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Abstract 

Emotions have been perhaps the most underrated human trait of all. They are often used to explain how 

people act or react as they do and yet in science they do not seem to serve any useful purpose for rational 

deliberation. At least that was the assumption of researchers from various areas who a few years ago started 

studying emotions and its relationship with rationality. It has now become evident that emotions play an 

important role in learning, memory, decision-making, interaction, and motivation. It has been even suggested 

that the lack of emotional intelligence, i.e., the capability to recognise and utilize emotions, could impair the 

relationships between humans and their environment. In this paper a study is presented demonstrating the 

effects of emotional information on the capacity of intelligent agents to adapt to user preferences inside 

domestic environments.  Experiments were carried out over an 8-day period inside the i-Dorm2 which is a 

self-contained apartment used as a testbed for various software agents paradigms. Preliminary results suggest 

that an agent incorporating meaningful emotional data into its input array could model user behaviour in a 

more accurate way than non-emotional or raw-physiological emotional agents. Improved mapping of human 

activities is of great significance for pervasive computing for it leads to optimal user comfort and enhanced 

use of resources. 

 

Introduction 

In 325 BC, Alexander III of Macedonia found himself stranded on the top of the wall protecting the capital of 

the Mallians (modern Multan in Pakistan). The ladder he had used to climb up had broke and just three of his 

men had been able to follow him after he had taken the lead a few moments ago (he was aware of a growing 

apathy among his troops and wanted to set an example). But instead of jumping back among his comrades, 

the king leaped down into the citadel and confronted the enemy alone. A cautious, rational man would have 

not risked his life as Alexander did. Or at least that is what reasoning tells us. Nonetheless, this does not seem 

to be an act of utter irresponsibility or reckless audacity but rather a calculated action stemming from the 

Macedonian awareness of superior military skills and strong inner feelings
1
.  

 

Throughout history emotions have provided capable men and women with the fortitude needed to realize their 

dreams and ideas be it a decision sealing the fate of a country or a scientific endeavour. This combination of 

cognitive and emotional components is an ingrained part of human thinking and determines the course of our 

actions and development [1]. However, it is until the nineteen nineties, sometimes known as “decade of the 

brain”
2
, that researchers from various disciplines provided strong evidence with respect to how emotions 

influence reasoning in our decisions and also our motivational and learning mechanisms. Neurologists 

demonstrated that, for instance, emotions sometimes override reasoning in situation demanding quick 

decisions and immediate actions. They also discovered that affective states are an important neurological 

regulator of the relationships of humans and their environment and that normal behaviour is greatly disturbed 

in the absence of such regulators[2-4]. Moreover, the ability to make optimal decisions is highly dependant on 

the human capacity to identify and utilize emotions, i.e., emotional intelligence [5]. It has now become clear 

that the emotional and the cognitive are two interrelated, cooperative, inter-dependant constituents of our 

being rather than separate, incompatible, independent elements.   

 

In fact, those researchers still pursuing the path of a purely rational-choice approach in order to develop 

models of human interaction and/or inference are facing what is called an indeterminate, inadequate theory 

[6]. A theory becomes indeterminate when it fails to deliver a unique prediction and inadequate when the its 

predictions are erroneous.  

 

The inadequacy of reason applies not only to extreme situations but also to simple, ordinary, everyday life 

events. For example, a person could choose to turn a light on because of difficulties seeing or because of 

                                                
1
 This anecdote was likely taken from Ptolemy’s accounts of Alexander’s military campaign in India and has 

been cited by many historians throughout the years. 
2
 This term is commonly used by researchers after the US Presidential Proclamation 6158, July 17, 1990. 
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anxiety caused by a darkening room, or switch the TV off because of an emotional episode caused by a TV 

show or simply out of boredom, or stop working due to stress, depression, or extreme happiness or just 

because it is time for a break. It is apparent that decisions stemming from routine behaviour could be 

relatively easy to predict or establish; those involving a emotional-bodily components probably not.    

 

The view of computer scientists and in particular those working in artificial intelligence (AI), has always been 

pointing towards a skewed interpretation of rational thinking as a purely cognitive process leaving affective 

states aside. This has gradually changed and more computing research has been aimed at finding ways of 

incorporating emotions into artificial information processes. Numerous investigations have been undertaken 

in areas ranging from human-machine interfaces with emotional content to the development of artificial 

nervous systems capable of displaying signs of affect [7,8]. 

 

Affective Computing  

 

The term affective computing was coined by Picard in the mid 90s to describe computer methods that are 

related to, derive from or affect emotions[9], and involves two areas: Emotion synthesis (simulation),  used to 

artificially imitate some of the physical or behavioural characteristics associated with affective states, and 

emotion analysis (recognition) which is often employed in decision making for interactive systems. Emotion 

synthesis is useful to develop ways to communicate with humans at a subjective level involving social 

participation, for example using robots. Emotion detection on the other hand could be used to monitor the 

emotional state of a subject and then take actions based on the type of individual experience  being felt. Some 

computing systems are even capable of displaying immediate reactions to people’s feelings by incorporating a 

combination of both emotion detection and emotion synthesis.  

 

Hitherto, the identification and classification of emotional changes has obtained mixed results ranging from 

60-95.5% detection accuracy for facial recognition [10-15] to 50-87.5% for speech recognition [16, 17], and 

72% in bimodal recognition (face and speech) [18].  In physiological emotion detection some of the best 

results have been achieved by Kim et al. [19] with 61.2% correct classification for 4 emotions, Nasoz et al. 

50-90% for 5 emotions [20] and Picard et al. with  81% for 8 emotions [21]. Some of the recognition 

techniques employed in the above approaches include neural networks [10-16] and advanced statistical 

mechanisms [17-21].  

 

Towards the integration of Affective and Pervasive Computing  

 

The idea of being able to exhibit emotions through electronic means has captivated the imagination of many 

researchers in various computing areas including IIE and robotics. In fact, the creation of artificial entities 

capable of displaying affect and interacting with users at an affective level represents a fertile ground not only 

for computer science but also for medicine and psychology. Many other social and technological fields could 

also benefit from the detection, utilization, and eventual imitation of human feelings. The research presented 

in this paper however concentrates on investigating the potential of emotion recognition for pervasive 

computing and leaves emotion simulation as an open issue.  

 

Pervasive or ubiquitous computing involves the integration of computers into the environment allowing the 

user to interact with them in a more natural way. It is argued that by allowing embedded computers to 

recognize and use emotional information, IIE software agents would be able to adapt better to what the user 

wants, increase the accuracy of decisions derived from what the user does, and facilitate mutual interaction. 

Actions taken by affective IIE agents would ultimately be comparable to those related to intelligent human 

activity, i.e., accurate fulfilment of immediate personal needs.  
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Methods 

 

Experiments were carried out inside an experimental testbed for intelligent agents (iDorm2), to assess the 

degree to which emotional data could contribute towards improving the modelling of a user’s behaviour 

inside an intelligent environment. An enhanced representation of the way the user interacts with the 

environment could lead to better agent adaptability and a reduced need for user intervention, more efficient 

use of resources, and ultimately increased comfort. 

 

Real-time Emotion Detection 

 

The first step towards the effective incorporation of affective and pervasive computing into IIE lies in the 

accurate identification of the emotional state of the individual being analysed. Towards this end, the 

combination of Autoassociative Neural Networks (AANNs) [22] and sequential analysis, proved to be 

effective to detect changes in physiological signals associated with emotional states (neutral and non-neutral) 

from a single individual with 100% recognition rate [23] and 85.2% on experiments involving three emotional 

categories, i.e., neutral, positive, and negative, on 8 subjects. 

 

This approach to recognizing affective changes is based on a real-time continuous evaluation of 4-5 measures 

associated with the autonomic system and the brain which have been previously subjected to a clustering 

analysis.  The calculation of the instantaneous Davies-Bouldin cluster separation Index (DBI)[24] is used to 

select the attribute(s) that contribute to the best separation of the emotional states involved.  

 

The above methodology is based on the idea that the detection of emotional changes using physiological 

signals could be likened to a real-time sensor validation process in which emotional states could be detected 

by estimating the amount of deviation they demonstrate with respect to a neutrally-emotional state. 

Alterations in the autonomic system associated with emotional states are identified by providing a Sequential 

Probability Ratio Test (SPRT) [25] module with the continuous calculation of the difference between the 

actual sensor values and their AANN-estimated counterpart (residual henceforth).  

 

Because the AANN is trained to mimic the input behaviour of the neutral state, the mean of the difference is 

be very close to zero (with a standard deviation similar to that of the noise introduced by the sensing device) 

when the physiological state of the subject is normal. When the sensor value chose by means of the DBI 

calculation drifts because of a change in the physiological status of the subject provoked by an emotional 

episode, the mean value of the residual deviates from zero. The SPRT value is consequently altered and the 

likelihood ratio displaced to either of the two solution spaces (neutral or non-neutral and positive or negative). 

Despite the fact that only one physiological measure is employed in the SPRT calculation, the relationship of 

all the parameters is needed for projecting the targeted variable into the AANN estimation space.  

 

This way to detect emotional changes in real-time has been proved to be sufficiently robust to resist 

perturbations caused by various degrees of emotional intensity and bodily changes associated with physical 

activities such as exercise or household chores[26-27]. 

 

Experimental Vital-sign-based Emotional State Transmitter (X-Vest) 

 

The X-Vest is a wearable artefact capable of communicating the wearer’s emotional state in real time using 

wireless technology (see Figure 1). The X-Vest  integrates a  finger clip with built-in sensors providing 3 

physiological signals, i.e., heart rate (HR), skin resistance (SR), blood volume pressure (BVP), and 2 

estimated parameters, namely the gradient of the skin resistance (GSR) and the speed of the changes in the 

data  (CS - a measure of the signal’s’ entropy). Bodily signals are sent to a PC computer using a bluetooth 

connection and then employed to identify neutral, positive, or negative emotions using the methodology 

described above. The emotion detection system is in turn embodied as a UPnP device allowing remote cross-

platform access (see Figure 2). 

 

The use of  robust effective emotion detection in the X-Vest mechanism guarantees the accurate recognition 

of underway affective states under various dissimilar circumstances and user characteristics and also makes 

possible reliable real-life experimentation involving ambulatory conditions. 
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Figure 1. The X-Vest. Attire, sensing device, and transmitter. 

 
Figure 2. The X-Vest. Architecture. 

 

Fuzzy Logic Agent 

 

A fuzzy agent previously shown to possess improved adaptability to operating inside intelligent environments 

was used in this study [28,29]. This implementation of a Fuzzy Logic Controller (FLC) is based on the 

utilization of singleton fuzzification, max-product composition, product implication, and height 

defuzzification techniques to produce a model of the user’s behaviour inside domestic environments, more 

specifically, the iDorms 1and 2. After an initial monitoring phase the fuzzy agent is able to extract fuzzy rules 

and membership functions from ambience information and then use such rules and functions to efficiently 

control the environment while guaranteeing users physical ease.  

 

The agent’s input vector comprises seven sensors: the internal and external light levels, internal and external 

temperature, chair pressure, couch pressure and time measured as a continuous input on an hourly scale. 

Artefacts subjected to agent control include four variable intensity spot lights, a desk lamp, and two PC-based 

applications namely a word processing and a media playing program. An important attribute of this particular 

agent is its improved capacity to adapt to changes in the environmental parameters being monitored. Thanks 

to this long-term learning functionality the fuzzy agent provides an enhanced depiction of the conditions 

inside the iDorms. 

 

In the present study three different implementations of this fuzzy agent were compared: the original agent 

with no emotional information (NEA), an agent using an extra input involving discretized emotional values 

(1-Neutral, 2-Positive, 3-Negative) (DEA) and an agent with raw fuzzified emotional data added to the 

original input vector (4 Fuzzy sets stemming from the residual of the heart rate) (RFEA).  

 

Experimental Procedure 
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A male subject aged 27 who was assessed as of low emotionally intensity (based on the Affect Intensity 

Measure score[30]) lived inside the iDorm2 for 8 days while being equipped with the X-Vest (see Figure 3). 

The first two days were used to collect ambience and emotional data to train the three fuzzy agents. In the 

remaining 6 days the subject performed a range of activities inside the iDorm2 comparable to those 

commonly undertaken in everyday life e.g., studying, eating, resting, exercising, etc. A crucial element in the 

present study is that the participant was asked to behave as naturally as possible and not to alter his normal 

behaviour or his response to unforeseen circumstances such as unexpected changes in the weather or his 

physical state e.g., in the event of feeling unwell. 

 

In order for a comparison to be as accurate as possible, the three fuzzy agents were exposed to similar 

temperature and light conditions over the whole period of experimentation. Because of the restrictions 

imposed by the use of the actuators (they could only be operated by one agent at a time) parallel operation of 

the agents was not possible. Therefore, it was decided that each agent would be used at a pseudo randomly 

selected time slot on the same day for the 6-day controlling period (the monitoring phase was the same for all 

the agents). The various time slots were chosen based on the times of the day in which more activity is likely 

to take place under normal conditions i.e., Morning or Breakfast time (8-10 AM), Midday or Lunch time (1-

3PM), and Evening or Dinner time (6-8:20 PM). The random time slot assignation was made with the 

condition that all the agents would end up having the same exposure time. Thus, each agent was employed 

twice in the morning (1
st
 and 2

nd
 Session of 120 min. (7200 sec.) each), afternoon (1

st
 and 2

nd
 Session of 120 

min. (7200 sec.) each) and evening (1
st
 and 2

nd
 Session of 140 min. (8400 sec.) each).  Table 1 and 2 illustrate 

the order in which the three agents were used and the ambience conditions on the 6-day controlling phase. 

 

 
Figure 3. Experiments inside the i-Dorm2. 

 

 Agent Type 

Day/Time Slot NEA DEA RFEA 

8-10 AM    

1-3 PM    

Day 1 

6-8:20 PM    

8-10 AM    

1-3 PM    

Day 2 

6-8:20 PM    

8-10 AM    

1-3 PM    

Day 3 

6-8:20 PM    

8-10 AM    

1-3 PM    

Day 4 

6-8:20 PM    

8-10 AM    

1-3 PM    

Day 5 

6-8:20 PM    

8-10 AM    

1-3 PM    

Day 6 

6-8:20 PM    

Table 1. Assignation of experimental time slots. 

 

 Ambience Conditions (Averaged Values) 

 Light Temperature 
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Time Slot Internal External Internal External 

NEA 126.67 89.57 27.41 20.64 

DEA 133.98 90.39 27.56 20.88 1
st
 Session 

RFEA 142.59 88.37 27.68 20.73 

NEA 241.75 92.33 27.23 24.52 

DEA 232.58 92.46 27.09 21.87 

8-10AM 

2
nd

 Session 

RFEA 319.27 92.55 27.75 26.46 

NEA 133.81 88.93 27.87 23.41 

DEA 314.65 93.15 28.63 22.19 1
st
 Session 

RFEA 246.61 93.02 28.51 27.70 

NEA 328.03 93.19 29.30 30.09 

DEA 223.10 92.02 28.03 23.13 

1-3PM 

2
nd

 Session 

RFEA 81.95 58.30 23.95 19.97 

NEA 41.04 79.01 27.99 21.36 

DEA 103.18 89.16 28.25 24.14 1
st
 Session 

RFEA 73.12 86.68 28.48 21.32 

NEA 95.35 89.46 25.48 19.91 

DEA 63.50 87.46 26.27 22.80 

6-8:20PM 

2
nd

 Session 

RFEA 72.53 86.99 26.35 19.52 

Table 2. Light and temperature levels for the 6-day experimentation period. 

 

Results 

 

Agents’ performance was evaluated according to two key categories: Interaction Model, and User Comfort. 

These two parameters  are related to the agent’s direct interaction with the user and provide a clear indication 

on whether a particular agent struggled to accommodate and/or adapt to user behaviour. Two categories 

previously employed to examine the performance of various intelligent agents paradigms are also presented 

[28, 29], namely the Progress  Function and Model Stability. These two categories are mainly included in this 

paper with the intention of providing other researchers investigating affective computing in IIE with the basis 

to perform accurate comparisons between the present and other approaches. 

 

Interaction Model 

 

Interaction model refers to how effective an agent was to modelling user activities inside the iDorm2 after the 

two data collection days and during the 6-day controlling period. This could be evaluated by examining the 

number of initial and new rules that required an adaptation after they were created and also how many of 

these initial and new rules were actually used by the agent, i.e., the usefulness of the rules.  

 

Table 3 shows that in terms of the suitability of the initial FLC model, the agent with raw fuzzified emotional 

data (RFEA) displayed greater accuracy since only 5.6% of the initial rules were adapted. In contrast 9.5% 

and 17.4% of the initial rules generated by (DEA) and the non-emotional agent (NEA) respectively, were 

modified. The advantage of RFEA’s preliminary model is also confirmed by the greater number of initial 

rules that were fired: 40.3% against 39.1% of DEA and 27.2% of NEA. 

 

The quality of the rules generated during the 6-day controlling phase seems to have clearly favoured DEA 

since only 3.4% of these were altered in opposition to 40.9% for NEA and 55.8 % for RFEA. The accuracy of 

the new rules was also superior for DEA since 92.4% of these were actually utilised followed by NEA 88.3% 

and 82.8% from RFEA. The higher number of fired rules and the number of rules used in less than 6 
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occasions suggest that DEA was able to adequately identify the subtleties in the user’s behaviour and adjust 

the model accordingly.  

 

In general terms, the interaction model generated by DEA seemed to possess improved consistency and 

accuracy in comparison to the other two since only 4.9% of its rules needed an adaptation while 79.2% of 

them were fired against 34.6% and 72.1% of NEA and 47.9% and 76.2% for RFEA respectively. 

 

Category NEA DEA RFEA 

Total Number of rules 539 768 1345 

 Number of initial rules (controlling phase) 143 189 211 

 Number of new rules generated during controlling phase 396 579 1134 

Total Number of rules Adapted during controlling phase 187 38 645 

  % of Total 34.6 4.9 47.9 

Number of initial rules adapted during controlling phase 25 18 12 

 % of Total 4.6 2.3 0.9 

 % of Initial 17.4 9.5 5.6 

 

 % of Total Adapted 13.4 47.4 1.9 

Number of new rules adapted during controlling phase 162 20 633 

 % of Total 30.0 2.6 47.0 

 % of New 40.9 3.4 55.8 

 

 % of Total Adapted 86.6 52.6 98.1 

Total Number of Rules that Fired 389 609 1025 

  % of Total 72.1 79.2 76.2 

Number of initial rules that fired 39 74 85 

 % of Total 7.2 9.6 6.3 

 % of Initial 27.2 39.1 40.3 

 

 % of Total Fired 10.1 12.2 8.3 

Number of new rules that fired 350 535 940 

 % of Total 64.9 69.6 69.8 

 % of New 88.3 92.4 82.8 

 

 % of Total Fired 89.9 87.8 91.7 

Total number of rules that fired less than 6 times 160 276 395 

 % of Total 29.6 35.9 29.3 

 % of Total Fired 41.1 45.3 38.5 

Table 3. Number of fuzzy rules. Initial generation, newly produced, and actually used (fired). 

 

User Comfort 

 

Enhanced user comfort is one of the most important objectives of researchers in the area of IIE agents. User 

comfort could be evaluated by analysing the number of times the user had to interact with the system in order 

to adjust the settings inside the iDorm2. Manual adjustments mean that the agent failed to configure the 

ambience to what the user expected under normal conditions and comparable weather conditions. 
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Experiments indicated the superiority of DEA with only 10 user interventions for the entire 6 sessions (RFEA 

and NEA were overridden 16 and 21 times, an increase of 60 and 110 % respectively) (see Table 5). DEA 

was especially efficient in the morning and afternoon sessions while NEA performed slightly better in the 

midday sessions. 

 

 Number of User Interactions 

Time Slot NEA DEA RFEA 

1
st
 Session 4 1 2 8-10AM 

2
nd

 Session 1 1 5 

1
st
 Session 1 6 2 1-3PM 

2
nd

 Session 3 2 5 

1
st
 Session 3 0 3 6-8:20PM 

2
nd

 Session 9 0 4 

Total 21 10 21 

Table 5. Number of user interventions on 6 days of experimentation. 
 

Progress Function (Learning curve) 

 

The progress function or learning curve reflects the number of new rules generated over time and it is a good 

indicator of how effectively the agents were able to learn from changes in the environment. It is expected that 

after the initial generation of rules, the number of new rules would progressively diminish. Table 4 depicts the 

number of new rules created on each experimental session. 

  

 Number of New Rules 

Time Slot NEA DEA RFEA 

1
st
 Session 156 145 504 8-10AM 

2
nd

 Session 12 0 0 

1
st
 Session 0 8 0 1-3PM 

2
nd

 Session 0 0 108 

1
st
 Session 116 180 396 6-8:20PM 

2
nd

 Session 112 246 126 

Total 396 579 1134 

Table 4. Number of new rules per session. 

 

It can be seen that on the morning experiments, the DEA did not need to make any further modifications to its 

interaction model after the first session. NEA on the other hand, performed a much better modelling in the 

midday sessions with no new rules created in either of the two sessions. A more in depth analysis on the 

results from the morning and midday sessions demonstrate that up to the beginning of the evening 

experiments, DEA had achieved the best performance of the three agents with only 152 new rules being 

created. This tendency changed in the evening when all the agents had problems modelling user’s behaviour 

each one of them having constructed more than 300 hundred new rules (RFEA was the worst case with 522 

added rules).  

 

It is worth noting that the DEA was the only agent in which a second session produced more rules than the 

previous one (see the 1
st
 and 2

nd
 sessions of the 6-8:20 slot). This could be attributed to the fact that the 

subject felt sick on the first evening session and rested most of the time on the couch thus completely 

changing his normal activities. 

 

 

Model Stability 

 

Stability is a measure of how fast the agent was able to formulate an optimum interaction model that 

maximised the information collected from the environment including ambience variations caused by user’s 

behaviour and/or weather conditions. It is argued that this optimal interaction model would improve over time 
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requiring only a small number of major adaptations. Figures 4-6 illustrate the number of new rules over time 

generated by each agent in each experimental session. 
 

 
a) 

 
b) 

Figure 1. Model stability over time in the morning sessions expressed in new rules per second. a) 

accumulative and b) instantaneous values.  
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a) 

 
b) 

Figure 2. Model stability over time in the midday sessions expressed in new rules per second. a) accumulative 

and b) instantaneous values. 
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a) 

 
b) 

Figure 3. Model stability over time in the morning sessions expressed in new rules per second. a) 

accumulative and b) instantaneous values. 

 

Despite the large number of rules generated by RFAE in the morning sessions, it is evident that its interaction 

model captured ambience subtleties in a more efficient way than the other two agents with the last rule being 

created at 9:23 (5505 sec.) on the first part of that experimental session (see Figure 3). In the same manner 

NEA showed an improved performance during the evening sessions having made the last update to the model 

8572 sec. after the beginning of the session (see Figure 5). Although the three agents performed similarly in 
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the midday sessions, DEA and RFEA needed 8 and 108 new rules respectively thus leaving NEA as the best 

model on that particular time slot (see Figure 4). 

 

Overall Performance 

 

Results in Table 6 demonstrate a clear advantage of DEA in the categories related to the efficiency and 

quality of the rules encompassed in the Fuzzy Controller, while NEA seemed to have an improved 

performance in the learning capacity and stability of the model. 

 

 
 Overall Performance 

Category NEA DEA RFEA 

Interaction Model (% of Adapted rules from Total) 34.6 4.9 47.9 

Interaction Model (% of Fired rules from Total) 72.1 79.2 76.2 

User Comfort (No. of user interactions) 21 10 21 

Progress Function (No. of New Rules) 396 579 1134 

Model Stability (Averaged Time of last generated rule (in sec)) 5896 8110 9224 

Table 6. Category winners. 

 

Discussion 

 

The fewer number of times the user had to override agent’s decisions along with a diminished need for rule 

alteration suggests that, despite its slower learning curve, DEA was able to establish a better representation of 

how the user behaved inside the iDorm2. The reason for this could be that, just as the user responds to 

changes in the environment, emotions prompt individuals to act according to stimuli stemming from the 

various activities undertaken inside the IIE. The reactions to such stimuli are not easily recorded by a non-

emotional agent since they depend on modifications on the user’s psychological and physical perception of 

his/her surroundings. The lack of interaction at a more personal level inhibits the symbiotic relationship 

between a non-emotional agent and the user and neglects important information about why and when certain 

events usually occur. 

 

Results shown in Table 6, also suggest that the NEA possesses a greater capability in terms of learning speed 

and model stability. This apparent advantage however is not definite and could be the result of a smaller 

number of sensors being used in order to generate fuzzy rules and membership functions rather than a poor 

performance by the two emotional agents. The utilization of fewer input variables inherently means more 

stability for the FLC since less event combinations are possible. Thus, rather than attributing poor learning 

curves to uncertainties introduced by the inclusion of emotional data, it is safer to assume that a greater 

number of sensors seems to have a direct linear effect on the agent’s learning speed. This is an important 

characteristic that should be taken into account when comparing different implementations of IIE agents. 

 

If an increase in the number of input sensors seems to be associated with longer learning periods, it does not 

seem to have a direct effect on whether the agent is capable of learning from the user. For example, if only the 

two emotional agents with the same number of input sensors were compared, the superiority of the DEA is 

still manifest thus indicating that not only the quantity but also the quality of the information determines the 

agent’s performance.  

 

The poor performance of RFEA reveals that the sole addition of extra sensing information stemming from the 

user’s physiological state into the agent’s input vector does not guarantee improved modelling of user’s 

activities. It is the inclusion of meaningful emotional data that provides a valuable insight not only into the 

current activities but also into the relationship between ambience conditions and the user’s state of mind.  

 

Conclusions 

 

The experimental results suggest that the utilization of emotional data truly improves the performance of IIE 

software agents particularly in those categories involving the modelling of user activities. Emotion provides 
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the agents with a more accurate depiction of why and when the user undertakes certain activities at certain 

times. It is manifest that the distant observation of an individual without the care of knowing their motivations 

does not suffice to endow software agents with an accurate representation of the events taking place inside 

IIE.  

 

Although the findings presented here have been narrowed to a particular type of agent and are rather modest 

with regards to the number of subjects employed and the extent of the experiments, they provide encouraging 

evidence of the importance and influence of emotions into human decision-making and information 

processing. The intention of this work is mainly to contribute to a better understanding of emotions in the 

context of pervasive computing and towards the eventual amalgamation of affective computing and artificial 

intelligence. 
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