodes. 

One possible explanation for this is that the order of the 

locking process is not important. In this sense, the 

configuration space is isotropic (in the number of nodes): for 

medium and high density systems, it is not important which 

nodes are locked first, as in the long run the two algorithms 

will lock the same number of nodes. However, more research 

is needed in this direction.  

Paradoxically, for very high densities, the tendency is to 

lock fewer nodes, due to the high coupling of the cycles.  In 

the extreme case of a fully connected system, only one node 

should be locked. However, on the other hand, probably, the 

system wouldn’t oscillate at all, due to the multiple restrictions 

imposed by the coupled rules. This behaviour of the locking 

strategy could be used in order to estimate the degree of 

coupling for a given system. More research is needed in this 

direction. 

For future work, we will continue to experiment with these 

algorithms and more specifically with non-homogeneous 

allocations of weights in the system. 

Finally, our experiments have shown an efficient way of 

stabilizing the system. This involves finding the nodes which 

are part of the most cycles and which are less weighted 

overall. Based on what we have learnt, we expect this would 

lead to the most-efficient way of stabilizing the system. 

The results presented in this paper are of great importance. 

The efficiency achieved and the impact they would have in a 

real multi agent system are considerable, much better than 

previous work. Furthermore, we believe questions and 

directions pointed out in this paper are of great value for future 
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research in multi-agent based ambient intelligence and related 

fields. 
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