
Presented at Intelligent Environments 2011 (IE’11), Nottingham 27-29th July 2011 (pre-review version)

1
© Monterrey Tech, Leon Institute of Technology & Essex University, 2011

Innovative Locking in AmI
Efficiently Removing Instabilities in Multi Agent Systems

Emmanuel Amaro

Department of Engineering and Science

Monterrey Tech Campus Leon

Leon Guanajuato Mexico

emmanuelamaro@gmail.com

Victor Zamudio, Rosario Baltazar and

Miguel Angel Casillas

Department of Postgraduate Studies and Research

Leon Institute of Technology

Leon Guanajuato Mexico

vic.zamudio@ieee.org

Vic Callaghan

School of Computer Science and Electronic Engineering

University of Essex

Wivenhoe Park, United Kingdom

vic@essex.ac.uk

Abstract—Cyclic instabilities can impact the performance of a

multi agent system, especially in terms of the user’s point of view.

Different strategies can be use in order to prevent this problem.

In this paper we present two strategies, ONL1 and ONL2 that

aim at minimizing the collateral consequences of locking. These

two strategies focus on minimizing the number of nodes locked,

and also the total weight. These strategies performed better than

the current strategy, INPRES, especially in very dense systems.

Keywords-component; cyclic instability; locking; multiagent

ststems; complexity.

1. Introduction
Ambient Intelligence and in particular rule-based multi agent

systems have been found to suffer from a fundamental problem

of cyclic instability, rooted in rule based interaction between

agents. Circular dependencies arising from agent rules are a

necessary condition for this behaviour; however, other aspects

should be taken into account, such as the rules themslves, and

the initial conditions of the system. One solution that has been

reported to solve this condition is called INPRES (Instability

Prevention System) and is based on locking agent actions [15,

16, 17]. However, this strategy can impact noticeably on the

services provided to the user, as the flux of information

throughout the system is diminished. In this paper we propose

an innovative refinement to INPRES called Optimized Node

Locking ONL that aims to minimize the number of agents

locked choosing those with less importance on the network.

2. Theoretical background

2.1 Interaction Networks and Agents

Interaction Network (IN) is a digraph



(V ,E) in which the

vertex



vk  V is a pervasive intelligent device or agent



Ak

and



(vi,v j) E if the Boolean functions



 j or



 j
of the

pervasive intelligent device



A j
depends on the state



si of the

device



Ai . An example of an Interaction Network can be seen

of Fig. 1. Interaction Networks are able to represent the

topological properties of the system. In particular, the

presence of feedback or loops in the system is a necessary

condition for the instabilities to emerge.

Figure 1 - An Interaction Network showing a loop in dashed lines.

An agent



Ak is an autonomous device consisting of a triplet



[sk ,rk ,wk] where



k is the agent number for



k 1,2,3,...n ,

with



n being the total agents number and:



sk : is the binary state of the k-agent defined over



{0,1}



wk : is the importance or weight over



{Low,Medium,High}



rk : is the set of Boolean rules of the k-agent



{ k ,k} defined

as:

If



 k then



sk 1 (1)

The authors want to thank ITESM Campus León and ITL for their
support to this research.

Presented at Intelligent Environments 2011 (IE’11), Nottingham 27-29th July 2011 (pre-review version)

2
© Monterrey Tech, Leon Institute of Technology & Essex University, 2011

If



k then



sk  0 (2)

With



 k ,k :S{0,1} (3)

If we have



n autonomous devices



A1,A2,...,An the state of

the system is



S  (s1,s2,...,sn) .

The rules defined in (1) and (2) are consistent in the sense

that



 k k
1

.With this, the case of contradictory rules (e.g.

one device ending up with two different states simultaneously)

is avoided.
The set of rules defined over the agents can be used to build

a network capturing the functional dependencies between the
agents, as will be shown in the next section.

The factor of importance corresponds to the inherent weight
of the agent, taking into account the following aspects [18]:
inherent importance (devices can have different importance

according to the services or functionality provided) and user’s

preferences (users could have different preferences). As it can

be seen, this model is very similar to a state machine, in

particular, Boolean networks [18]. However, in the case of

Boolean networks the rules are homogeneous, and the

connections are symmetric and time-independent.

Based on these topological properties on the digraph, different

strategies can emerge. In particular, the strategy based on

locking a set of agents with less connectivity has been proven

to be effective [15, 16]. However, in the case of complex

topologies and in particular with coupled loops i.e., with

common vertex between loops, this strategy (Instability

Prevention System-INPRES) tends to overlock the system, as

for each loop or feedback circuit found in the IN, there is a

locked agent. Another strategy c-INPRES [18] is based on

analysing local rules of coupled agents (ie belonging to two or

more cycles). The strategy presented on this paper does not

analyze rules, and therefore is more general and easier to

implement.

3. Optimized Node Locking
In this paper we introduce two new algorithms, ONL1-

INPRES or ONL1, and ONL2-INPRES or ONL2 for future

reference. These algorithms are a further refinement of

INPRES which aims to solve the problem of cyclic instability.

The main advantage of these algorithms is that they approach

the problem in a more general way, locking nodes to achieve

stability in the system while minimizing the number of locked

nodes and the total sum of weights of locked nodes. In the

same way, ONL1 and ONL2 don’t search for, or expect,

certain topologies, properties or the formation of specific rules

in the system. Thus, they will perform efficiently in any kind

of environment, however, it should be stated that they work

best in very dense and coupled environments, where their

benefits are amplified.

3.1 ONL1-INPRES

ONL1-INPRES is the acronym for Optimized Node Locking

for the Instability Prevention System. As a general overview,

the algorithm will remove the instability from the system by

locking a node for each cycle. Just after a node is locked, the

algorithm will search for the same node in the remaining

cycles and if it is found, that cycle is marked also as stable.

This way, the algorithm tries to maximize the effect of locking

a node.

 Because the environment in which the algorithm is

designed to perform is expected to be very dense and coupled,

the number of locked nodes needed to achieve stability

decreases dramatically in comparison to INPRES.

 onl1(Graph g)

1 cycles = findCycles(g)

2 ∀ cycle Є cycles
3 stableCycles.add(cycle)

4 cycle.findMinWeightNode()

5 cycle.lockedNode(cycle.minNode)

6 ∀ insCycle Є cycles
7 if (cycle.minNode Є insCycle)

8 insCycle.lockedNode(cycle.minNode)

9 stableCycles.add(insCycle)

10 cycles.remove(insCycle)

Considering the above, line 1, the function findCycles(g) is

a modified version of the Depth First Search (DFS) algorithm.

We want to iterate over all the cycles that the DFS found (line

3), except for those that have been found already as stable

(line 9). In line 3 we add the current cycle to a set of stable

cycles. In line 4 and 5 we find the node with the minimum

weight of the cycle, and then we lock that node (hence, the

cycle can no longer perturb the system). After locking the

minimum node, we search the graph for that node. If it is

found, the cycle that has it is also in a stable state, so we mark

the node of the cycle as locked (line 8), add the cycle to the set

of stable cycles (line 9) and remove that cycle from the ones

the algorithm needs to go through (line 10). In this way, we

considerably need less locked nodes to bring the system to a

stable state.

3.2 ONL2-INPRES

This algorithm is similar to ONL1-INPRES. The main

difference is that this one will try to lock the least weighted

nodes first with the objective of diminishing the overall sum

of weights in locked nodes.

 onl2(Graph g)

1 cycles = findCycles(g)

2 ∀ cycle Є cycles
3 cycle.findMinWeightNode()

4 sort(cycles)

5 ∀ cycle Є cycles
6 stableCycles.add(cycle)

7 cycle.lockedNode(cycle.minNode)

8 ∀ insCycle Є cycles
9 if (cycle.minNode Є insCycle)

10 insCycle.lockedNode(cycle.minNode)

11 stableCycles.add(insCycle)

12 cycles.remove(insCycle)

Presented at Intelligent Environments 2011 (IE’11), Nottingham 27-29th July 2011 (pre-review version)

3
© Monterrey Tech, Leon Institute of Technology & Essex University, 2011

In line 2 and 3 we can see that we are first finding the

least-weighted nodes, so that we can sort the cycles later on

(line 4). The Quicksort algorithm was used to sort the cycles,

using the minimum weighted node of each as the comparison

value; the sorting is ascendant. The rest of the algorithm is

almost the same as ONL1; with the exception that line 5 of

first algorithm is not present in this one.

Even though the algorithms are similar, they lead us to

some conclusions that we did not expect, so we chose to

include both in this paper. Those conclusions will be

explained later in the discussion.

4. Experimental results

4.1 Experiment 1 - coupled in one point

Several experiments were performed, using well known

benchmarks reported in [17]. The first topology tested had 64

nodes, each with coupled cycles in one point, as shown in Fig.

3.

Figure 2 – Topology of experiment 1

The following graph shows that the system is currently in an

instable state.

Figure 3 – Initial stability experiment 1

After running the algorithms INPRES, ONL1-INPRES and

ONL2-INPRES with the current experimental configuration,

the locking vector produced by each algorithm are:

INPRES
{0,1,0,1,1,0,1,1,0,1,1,0,1,1,1,1,0,1,0,1,1,0,1,1,0,1,1,0,1,1,1,1,0,1,

0,1,1,0,1,1,0,1,1,0,1,1,1,1,0,1,0,1,1,0,1,1,0,1,1,0,1,1,1,1}

ONL1-INPRES
{1,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,0,0,0,0,0,1,0,

0,0,0,0,1,0,0,0,1,0,0,1,0,0,1,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0}

ONL2-INPRES
{0,0,0,0,0,1,1,0,1,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,0,0,0,0,0,1,0,

0,0,0,0,1,0,0,0,1,0,0,1,0,0,1,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0}

Table 1 – Resulted locking vectors per algorithm, experiment 1

To following graphs show the algorithms are achieving

stabilization of the system:

Figure 4 - Stability with ONL1-INPRES

Figure 5 – Stability with ONL2-INPRES

In this experiment, INPRES locked 44 nodes whereas ONL1-

INPRES and ONL2-INPRES both locked 16 nodes (less than

half). The sum of the weights of the locked nodes in INPRES

was 253 and both new algorithms summed 44 in total. This

shows an advantage for the new algorithms in the number of

locked nodes and clearly allows a stable and less-disabled

system.

Figure 6 – System modifications performed by each algorithm

The previous graph shows how each algorithm modifies the

system in which these are run. Both ONL1 and ONL2 stopped

modifying the system after locking the 16
th

 node, while

Presented at Intelligent Environments 2011 (IE’11), Nottingham 27-29th July 2011 (pre-review version)

4
© Monterrey Tech, Leon Institute of Technology & Essex University, 2011

INPRES kept modifying the environment until it locked its

44
th

 node. This graph shows the first noticeable difference

between ONL1 and ONL2: We can observe that ONL2 begins

by choosing the bests nodes to lock based on their weights and

resulting in an initial lower partial sum. Nevertheless, when

both algorithms finish locking their respectives nodes, the sum

of weights of locked nodes are equal.

The remaining experiments will show that ONL2 will not

be able to produce a total lower sum of weights of the locked

nodes in comparison to ONL1. ONL2 will get the same total

sum that ONL1, and in some cases, a little bit higher. This is

not a behaviour we expected since ONL2 was designed from

the beginning to produce lower total sums of weights of

locked nodes. This result and its complexity will be addressed

later in this paper.

4.2 Experiment 2 - coupled in two points

This experiment was used a system with nodes coupled in two

points, as shown in fig. 8.

Figure 7 – Topology of experiment 2

Again, in the following graph we can see that the system is not

stable.

Figure 8 – Original unstable system of experiment 2

The following table shows the locking vector of each

algorithm.

INPRES
{0,0,1,0,1,0,1,0,0,1,1,1,1,1,0,1,0,0,1,0,1,0,1,0,0,1,1,1,1,1,0,1,0,0,

1,0,1,0,1,0,0,1,1,1,1,1,0,1,0,0,1,0,1,0,1,0,0,1,1,1,1,1,0,1}

ONL1-INPRES
{1,0,0,0,0,0,1,0,1,0,0,1,0,1,0,0,0,0,1,0,0,1,0,0,0,1,1,0,0,0,0,0,1,0,

1,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,1,0,1,0,0,1,0,0,0,0,1,0}

ONL2-INPRES
{1,0,0,0,0,1,1,0,1,0,0,1,0,1,0,0,0,0,1,0,0,1,0,0,0,1,1,0,0,0,0,0,1,0,

1,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,1,0,1,0,0,1,0,0,0,0,1,0}

Table 2 - Resulted locking vectors per algorithm, experiment 2

The following graphs show the stabilization achieved by

ONL1 and ONL2.

Figure 9 - Stability with ONL1-INPRES

Figure 10 - Stability with ONL2-INPRES

INPRES locked 36 nodes, whereas ONL1-INPRES and

ONL2-INPRES locked 18 and 19 nodes respectively. The sum

of the weights of the locked nodes in INPRES was 176, the

sum of ONL1-INPRES was 18 and 19 for ONL2-INPRES.

Figure 11 - System modifications performed by each algorithm

In the previous graph we can observe the behaviour we

described in the first experiment, where ONL2 produced a

total sum of weights of locked nodes higher than ONL1

despite it began with a partial sum lower than its counterpart.

4.3 Experiment 3 - arbitrary system

Presented at Intelligent Environments 2011 (IE’11), Nottingham 27-29th July 2011 (pre-review version)

5
© Monterrey Tech, Leon Institute of Technology & Essex University, 2011

This last experiment consists of an arbitraty system, shown in

Fig. 13.

Figure 12 – Topology of experiment 3

Figure 13 – In experiment 3, the system was unstable.

INPRES
{1,1,1,1,1,0,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,

0,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,0}

ONL1-INPRES
{0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,

0,1,0,0,0,0,0}

ONL2-INPRES
{0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,

0,1,0,0,0,0,0}

Table 3 - Resulted locking vectors per algorithm, experiment 3

The locking vector for ONL1-INPRES and ONL2-INPRES

are the same. However, the algorithms did not lock the nodes

in the same order. In the following graph we can observe the

stability achieved by both ONL1-INPRES and ONL2-

INPRES.

Figure 14 - Stability with ONL1-INPRES and ONL2-INPRES

INPRES locked 55 nodes, whereas ONL1-INPRES and

ONL2-INPRES both locked 5 nodes. The sum of the weights

of the locked nodes in INPRES was 262 and the sum of the

weights for both ONL1-INPRES and ONL2-INPRES were 9.

Figure 15 - System modifications performed by each algorithm

This experiment clearly shows the benefits of using the

algorithms in a dense and coupled system. With only a few

nodes locked, the system can be brought to a stable state

whereas INPRES needed many more locked nodes to achieve

stability.

 We observe that ONL1 and ONL2 produced equal numbers

of locked nodes and total sums of weights in locked nodes,

however, if we look closer to the order in which the nodes were

locked, we can realize that the results are not totally equal.

ONL1 locked the system in the order {10,17,30,33,59},

whereas ONL2 locked the environment in the order

{30,33,17,10,59}.

5. DISCUSSION

 INPRES ONL1-INPRES ONL2-INPRES

Experiment

number

locked
 nodes

Σ
locked

nodes

locked
nodes

Σ
locked

nodes

locked
nodes

Σ
locked

nodes

1 44 253 16 44 16 44

2 36 176 18 34 19 39

3 55 262 5 9 5 9

4 5 13 8 16

5 6 10 9 13

6 7 16 9 18

Table 1 – Summary table, performance comparison between algorithms

5.1 INPRES vs. ONL-INPRES

As we can see in the previous table and the experiments

presented, in general, both ONL1-INPRES and ONL2-INPRES

produced better results than INPRES, both in the number of

locked nodes as in the total sums of weights of locked nodes.

In experiment 1, ONL1-INPRES and ONL2-INPRES

locked just 36.6% of the number of nodes that INPRES did. In

experiment 3, the new algorithms locked just 9% of the nodes

Presented at Intelligent Environments 2011 (IE’11), Nottingham 27-29th July 2011 (pre-review version)

6
© Monterrey Tech, Leon Institute of Technology & Essex University, 2011

in comparison to INPRES. In experiment 3, ONL-INPRES’

algorithms accounted for just the 3.4% of the total sum of

weights in locked nodes in comparison to INPRES.

It is clear that applying these algorithms in a real-time

environment would lead to a much less-disabled system while

avoiding cyclic instabilities in the system.

5.2 ONL1-INPRES vs. ONL2-INPRES

5.2.1 Number of locked nodes

The greater the density and coupling of the system, the less

nodes the algorithms need to achieve stability. This is actually

logical: it only needs to lock a few nodes to lock all the cycles

of the system (because they are so interconnected).

With the experiments presented, one can observe that both

algorithms are producing a similar number of locked nodes. In

some cases, ONL1 and ONL2 produced exactly an equal

number of locked nodes (experiment 1 and 3) and in other

experiments, ONL2 locked a slightly higher number of nodes

(experiment 2, 4, 5 and 6).

The difference between ONL2 and ONL1 is that the former

tries to pick the less weighted nodes overall. However, because

the system is dense and very coupled, when any of the two

algorithms decide to lock a node, they affect the system in a

considerable way, meaning that many of the cycles will have

the node that the algorithms decided to lock in the first place,

so more than a few cycles will be stabilized by deciding to lock

that one first node.

 In other words, what ONL2 is doing is trying to find the

best node in the system to start locking. Experiments have

pointed out that it really does not matter where the algorithms

start locking, the system is so dense and coupled that the result

will be very similar as picking the first node of the system (as

ONL1 does). This leads us to think that the configuration space

of the system is, in this sense, isotropic. However, this does not

mean that the algorithms will pick the same nodes, it just

means that the number of picked or locked nodes, tend to be

equal (as shown in experiment 3).

5.2.2 Total sum of weights of locked nodes

The results of the presented experiments have a tendency to

point out that the algorithms are likely to produce similar total

sums of weights in locked nodes. We believe this is a behavior

that arises due to the conjunction of some other circumstances.

 First, we must realize that the algorithms tend to produce an

equal number of locked nodes to stabilize the environment (as

stated before).

 The set of possible weights in the experiments performed

consists of 3 possible values {1, 5, 10}. At running time, ONL1

picks the first cycle it finds, and then finds the minimum

weighted node in that cycle. Thus, we can realize that there is a

high probability that that first node will be a node with a

weight of 1 (the probability of having a 1, 5 or 10 as a weight,

is equal). ONL 2 tries to pick the best nodes overall (the ones

with less weights). Therefore, the best ONL2 will be able to do,

is pick a node with a weight of 1 (just the same as ONL1), and

because the algorithms are likely to lock the same number of

nodes, we can realize why they also tend to produce a similar

total of weights of locked nodes (even though ONL2 was

designed to perform better in this objective). We believe that a

non-homogeneous allocation of the weights for the nodes

would allow ONL2-INPRES to exhibit a higher performance in

comparison to ONL1, for the reasons previously mentioned.

6. CONCLUSIONS AND FUTURE WORK
In this research we analyzed experimentally two algorithms,

ONL1-INPRES and ONL2-INPRES. These two algorithms

have been proven to find a set of nodes to lock, in order to

eliminate cyclic behaviour. These algorithms not only stabilize

the system, but also minimize the number of nodes locked

(minimizing the loss of functionality of the system) and total

weight of the nodes locked (impacting the less important agent

in the system). These are clearly very important results in

terms of the services provided to the user.

Additionally, the experimental results showed that the two

algorithms –one focused on minimizing the number of nodes

locked, and the other on minimizing the total weight of nodes

locked- performed in a very similar way, as it can be seen on

table 7.

ONL1 and ONL2 performed much better compared to

INPRES. Also, from the previous analysis it has been found

that ONL1 and ONL2 performed in a very similar way,

despite the fact that ONL2 should have achieved better results,

as it was designed to minimize the weight of the locked nodes.

One possible explanation for this is that the order of the

locking process is not important. In this sense, the

configuration space is isotropic (in the number of nodes): for

medium and high density systems, it is not important which

nodes are locked first, as in the long run the two algorithms

will lock the same number of nodes. However, more research

is needed in this direction.

Paradoxically, for very high densities, the tendency is to

lock fewer nodes, due to the high coupling of the cycles. In

the extreme case of a fully connected system, only one node

should be locked. However, on the other hand, probably, the

system wouldn’t oscillate at all, due to the multiple restrictions

imposed by the coupled rules. This behaviour of the locking

strategy could be used in order to estimate the degree of

coupling for a given system. More research is needed in this

direction.

For future work, we will continue to experiment with these

algorithms and more specifically with non-homogeneous

allocations of weights in the system.

Finally, our experiments have shown an efficient way of

stabilizing the system. This involves finding the nodes which

are part of the most cycles and which are less weighted

overall. Based on what we have learnt, we expect this would

lead to the most-efficient way of stabilizing the system.

The results presented in this paper are of great importance.

The efficiency achieved and the impact they would have in a

real multi agent system are considerable, much better than

previous work. Furthermore, we believe questions and

directions pointed out in this paper are of great value for future

Presented at Intelligent Environments 2011 (IE’11), Nottingham 27-29th July 2011 (pre-review version)

7
© Monterrey Tech, Leon Institute of Technology & Essex University, 2011

research in multi-agent based ambient intelligence and related

fields.

7. ACKNOWLEDGMENT
The authors want to thank ITESM and ITL for the support

provided to this work.

8. REFERENCES

[1] Are Cars Too Complicated?, http://spectrum.ieee.org/podcast/green-
tech/advanced-cars/are-cars-too-complicated

[2] Callaghan V, Colley M, Hagras H, Chin J, Doctor F and Clarke G,
Programming iSpaces: a tale of two paradigms, in Steventon, A.,
Wright, S. (Eds.), Intelligent Spaces: The Application of Pervasive ICT
part of the series Computer Communications and Networks, Springer,
Heidelberg, Germany. pp. 162. 2005.

[3] Chin JS, Callaghan V and Clarke G, An End-User Programming
Paradigm for Pervasive Computing Applications, The IEEE
International Conference on Pervasive Services, Lyon, France, June 26-
29, 2006 Page(s):325 – 328.

[4] De Carolis, B. and Cozzolongo, G. (2004) 'C@sa: intelligent home
control and simulation', Internat. J. Comput. Intelligence, Vol. 1, No. 1,
pp. 1-12.

[5] Hagras H, Callaghan V, Colley M, Clarke G, Pounds-Cornish A and
Duman H, Creating an ambient-intelligence environment using
embedded agents. IEEE on Intelligent Systems, Volume 19, Issue 6,
Nov-Dec 2004 Page(s):12 – 20.

[6] Henricksen K, Indulska J, Rakotonirainy A, Modeling context
information in pervasive computing systems, Proceedings of the First
International Conference on Pervasive Computing, Zurich, Switzerland,
August 26-28 2002, pg 167. Springer (2002).

[7] Holloway, Eric M., Lamont, Gary B., Self organized multi-agent
entangled hierarchies for network security, Proceedings of the 11th
Annual Conference Companion on Genetic and Evolutionary
Computation Conference: Late Breaking Papers. Montreal, Quebec,
Canada. Workshop Session: Evoutionary computation and multi-agent
systems and simulations. Page: 2589-2596, 2009.

[8] Milner R., The Space and Motion of Communicating Agents.
Cambridge University Press, 1st edition, 2009.

[9] Razzaque MA, Dobson S and Nixon P, Categorisation and Modelling of
quality in context information, in Proceedings of the IJCAI 2005

Workshop on AI and Autonomic communications. Roy Sterrit, Simon
Dobson and Mikhail Smirnov (ed). 2005.

[10] Rohlf, T, Jost, J., A new class of cellular automata: How spatio-temporal
delays affect dynamics and improve computation. European Conference
on Complex Systems. University of Warwick, United Kingdom.
September 21-25 2009.

[11] Shehata M., Eberlein A., Fapojuwo A., Mohamed A. (2007) Managing
Policy Interactions in KNX-based Smart Homes, 1st IEEE International
Workshop on Development and Application of Knowledge-Based
Software Tool (KASET), Proceedings of the 31st Annual IEEE
International Computer Software and Applications Conference
(COMPSAC 2007), July 23-27, 2007, Beijing, China

[12] Shehata, M., Eberlein, A., and Fapojuwo, A. 2007. Using semi-formal
methods for detecting interactions among smart homes policies. Sci.
Comput. Program. 67, 2-3 (Jul. 2007), 125-161. DOI=
http://dx.doi.org/10.1016/j.scico.2006.11.002

[13] Strogatz SH, Exploring Complex Networks, Nature 410, 268-276. 2002.

[14] Weisbuch G, Complex Systems. Lecture Notes Volume II. Santa Fe
Institute Studies in the Sciences of Complexity. 1991.

[15] Zamudio V and Callaghan V. Facilitating the Ambient Intelligence
Vision: a Theorem, Representation and Solution for Instability in Rule-
Based Multi-Agent Systems. Special Section on Agent Based System
Challenges for Ubiquitous and Pervasive Computing. International
Transactions on Systems Science and Applications. Vol. 4, No. 2, May
2008. pp. 108-121. Guest Editor: . J. Gaber

[16] Zamudio V and Callaghan V. Understanding and Avoiding Interaction
Based Instability in Pervasive Computing Environments. International
Journal of Pervasive Computing and Communications, Vol. 5 Issue 2,
2009. Page: 163-186. Guest Editors: Evi Syukur and Javier Garcia-
Villalba.

[17] Zamudio V, PhD Dissertation. University of Essex. 2009.

[18] Victor Zamudio, Rosario Baltazar, Miguel Casillas, Vic Callaghan. c-
INPRES: Coupling Analysis Towards Locking optimization in Ambient
Intelligence. The 6th International Conference on Intelligent
Environments IE10. 19-21 July 2010, Monash University (Sunway
campus), Kuala Lumpur, Malaysia. Page(s) 68-73. Editors Vic
Callaghan, Achilles Kameas, Simon Egerton, Ichiro Satoh, Michael
Weber.

[19] Gershenson, C. Classification of Random Boolean Networks In
Standish, R. K., M. A. Bedau, and H. A. Abbass (eds.) Artificial
Life VIII: Proceedings of the Eight International Conference on
Artificial Life. . pp. 1-8. Sydney, Australia. MIT Press. 2002.

