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Affect-aware behaviour modelling and control inside an Intelligent Environment  

Enrique Leon, Graham Clarke, Victor Callaghan, Faiyaz Doctor 

 

Abstract  From its inception research in Affective Computing has inspired a new generation of applications aimed 

at improving the interaction between humans and machines. Car driver concentration monitoring, Adaptive 

Computer Interfaces that react to affective states, e-learning systems that convey students’ emotions and homes that 

cater for affective therapy are all examples of affective technology that could soon be part of our daily lives. In this 

paper an exploratory study is presented providing initial evidence of the positive effects of emotional information on 

the ability of intelligent agents to create better models of user preferences inside smart homes. An experiment was 

carried out over an 8-day period inside the iSpace which is a self-contained apartment used as a testbed for various 

software agents paradigms. Preliminary results suggest that an agent incorporating valence-based emotional data 

into its input array can model user behaviour in a more accurate way than agents using no emotion-based data or raw 

data based on physiological changes. Improved modelling of human activities is of great significance for pervasive 

computing as it leads to improved user satisfaction and more effective utilisation of resources. 

 

Key Words: Affective Computing, Context Awareness, Intelligent Agents, Intelligent Inhabited Environments. 

 

1. Introduction 

 

The traces of emotions found in decisions sealing the fate of a country, the successful accomplishment of a scientific 

endeavour or the development everyday human relationships proved for centuries, at least intuitively, that emotions 

play a significant role in our behaviour. It was not until the nineteen nineties, sometimes known as “decade of the 

brain”, that researchers from various disciplines provided strong evidence as to how emotions influence reasoning in 

our decision making as well as our motivational and learning mechanisms. For instance, neurologists demonstrated 

that emotions sometimes override reasoning in situations demanding quick decisions and immediate actions 

(Ledoux). They also evidenced that affective states are an important neurological regulator of the relationships 

between humans and their environment and that normal behaviour is greatly disturbed in the absence of such 
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regulators were individuals show an inability to observe “socials conventions”, a tendency to take actions adverse to 

one’s own well-being that lead to financial or inter-personal losses, and repeated engagement in disadvantageous 

actions showing disregard from previous mistakes. Jocelyn Pixley argues that the intrinsic uncertainty associated 

with financial markets makes emotions such as confidence and trust an unavoidable element in corporative decision 

making (Pixley, 2002). Marcer provides examples of how emotions might be useful in formulating better 

explanations of rationality in the context of allegiance formation, justice, and strategic choice. He declares that while 

emotions might lead to mistakes so does cognition (Mercer, 2005). Moreover, emotions are so closely linked to 

decision-making that they can also be an explanation of why political choice often violates Bayesian updating 

leading to low-quality decisions (Redlawsk, 2002). 

 

It has now become clear that emotional and cognitive processes are two interrelated, cooperative, inter-dependant 

constituents of our being, rather than separate, incompatible, independent elements. This combination of cognitive 

and emotional factors is an ingrained part of human behaviour and determines the course of our actions and 

development (Music, 2001).  The aim of this paper is to explore this idea from the perspective of computing systems 

that aspire to learn user activities and accommodate the environment to provide comfort, safety and energy 

efficiency. Our argument is that, if emotions participate in our decisions and actions, pervasive systems which 

functioning depends on accurate modelling of user behaviour may in principle be able to better learn and reproduce 

user activities using a combination of contextual and affective information. Furthermore, we claim that pervasive 

systems that make inferences based on contextual information alone may be at disadvantage of those that consider 

the emotional elements that seem connected with our actions.. 

 

 
1.1. Affective Computing  

 

The term affective computing was coined by Picard in the mid nineteen nineties (Picard, 1995) to describe computer 

methods that are related to, derived from or are deliberately designed to influence emotions. It encompasses two 

areas: emotion synthesis used to artificially imitate some of the physical or behavioural expressions associated with 

affective states, and emotion analysis which is often employed in decision making for interactive systems. Emotion 

synthesis is useful to develop ways to communicate with humans at a subjective level involving social participation, 
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for example using robots. Emotion analysis could be used to monitor the emotional state of a subject, taking actions 

based on the type of individual feeling being experienced.  

 

Numerous examples of the use of affective processing for various purposes exist. Some of these relate to the 

detection of emotional states by means of facial, speech or physiological features (Kim et al., 2002, Nasoz et al., 

2003, Picard et al., 2001, Avent et al., 1994, Rosenblum et al., 1996, Nicholson et al., 2000, Moriyama & Ozawa, 

1999, DeSilva & Ng, 2000, Yoshitomi et al., 2000). Others have instead developed computing systems that are 

capable of imitating, experiencing and/or reacting to people’s emotions (Garzon et al., 2002; Morishima, 2000, 

Cañamero & Fredslund, 2000, Aylett, 2004, Itoh et al., 2004, Suzuki et al., 1998, Mobahi & Ansari, 2003, Healey et 

al., 1998, Ark et al., 1999). Just a few have pointed at the issue of affective computing in the context of pervasive 

computing (Adelstein et al., 2005, Schultheis, 2007).  

 

1.2. The problem of behaviour modelling inside Smart Home 

 

The term intelligent inhabited environments (IIEs) or Smart Homes has been used to denote the physical 

embodiment of Ambient Intelligence (AmI), i.e., pervasive computing confined to habitations and buildings rather 

than to open spaces. Various research initiatives involving IIEs have been suggested in the past including the 

Intelligent Home (iHome) at Massachusetts University at Amherst, the Aware Home Research Initiative at Georgia 

Tech, the Neural Home at the University of Colorado, the PlaceLab developed as part of the MIT’s House_n project, 

and the HomeLab, an endeavour initiated by Philips. An important requirement in devising an IIE is to being able to 

build a model of users preferences based on continuous observation of their behaviour. The numerous intricacies of 

human behaviour means this requirement is not easily met and efforts have been directed at advancing the capacity 

of IIEs to faithfully represent user actions. Some notable approaches include the work of Eng et al. (2004), Barger et 

al. (2005), Heierman et al. (2004), Mozer et al.(1998), Amigoni et al. (2005), and Rutishauser et al. (2005). Notably, 

none of these studies has considered the instrumentation of affective computer systems as part of IIEs machinery. 

 

1.3. Towards the Integration of Affective and Pervasive Computing  
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The idea of being able to exhibit emotions through electronic means has captured the imagination of many 

researchers in various areas of computing including inhabited intelligent environments and robotics. In fact, the 

creation of artificial entities capable of displaying affect and interacting with users at an affective level represents 

fertile ground not only for computer science but also for medicine and psychology. Furthermore, many other social 

and technological fields such as sociology, politics, finance, aeronautics, and the automotive industry could benefit 

from the detection, utilisation, and eventual imitation of human feelings.  

 

In this context, the hypothesis being explored in this paper is that emotion detection would enhance an IIE 

preference model by devising a more detailed representation of the user’s motivations and their relationship with the 

environment. More specifically, the work presented here will be an attempt to answer a number of basic questions 

associated with emotion detection and its application to pervasive computing, such as: - Is emotion detection useful 

i.e. does it improve the way pervasive systems model user behaviour inside IIEs? Can emotion detection enhance 

adaptability and increase the agent’s ability to adjust the environment to reflect user’s habitual behaviour and 

thereby increase their comfort as measured by their satisfaction with the agent’s management of the iSpace (see 2.1 

below)?  Ancillary questions include how emotion detection information should be included in pervasive systems. 

Should it be based on the raw indication of physiological changes or on high-level (pre-processed) dimensions of 

emotion? Other questions related to this issue involve the emotional clasess being employed – positive, negative and 

neutral and whether these are sufficient to improve user comfort?  

 

In addressing these questions we have developed a personalised physiology-based affective model for the control of 

pervasive computing environments, in our case a smart home called the iSpace. In this respect, our work could be 

seen as an extension to Picard’s concept of affective computing where emotional models are seamlessly integrated 

with the environment with the intention of facilitating and improving human machine interactions. In our work, the 

affective agent learns, utilises and, in effect, replicates the relationships between affective states and the 

environment in a non intrusive manner using observations arising from continuous interaction with the user.  

 

Note, that whilst the integration of affective and pervasive computing addressed in this paper has been discussed in 

the IIE community for some time, this is the first time, to our knowledge, that experiments have been carried out 
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using an affective wearable with the intention of probing the value of emotions for adaptive systems employed in 

pervasive computing. 

 

2. Background 

 

A trial was carried out inside the iSpace, an experimental agent-controlled smart home, to assess the degree to which 

emotional data could contribute towards improving the modelling of the user’s behaviour. An enhanced 

representation of the way the user interacts with the environment could lead to better agent adaptability, reduced 

need for user intervention (manual operation of devices and actuators), more efficient use of resources and, 

ultimately increased comfort. 

 

 

 
2.1. The iDorm and iSpace Testbeds 

 

The Intelligent Dormitory and the iSpace developed by the Intelligent Inhabited Environment Group (IIEG) at the 

University of Essex are state-of-the-art testbeds for researching agent paradigms and pervasive computing 

methodologies. The rationale underpinning these facilities is to provide researchers the opportunity to explore new 

ways of users interacting with technology inside domestic environments. Underlying the iDorm and iSpace is an 

extensive sensor and actuator network that both provide the key functionalities together with capturing user 

behaviour thorough monitoring user activities. The network and middleware infrastructure is based on Transmission 

Control Protocol/ Internet Protocol (TCP/IP) and Universal Plug and Play (UPnP). These environments not only 

sense the behaviour of the user but also create rule based user profiles that are used to pre-emptively orchestrate the 

operation of sets of networked devices to provide an intelligent behaviour (e.g., based on the users habitual 

behaviour the iSpace can learn how to control the heaters in the most economic way or, in a care setting, might 

identify hazardous situations).  

 

2.2. Real-time Emotional Valence Detection 
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The first step towards the effective incorporation of affective and pervasive computing into IIEs lies in the accurate 

identification of the emotional state of the individual being analysed. In previous experiments, the combination of 

Autoassociative Neural Networks (AANNs) and sequential analysis namely the Sequential Probability Ratio Test 

(SPRT) (Fu, 1968), proved to be effective to detect changes in physiological signals associated with neutral, 

positive, and negative emotions (Leon, 2004a, 2007). This novel approach to detecting emotional valence is based 

on principles previously used to identify and compensate for sensor failures in nuclear plants and aircrafts and relies 

on the idea that positive and negative emotions could be identified by measuring the physiological differences they 

demonstrate against the neutral state. 

 

An AANN is a Back-propagated neural network with a special architecture designed to learn the identity function, 

i.e., outputs always approximate inputs (Kramer, 1992).  Thanks to their distinctive structure AANNs possess an 

intrinsic noise and gross error filtering capability related to the relationships they establish between input variables. 

In this context, data outliers caused by sensing error or data corruption are continuously eliminated at the output. In 

order to achieve this kind of robustness an AANN must be trained using exemplars that characterize the natural 

input-output behaviour of the phenomenon being modelled. 

 

The SPRT on the other side is a statistical method used to dynamically detect changes in the state of a given process 

using sequential sampling offering a balance between an optimal number of samples without increasing the 

probability of misrecognition (Fu, 1968).  The SPRT has been shown and it is still widely regarded to be an optimal 

classification technique to dynamically determine whether a given input pattern belongs to either of two categories 

(Cheng, 2002).  

 

 In our method, an AANN is trained to memorize the physiological concomitants of the neutral emotional state using 

information previously acquired from a number of individuals under controlled conditions resembling regular 

domestic activities and emotional changes. Five measures stemming from the autonomic system (heart rate (HR), 

skin resistance (SR), blood volume pressure (BVP), gradient of the skin resistance (GSR) and the speed of the 

combined changes in the all variables’ incoming data (Signals’ entropy, CS) ) were used in the present study (Figure 

1). 
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As a result of the training, changes in data patterns that result from non-neutral emotional states can be dynamically 

identified by continuously calculating data residuals, i.e. the numeric differences between the actual inputs and their 

AANN estimated values. In real-time operation, the mean of such residuals is very close to zero for data associated 

with the neutral state. When input sensor values drift because of physiological changes caused by a positive or 

negative emotional episode, the mean residual values significantly deviate from zero. Two SPRT modules are then 

utilized to statistically classify such variations into an emotional dimension using features extracted from training 

data linked to the targeted emotional dimensions (see Figure 2). In order to improve recognition rates signals used 

both in the classification of emotional status and valence are pre-selected by means of a calculation of the 

instantaneous Davies-Bouldin Index (DBI) (Davies & Bouldin, 1979) on residuals obtained during AANN training. 

Note, that while only heart rate (HR) and signal entropy (CS) are involved in emotional classification all input 

signals are needed in order for the AANN to establish inter-variable relationships associated with the emotional 

dimensions. 

 

The main advantage of the SPRT is that it requires a minimal number of measurements before being able to reach a 

conclusion about the two hypotheses being evaluated (neutral Vs non-neutral and positive Vs negative in this case) 

(Fu, 1968, Tartakovsky, 2001). Based on the continuous, accumulative evaluation of incoming residual values, the 

SPRT calculation stops whenever the likelihood ratio increases beyond an upper limit or decreases beyond a lower 

threshold. Such boundaries are established using the solution spaces associated with to two targeted classes under 

analysis (neutral and non-neutral, positive and negative) and the Probability Distribution Function (PDF) of the 

variable being analysed. In this way the SPRT modules differentiates between transitory physiological drifts and an 

actual emotion making the entire system robust to perturbations caused by non-emotional sensor behaviour.  The 

number of samples (time window) needed to identify an emotional change may vary but in previous studies this 

number was at around 9 samples in average (sampling rate 20Hz) (Leon, 2004a). See Appendix 1 for more 

information on the algorithms used in the calculation of the SPRT. 
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This technique to identify emotional changes has been shown suitable for user-independent operation and 

demonstrated robustness against bodily alterations produced by variable degrees of affect intensity and the effects of 

light to moderate physical exertion (Leon et al., 2005, 2007).  

 

Figure 1. AANN operation in the Signal Processing Module. 

 

Figure 2. System architecture including the Classification Module. 

 

2.3.  eXperimental Vital sign-based Emotional State Transmitter (XVEST) 

 

The XVEST is a wearable system capable of communicating the wearer’s emotional state in real time using wireless 

technology and a finger clip with built-in sensors available from Discovogue Inc. Physiological data is collected via 

the finger clip and sent to a desktop computer using a Bluetooth connection where signals are processed to identify 

neutral, positive, or negative emotions using the pre-trained system described above. A software wrapper is used to 

present the emotion detection system as a UPnP device, making it compatible with other iSpace systems and 
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allowing remote cross-platform access (see Figure 3). The XVEST mechanism makes possible reliable real-life 

experimentation. 

 

Figure 3. The XVEST. Physiological signals are acquired via the fingerclip and sent to a PC using the Bluetooth 

transmitter (left). Batteries are inside lower pockets.  
 

As a corollary to this overview of the XVEST and underlying methodologies we would like to mention that the 

Austrian psychologist Walter Mischel recognises two main techniques for the study of behaviour under real-life 

conditions: Verbal and non-verbal situational behaviour sampling and the measurement of physiological response 

concomitant to emotional reactions (Mischel, 1986). Thus, physiological emotion detection is not alien to the area of 

behaviour modelling. 

 

2.4.  Fuzzy Logic Agent 
 

In this study, we used a fuzzy agent previously shown to deliver enhanced performance when operating inside 

intelligent environments (Doctor, 2005) against other agent architectures: the Adaptive On-line Fuzzy Inference 

System Agent (AOFIS). This is an intelligent mechanism that is not only able to generate and learn rules for the 

Fuzzy Logic Controller (FLC) but also the membership functions (the algorithms needed to “fuzzify” real-world 

data) associated with the environmental variables. After an initial training phase in which the user interacts naturally 

with the environment, AOFIS’s FLC learns a descriptive model of the user’s behaviour based on the event-related 

conditional rule data that has been accumulated.  
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Once a preliminary behavioural model has been constructed during the training phase, AOFIS initiates automatic 

pre-emptive control of the environment on behalf of the user (the adaptation phase) using the knowledge previously 

acquired. More specifically, using the combination of input/output pairs and the available membership functions, 

AOFIS creates an initial set of rules containing all the possible combinations of variables and membership functions. 

In a subsequent step, these rules are refined and compacted by the elimination of those parts of the rules that are 

associated with low membership values. During the adaptation phase, the agent continually monitors the 

environment and “fires” the rule that most faithfully reflects the current conditions and ambient state inside the 

iSpace. 

 

Because AOFIS performance is based on observations over a limited period of the user's life (i.e. incomplete) the 

agent is designed to continually learn and adapt to new user actions. In order to avoid the incorporation of one-off 

activities, AOFIS behavioural model is not immediately altered a result of user actions. Instead, AOFIS adopts a 

principle called “learning inertia” in which rules are learnt only after they have re-occurred a number of times. Since 

each input/output pair can potentially result in one fuzzy rule created, the refined rule set is subjected to a process in 

which rules are merged together depending the similarities of their IF statement and also on the weighted value of 

their fuzzified components.  

 

In our experiments, the agent’s input vector comprised seven signals: the internal and external light levels, internal 

and external temperature, chair pressure, couch pressure and time measured as a continuous input on an hourly 

scale. Artefacts subjected to agent control included four variable intensity spot lights, a desk lamp, and two PC-

based applications namely a word processing and a media playing program.. In the present study three different 

implementations of the AOFIS agent were compared: (1) the original agent with no emotional information - NON-E, 

(2) an agent using an extra input involving Fuzzy singleton discretised emotional values (1-Neutral, 2-Positive, 3-

Negative) – DISCRETE-E, and 3) an agent with raw indication of emotional-based physiological changes added to 

the original input vector (three Gaussian Fuzzy sets stemming from the residual of the heart rate) - RAW-E.  An 

example of a NON-E rule generated by AOFIS is (VLOW means very low): 

 

IF   
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InternalLightLevel is LOW and ExternalLightLevel is HIGH and 

InternalTemperature is VLOW and ExternalTemperature is LOW and ChairPressure is 

OFF and BedPressure is OFF and Hour is Morning   

THEN   

ACTION_Light1_value is VLOW and ACTION_Light2_value is VLOW and 

ACTION_DeskLight_state is OFF and ACTION_MSWord_state is STOPPED and 

ACTION_MSMediaPlayer_state is STOPPED   

 

Note that single actions reflect states and it is their accumulation over time which reflects behaviour. Several rules 

produced consecutively can be grouped to represent an action.  In this paper we are not so much concerned with the 

internal algorithms governing agents operation, that is described elsewhere, rather we are interested in answering the 

more generic hypothesis of whether emotional data can improve the performance of agents managing pervasive 

computing systems, such as smart homes. Thus, for readers interested in understand the detailed workings of our 

environment control agent we refer them to our previous published work (Doctor, 2005). 

 

It is worth mentioning at this point that the agent’s functioning is founded on two main principles: 1) “the user is the 

king” and can at any time effect changes on the ambient systems, and 2) the user should be oblivious to agent 

presence. In this context, realisation of agent/user interactions is twofold. Firstly by the agent’s automatic control of 

the user’s surroundings using knowledge about previously shown behaviour, e.g. switching the TV on automatically 

when the user is sitting in the couch; and secondly by the user operating the devices causing the agent to adapt its 

behavioural modelling, e.g. the user manually turning the TV off in the previous example.   

 

3. Pre-Experimental Considerations 

 

3.1.  Continuous vs. Discretised 
 

There are three main differences in terms of the way the Raw Fuzzified Emotional (RAW-E) and the Discretised 

Emotional (DISCRETE-E) agents operate: 1) The number of physiological inputs); 2) How emotional information is 

processed; and 3) How they respond to changes in physiological data. 

 



Published in the Special Issue of Pervasive and Mobile Computing Journal on ``Human Behaviour in 
Ubiquitous Environments”,  Elsevier B.V, Volume 6, Issue 4, 2010. 

© Essex University 2009 

13 

The first difference lies in the number of bodily signals employed by the agents to gauge emotional valence. 

DISCRETE-E categorises emotions using residuals from two signals: Heart rate is used to identify a change from 

the neutral emotional status and valence is subsequently measured by means of the signal’s entropy (a 

characterisation of the signals temporal dynamics; i.e. how it changes over time). The reason for this two-phased 

operation is related to the implementation of the SPRT which permits only two hypotheses to be analysed (see 

Figure 2 above).  

 

RAW-E, on the other hand, uses the output of the Signal Processing Module (HR residual) to measure changes in 

the user’s physiological state and relates such changes to the three emotional clasess in a single pass (Figure 1).  For 

RAW-E such emotional clasess are given by the mean and standard deviation value of HR residuals calculated from 

three training datasets comprising data for neutral, positive and negative emotions. A DBI-based feature selection 

was also used on this occasion to identify HR as the attribute best distinguishing the three emotional classes. RAW-

E’s use of parameters directly estimated from raw physiological data to classify emotions (the HR in particular) is 

akin to what researchers in psychology have done in the past, e.g. Ekman et al., (1983), Sinha et al. (1992). 

However, in contrast to these traditional approaches, the transformed solution space provided by the AANN offers 

enhanced inter-cluster spread of physiological data thereby improving class separation and further characterizing 

emotional classes (Leon et al. 2004b), a behaviour also preserved in HR residuals. It should be noted that although 

the agents’ internal operation, as well as the number of physiological inputs, differ from one another, the output for 

both cases provides a valence-based classification of the user’s affective state.  

 

The second difference is founded on the membership functions employed to fuzzify physiological data. While 

RAW-E utilises Gaussian membership functions, DISCRETE-E employs singleton models which, in reality, 

represent rigid crisp sets. The reason for this lies in the type of emotional information DISCRETE-E and RAW-E 

can handle. On one side, the combined outputs of DISCRETE-E’s SPRT modules only permit four possible discrete 

values: 1 for neutral, 2 for positive, 3 for negative and 0 if a change that has been detected but no decision had been 

made at the moment of sampling. On the other side, RAW-E operates on the continuous non-linear value of the HR 

residual. As previously mentioned, the centres of RAW-E’s three Gaussian fuzzy sets are calculated based on the 

mean residual value of each of three emotional classes calculated from the data employed for AANN training. 
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Moreover, because Gaussian fuzzification permits different degrees of membership, RAW-E allows variable values 

of emotional valence to be measured (see Figure 4). For some emotions stronger body reactions might be equivalent 

to measuring varying affect intensity. For instance Dolf Zillmann  has suggested that when the body is in a state of 

physical arousal, e.g. due to exercise or a lingering past emotional episode the expression of an emotion, such as 

anger or anxiety, is greatly intensified in the face of new triggering stimuli (Berkowitz, 1993).  

 

The last difference is implicit to the way physiological data is processed. RAW-E has been designed to analyse the 

value of the “residual” calculated from the AANN real-time estimation of the heart rate. This value is a raw, 

immediate indication of how emotional-based physiological conditions are drifting from the neutral emotional state. 

It is immediate because as soon as the value of the residual of the HR enters into the solution space of the fuzzy 

membership function, it will indicate that an emotion has taken place.  DISCRETE-E´s SPRT, on the other hand, 

employs a more stable mechanism that would only report a discrete emotional change after analysing the residuals 

of physiological signals from various sequential samples. In order words DISCRETE-E would not classify a 

transient sensor variation as an emotional change unless such variation lasts for a given period of time and correlates 

to an emotion in the combined analysis of all input signals. This is particularly useful for the study of noisy 

physiological inputs such as the BVP (especially under ambulatory conditions) since it is highly unlikely that non-

emotional sensor behaviour will simultaneously produce an effect on all input signals that will be equivalent to the 

physiological response associated with an emotional change. 
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Figure 4. Membership functions for a) RAW-E and b) DISCRETE-E. 

  

3.2. Intensive Small-sample Longitudinal Studies 
 

There is an argument against longitudinal studies related to the fact that experimental subjects are often chosen in 

terms of their cooperativeness and availability which makes them unrepresentative and raises doubts about the 

generalisation of experimental results. However, “intensive small-sample” longitudinal studies, such as the one 

presented here, are sufficiently adequate in many areas including those associated with personal traits and 

physiological functions. The American academic Colin B. Hindley said about small-sample, intensive longitudinal 

studies:  

“The ultimate aim is naturally to produce generalizable findings, but reliance is placed not so much on 

having a strictly representative sample, which may be impossible to attain, as on the possibility of 

replicating important findings. This is the normal procedure in scientific inquiry, in which it is by no means 

assumed that any one investigation will produce conclusive matters”.  
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Figure 5. Experiments inside the iSpace. 

 

This study accords with such scientific aims. The experiment presented here will involve methods and produce 

initial evidence to test our hypothesis about the importance of emotional information in the adaptability of pervasive 

systems (as demonstrated by enhanced behavioural modelling). Consequently, the duration of our experiment and 

the number of subjects involved is directly related to the time needed to collect the numbers of samples required to 

show the effect we are investigating. 

 

4. Method 

 

A male participant aged 27 lived inside the iSpace for 8 days wearing the XVEST (see Figure 3). The XVEST’s 

fingerclip was firmly attached to the ring finger in the non-dominant hand by means of an elastic strap and, 

according to his account, did not impede the individual’s normal activities nor in any manner impaired his abilities 

to work on a computer. The first two days, the training phase, were used to collect ambience and emotional data to 

train the three fuzzy agents. Do not confuse this with training of the emotion detection system which is done offline. 

In the remaining 6 days, the adaptation phase, the participant performed a range of activities inside the iSpace 

comparable to those commonly undertaken in everyday life e.g., studying, eating, resting, exercising, etc. A crucial 

element in the present study is that the participant was asked to behave as naturally as possible and not to alter his 

normal behaviour or his response to unforeseen circumstances such as unexpected changes in the weather or his 

physical state e.g., in the event of feeling unwell. It is worth noting that the use of a single subject is well 

documented in affective computing where experimental design sometimes relies on several datasets produced from 

the same individual (Picard, 2001; Kurozumi et al., 1999; Ebine et al., 2000). 
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In order for the comparison to be as accurate as possible, the three fuzzy agents were exposed to similar temperature 

and light conditions over the whole period of experimentation. Because of the restrictions imposed by the use of the 

actuators (they could only be operated by one agent at a time) parallel operation of the agents was not possible. 

Therefore, we decided that each agent would be used at a pseudo randomly selected time slot on the same day for 

the 6-day adaptation phase (the learning phase was the same for all the agents). In order to maximise data 

acquisition and not excessively restrain participant’s regular activities, the various time slots were chosen based on 

the times of the day in which more activity is likely to take place under normal conditions i.e., Morning or Breakfast 

time (8-10 AM), Midday or Lunch time (1-3 PM), and Evening or Dinner time (6-8:20 PM). The random time slot 

assignation was made with the condition that all the agents should be operated for the same amount of time. Thus, 

each agent was operated twice each morning, afternoon  and evening yielding to sessions Morning1 and Morning2 

of 7200s each, Afternoon1 and Afternoon2 of 7200s each, and Evening1 and Evening2 of 8400s each (Table 1). All 

sessions were accompanied by daily post-experimental debriefings in which the participant was interviewed and 

answered questions about the day’s experiences. Note that on the evening of the fourth day (DISCRETE-E’s 

Evening1) the participant felt unwell and remained lying on the couch for most of that session while DISCRETE-E 

kept controlling the room (performance results will highlight this issue when appropriate). Feeling sick is obviously 

a situation that might happen in any person’s regular living and thus its occurrence is useful for improving the agents 

behavioural model. In fact, because this is a situation considerably different from those found during training it 

would be interesting to see how DISCRETE-E coped with such abnormality.  

 

 

 Agent Type 

Day/Time Slot NON-E DISCRETE-E RAW-E 

8-10 AM Morning 1   

1-3 PM  Afternoon1  

Day 1 

6-8:20 PM   Evening1 

8-10 AM   Morning1 

1-3 PM  Afternoon2  

Day 2 

6-8:20 PM Evening 1   

8-10 AM  Morning1  

1-3 PM Afternoon1   

Day 3 

6-8:20 PM   Evening2 

8-10 AM   Morning2 

1-3 PM Afternoon2   

Day 4 

6-8:20 PM  Evening1  

8-10 AM  Morning2  

1-3 PM   Afternoon1 

Day 5 

6-8:20 PM Evening2   
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8-10 AM Morning2   

1-3 PM   Afternoon2 

Day 6 

6-8:20 PM  Evening2  

 

Table 1. Assignation of experimental time slots. 

 

5. Results 

 

5.1.  Emotional Activity during Training 

 

The routine undertaken by the subject inside the iSpace during agent training remained very much the same for the 

entire duration of the experiment. Daily routine normally commenced around 8.00 AM with the participant reading 

and responding to e-mail messages for a maximum of an hour and then moving on to perform some work-related 

activities including typing in documents and reading papers off the screen. This was done until the end of the 

morning session (10 AM) and continued for the totality of the afternoon session (1-3PM). The evening sessions 

usually had the user involved in leisure activities such as watching TV and playing videogames. According to 

DISCRETE-E results, as the day progressed and moved from less to more highly emotional charged activities (in 

accordance with the user’s own account of the emotional content associated with each different activity, e.g., 

playing videogames was more emotionally charged than reading emails) the number of emotional changes (neutral-

to-positive and positive-to-neutral) detected by the system also increased (see Table 2).   

 

Table 2. Total number of emotional changes during the training phase as detected by DISCRETE-E. 

 

As mentioned earlier the initial emotional mapping is important since this will be used to construct the preliminary 

rule base subsequently refined and adjusted in the adaptation phase. The emotional information employed in 

producing such preliminary rule set is shown in Figure 6.  
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Figure 6. Emotional response during the two-day training phase expressed as a) DISCRETE-E’s emotional classes 

and b) RAW-E’s physiological data (AANN’s HR residual). 

 
Figure 6a illustrates the behaviour of the SPRT-based valence values on which DISCRETE-E’s functioning was 

based. It is notable that for DISCRETE-E emotions remained in the neutral-positive valence values. This was 

corroborated by participant’s self-reports which demonstrated that negative emotions did not occurred at anytime 

during the entire duration of the experiment. This is also in line with studies that reported that measured negative 

affect is infrequent and mild (Kahneman, 2004). Figure 6b on the other hand depicts HR residuals used in RAW-E’s 

fuzzification as they varied across training sessions. It is evident that this measure suffers from sudden, large 

variations that seem to be the result of sensor disturbances (probably arising from body movement and/or sensor 

displacement) rather than an indication of emotional changes (it is difficult to imagine an emotional shift causing an 

abrupt drop of  35 bpm in HR). This does not mean that all residuals stem from noise but it is clear that RAW-E´s 

emotional input is a lot more erratic and unpredictable than the one used by DISCRETE-E. Nonetheless, there 
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appear to be similarities in the operation of the two emotional agents as indicated by a high negative correlation (-

0.876) between residuals and valences. 

 

5.2. Initial Rule Base produced after Training 

 

It was found that the way rules were constructed differed between the emotional and non-emotional agent. This 

difference indicated that emotional detection altered the way agents perceived actions inside the iSpace. Table 3 

shows a group of rules created by the NON-E and DISCRETE-E from information collected around the same time 

in the morning of Day 1. It is worth clarifying that rules are produced sequentially in relation to an event that is 

taking place inside the iSpace. As such, the time passed between the creation of one rule and the next could take 

seconds, minutes or even hours depending on the user actions. That is, the user may in theory remain seated for 

hours without affecting any of the devices in his immediate surrounding or changes occurring in the environment. It 

is until a change in this scenario occurs that the agent will generate a new rule. 
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  NON-E DISCRETE-E 

  Rule A Rule B Rule A Rule B Rule C Rule D 

IF InternalLightLevel VHIGH LOW VHIGH MEDIUM LOW  LOW 

 ExternalLightLevel VHIGH VHIGH VHIGH VHIGH VHIGH  VHIGH 

 InternalTemperature LOW LOW LOW LOW LOW  LOW 

 ExternalTemperature MEDIUM VLOW MEDIUM LOW LOW VLOW 

 ChairPressure ON OFF ON ON ON OFF 

 CouchPressure OFF OFF OFF OFF OFF OFF 

 Hour MORN MORN MORN MORN MORN  MORN 

 Emotion_Discrete - - POSITIVE NEUTRAL NEUTRAL  NEUTRAL 

THEN        

 Light1_value VLOW HIGH VLOW VLOW VLOW HIGH 

 Light2_value VLOW VLOW VLOW VLOW VLOW VLOW 

 DeskLight_state OFF ON OFF OFF ON  ON 

 MSWord_state RUNNING RUNNING RUNNING STOPPED RUNNING  RUNNING 

 MSMediaPlayer_state STOPPED STOPPED STOPPED RUNNING STOPPED STOPPED 

 

Table 3. Comparison of rules created by NON-E and DISCRETE-E in the Morning of Day 1. 

 

Considering rule A in both the NON-E and DISCRETE-E cases, it is apparent that environmental conditions (the 

rule antecedents) and also the settings of the actuators (the rule consequents) are exactly the same, the only 

difference being the extra emotional input in the case of DISCRETE-E. However, the rules that follow differ 

radically as a result of the DISCRETE-E picking up the emotional changes that occurred that morning. In 

DISCRETE-E’s rule B it can be observed that a change in the emotional state of the participant was also 

accompanied by a specific action (activation of the Media Player and deactivation of the MSWord application). This 

particular action that appears to be uninfluenced by other elements could not have been discovered by NON-E as it 

was diagnosed only because of its correlation with an alteration of the subject’s emotional state. NON-E’s Rule B 

seems to be associated with a later state where the internal light level is moved from VeryHigh (VHIGH) to LOW. 

DISCRETE-E’s rules C and D also seem to indicate the gradual change in lighting conditions.  
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As mentioned earlier, agent rules are generated based on the user’s behaviour as conveyed by his previous actions 

and will be used to assist the user whenever similar situations arise. The fact that the chair pressure sensor is off 

while MSWord is switched back on (see Rule D) does not imply that the agent is operating autonomously in an 

erroneous way but rather that the agent is trying to respond to current events taking place inside the iSpace. Note 

that the apparent inconsistency of MSWord re-starting while the user is separated from the chair is accompanied by 

another event: the activation of the desk lamp. Thus there appears to be a relationship between working on the 

computer and using the desk lamp that might be complementary to the chair/MSWord. This behavioural clue is, 

however, an act separate from the aforementioned emotional conduct. 

 

We now consider another example with rules that were created in the same time frame during the evening sessions 

of Day 1. 

 

  NON-E DISCRETE-E 

  Rule Ab Rule Bb Rule Ab Rule Bb Rule Cb 

IF InternalLightLevel VLOW VLOW VLOW VLOW VLOW 

 ExternalLightLevel VLOW VLOW VLOW VLOW VLOW 

 InternalTemperature LOW LOW LOW LOW LOW 

 ExternalTemperature MEDIUM MEDIUM MEDIUM MEDIUM MEDIUM 

 ChairPressure OFF OFF OFF OFF OFF 

 CouchPressure ON OFF ON ON OFF 

 Hour NIGHT NIGHT NIGHT NIGHT NIGHT 

 Emotion_Discrete - - POSITIVE NEUTRAL NEUTRAL 

THEN       

 Light1_value VHIGH VHIGH VHIGH VHIGH VHIGH 

 Light2_value VLOW VLOW VLOW VLOW VLOW 

 DeskLight_state OFF OFF OFF OFF OFF 

 MSWord_state STOPPED STOPPED STOPPED STOPPED STOPPED 

 MSMediaPlayer_state STOPPED STOPPED STOPPED STOPPED STOPPED 

 

Table 4. Comparison of rules created by NON-E and DISCRETE-E in the Evening of Day 1. 

 



Published in the Special Issue of Pervasive and Mobile Computing Journal on ``Human Behaviour in 
Ubiquitous Environments”,  Elsevier B.V, Volume 6, Issue 4, 2010. 

© Essex University 2009 

23 

Table 4 shows that NON-E’s rules Ab and Bb and DISCRETE-E’s rules Ab and Cb are almost identical (apart of 

course from the DISCRETE-E’s extra input). However in between rules Ab and Cb, DISCRETE-E created another 

rule that reflected an emotional change. This emotional alteration (from positive to neutral) embedded in rule Bb 

seemed to have preceded the change in the couch pressure sensor that was later detected by the two agents. This 

extra rule created as a consequence of an emotional change provides additional information about the user behaviour 

and could therefore be useful to improve the identification and modelling of users typical actions. Although it is 

reasonable to assume that any additional variable offered to the agent’s input array would provide finer 

discrimination of user’s behaviour, the subtle behavioural clue represented in DISCRETE-E rules could have only 

been found by the inclusion of the emotional information, something that other type of sensors cannot provide. The 

potential overfitting effect of this extra variable in both RAW-E and DISCRETE-E´s input vector will be discussed 

in Section 6. 

 

5.3.  Performance Analysis  

 

Because the agents were trained during two days only and, thus, were exposed to a limited amount of activities, a 

number of changes to the initial rule base are expected. However, since user behaviour remained relatively static 

over the 8 experimentation days, we expected to see rules being created rather than being changed, i.e. those 

activities already modelled by the agent should not be subjected to many modifications, should the agent have 

performed as anticipated. With this rationale in mind, agents’ performance was evaluated according to two key 

categories: Interaction Model and User Comfort. These two parameters are related to the agent’s direct interaction 

with the user and provide a clear indication of how well a particular agent succeeded in accommodating and/or 

adapting to user behaviour  

 

5.3.1. Interaction Model 

 

The interaction model is a depiction of how effective an agent was in modelling user activities inside the iSpace 

after the two training days and how well it adjusted the environment to the user’s preferences during the 6-day 

adaptation period. This is gauged by calculating the number of training-generated rules that were modified, the 
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number of rules that needed to be created and adapted during the adaptation phase, and the total number of online 

adaptations required over time.   

 

Learning inertia means that rules are altered only if a situation the agent had previously captured in a given way 

demonstrates reoccurring changes. In this context, rule adaptations are made in response to two distinct types of 

events influencing only specific parts of the descriptive model learnt by the agent:  1) an apparent change in user 

acts that does not involve direct device manipulation, or 2) the user manually overriding agent control actions by 

operating devices such as lights or computer applications. Under the first scenario rule adjustments are the 

consequence of inconsistencies between the behaviour model the agent has previously created and current user 

actions. Such inconsistencies could be attributed to the agent’s failure to represent some events faithfully or gradual, 

slight changes in user conduct.  On the other hand, rule adaptations that derive from the user manually intervening to 

change the ambience are paired with poor agent decisions that result in user discomfort. The reason for this is that a 

rule altered this way indicates that the user has reiteratively requested changes in the environment that the agent has 

failed to carry out in a proper manner. At the same time, because of the aforementioned learning inertia effect, user 

interventions done to rectify agent operation will not cause an immediate change on the agents’ rule base unless 

such interventions repeat a number of times. This condition would consequently delay an appropriate response from 

the agent and further exacerbate user dissatisfaction, an undesirable side effect of AOFIS learning. So, even when 

adaptations are intrinsic to life-long learning, too many changes to the rule base especially in a short period of time 

are a symptom of ineffective behaviour modelling.  

 

In contrast, numerous unused rules are not detrimental for user/agent interaction but they do not possess useful 

information about lasting behaviour and as such they will eventually be discarded by AOFIS learning inertia. They 

might nonetheless have an impact on the agent’s computational performance since they uselessly enlarge the rule 

base thereby hindering dynamic operation. So, in terms of the interaction model, better agent performance and 

behaviour modelling is represented by rules that are created, used and not subjected to frequent adaptations. 
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5.3.1.1 Adaptation of original rules 

The number of rules produced during training that later suffered modifications relates to the efficacy of the agents to 

construct a rule base that would best represent user actions over limited period of time. Because the three agents 

used the same training data, the greater the number of adaptations to this initial rule base the poorer the preliminary 

modelling.  Table 5 shows that in terms of the suitability of the initial FLC model, the agent with raw fuzzified 

emotional data (RAW-E) displayed greater accuracy since only 5.6% of the initial rules were adapted during 

training. In contrast, 9.5% and 17.4% of the initial rules generated by DISCRETE-E and the non-emotional agent 

(NON-E) respectively were modified. Claims about the advantages of RAW-E’s initial model are also supported by 

the greater number of initial rules that were fired: 40.3% against 39.1% of DISCRETE-E and 27.2% of NON-E. 

 

Category NON-E DISCRETE-E RAW-E 

Total Number of rules 539 [423] 768 [588] 1345 [949] 

Number of initial rules (Training phase) 143 189 211 

Number of initial rules adapted during adaptation phase 25 18 12  

 % of Initial 17.4 9.5 5.6 

Number of initial rules that fired 39 74 85  

 % of Initial 27.2 39.1 40.3 

 

Table 5. Total and initial (before adaptation) rule base and number of fired and adapted rules. Numbers in brackets 

show results after data from session Evening1 has been removed. 

 

5.3.1.2 Adaptation of new rules  

Different to adapted rules, new rules are created as the result of the agent’s continuous response to unseen events 

involving user actions, ambience settings and environmental conditions for which no previous record exist. These 

newly created rules should complement the existing rule base and enhance agent operation. Adaptations done on a 

large number of them demonstrate the agents difficulties in reproducing user actions, a disadvantageous “create-

modify” dynamic. 
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Category NON-E DISCRETE-E RAW-E 

Number of new rules generated during adaptation  phase 396 [280] 579 [399] 1134 [738] 

Number of new rules adapted during adaptation phase 162 [136]  

 

20[0]  

 

633 [237]   

 % of New 40.9 [48.5] 

 

3.4 [0]  

 

55.8 [32.1]  

Number of new rules that fired 350 [238] 535 [361] 940 [576]  

 % of New 88.3 [85] 92.4 [90.4] 82.8 [78] 

 

Table 6. Rule base used during the adaptation phase showing number of fired and adapted rules. Numbers in 

brackets show results after data from session Evening1 has been removed. 

 

The quality of the rules generated during the 6-day adaptation phase seems to have clearly favoured DISCRETE-E 

since only 3.4% of these were altered as opposed to 40.9% for NON-E and 55.8 % for RAW-E (Table 6). The 

accuracy of the new rules was also superior for DISCRETE-E since 92.4% of these were actually utilised compared 

to 88.3% for NON-E and 82.8% for RAW-E. The higher number of fired rules suggests that DISCRETE-E was able 

to adequately identify the subtleties in the user’s behaviour and adjust the model accordingly.  In general terms, the 

interaction model generated by DISCRETE-E seems to possess improved overall consistency and accuracy in 

comparison to the other two since only 4.9% of its rules needed any adaptation while 79.2% of them were fired 

against 34.6% and 72.1% of NON-E and 47.9% and 76.2% for RAW-E respectively. Note that if we discard data for 

Evening1 the advantages of DISCRETE-E seem more dramatic especially in relation to NON-E. 

 

5.3.1.2 Adaptations over time   

Because AOFIS performs life-long learning it is expected that after the initial generation of rules, the number of 

adaptation will progressively diminish as the agent’s operation continues over time. In so doing the agent generation 

of new rules reduces to a stable low indicating that the rule base is generally adequate for modelling the behaviour 

of the user. The number of online adaptations thus measures the success of the agents in capturing user behaviour 
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and adapting to his/her preferences.  Thus, in a well designed system, the number of adaptation should decrease over 

time. 

Number of Online Adaptations 
Session 

NON-E DISCRETE-E RAW-E 

Morning1 88 12 120 

Morning2 0 0 0 

Afternoon1 0 8 0 

Afternoon2 0 0 108 

Evening1 26  0  396  

Evening2 48   0 9 

Total 162  20 633  

 

Table 7. Number of online adaptations per session. 

 

As can be seen from Table 7, in terms of rule adaptations, the DISCRETE-E did not need to make any further 

modifications to its interaction model after the first session and created fewer rules than NON-E and RAW-E. The 

NON-E on the other hand, performed a much better modelling in the afternoon sessions with no adaptations made or 

new rules created in either of the two sessions. The DISCRETE-E was in general a better agent with the least 

adaptations and the only one which, as expected, did not make more adaptations from one session to the other (see 

NON-E’s Evening sessions and RAW-E’s afternoon sessions).  

 

5.3.2. User Comfort 

 

Enhanced user comfort is one of the most important objectives of researchers in the area of IIE agents. User comfort 

could be evaluated by analysing the number of times the user had to interact with the system in order to adjust the 

settings inside the iSpace. It has been mentioned that manual adjustments mean that the agent failed to configure the 

environment to what the user expected under comparable internal and external conditions. Experiments indicated the 

superiority of the DISCRETE-E with only 10 user interventions for the entire 6 sessions (RAW-E and NON-E were 

overridden 21 times, an increase of 110 % in both cases) (see Table 8). If we discard data from the evening in which 

the user feel ill, the differences are reduced but still significant (DISCRETE-E, 10, NON-E 18, RAW-E, 18). If we 
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compare the agents in a session-by-session basis the DISCRETE-E performed better than the NON-E and the RAW-

E in 4 out of 6 (or 3 out of 5) instances 

Number of  User Interventions 
Session 

NON-E DISCRETE-E RAW-E 

Morning1 4 1 2 

Morning2 1 1 5 

Afternoon1 1 6 2 

Afternoon2 3 2 5 

Evening1 3 0 3 

Evening2 9 0 4 

Total 21 10 21 

 

.Table 8. Number of user interventions on 6 days of experimentation. 

 

5.3.3. Overall Performance 

Results in Table 9 demonstrate a clear advantage of DISCRETE-E in the categories related to the efficiency and 

quality of the rules encompassed in the Fuzzy Controller (Interaction Model) and also in the way user needs were 

satisfied. 

 

 Overall Performance 

Category NON-E DISCRETE-E RAW-E 

Interaction Model  

(% of Adapted rules from Total) 
34.6 4.9 47.9 

Online Adaptations 162 20 633 

User Comfort  

(No. of user interventions) 
21 10 21 

 

Table 9. Category winners. 

 

6. Discussion 

 

The fewer number of times the user had to override agent’s decisions in the overall results, along with a diminished 

need for rule alteration, suggests that the DISCRETE-E was able to establish a better representation of how the user 
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behaved inside the iSpace. The reason for this could be that, just as the user responds to changes in the environment, 

emotions prompt individuals to act according to stimuli stemming from the various activities undertaken inside an 

intelligent inhabited environment. The reactions to such stimuli are not easily recorded by a non-emotional agent 

since they depend on the changes that occur in the user’s own psychological and physical perception of the 

surroundings. Such reactions provide crucial emotional information that offers a better representation of the various 

components that motivate and influence user actions (see Tables 3 and 4 above). Moreover, the lack of interaction at 

an affective level inhibits the symbiotic relationship between a non-emotional agent and the user and neglects 

important information about why and when certain events usually occur. 

 

In other words, actions and decisions rooted on people’s emotions appear to be more likely to be captured by an 

agent sensing emotional change than one which is not aware of emotional changes such as the NON-E. As we have 

explained earlier, a consequence of our rule formation mechanism is that it enables the DISCRETE-E to identify the 

moment when an emotional change takes place thereby revealing user actions that otherwise would have remained 

undetected (for example, the change in emotions that preceded the shutdown of the word processor application). 

 

6.1.  Emotional vs. Non-Emotional 

 

In terms of user satisfaction, DISCRETE-E was much better than the NON-E with 11 fewer interventions by the 

user. This advantage alone signifies the success of the experiments in terms of finding an agent that improves on 

another one. One might suggest that the DISCRETE-E performed better than the NON-E because of its increased 

granularity thanks to a greater number of inputs which potentially provides a more detailed depiction of user 

activities. However, the other agent with the same granularity attributes as the DISCRETE-E - the RAW-E - 

performed equally poorly as the NON-E in terms of the need for user intervention. Thus a greater number of sensors 

means more granularity and more rules but that does not necessarily imply better user comfort.  

 

To elaborate on this last point, a useful insight can be gained by temporally ignoring the fact that DISCRETE-E 

contained emotional information. In pervasive computing we are always looking for methods to enhance the way 

intelligent agents operate. In this regard, the selection of the inputs on which such agents base their decisions is 

crucial. This task however is not easy: Some sensors would indeed improve agent performance but some others 
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could in fact have the opposite effect and disturb operation by introducing noise, increasing operation time, and 

complicating decision making. Thus, the fact that we were able to find a sensed input (that from DISCRETE-E´s) 

that improved the levels of user satisfaction provided by an already tried and tested agent is encouraging.  

 
6.2. Continuous vs. Discretised 
 

Based on the performance results shown in Tables 5-8, it is plausible to suggest that, if an increase in the number of 

input sensors appears to be associated with more rules, it does not seem to have a direct effect on whether the agent 

is capable of learning from the user. For example, if only the two emotional agents with the same number of input 

signals were compared, the superiority of the DISCRETE-E in user comfort and overall interaction model (rule 

adaptations) is still manifest thus indicating that not only the quantity but also the quality of the information 

determines the agent’s performance. 

 

But, why did the RAW-E not perform as well as the DISCRETE-E if both agents had the extra emotional 

information with RAW-E’s physiological and the DISCRETE-E’s emotional changes having a strong correlation 

indicating similar behaviour (see Figure 4)? Based on the results from the initial model the effect of variability in 

AANN residual on RAW-E performance can be discarded as a viable reason.  The rationale for this lies in the fact 

that the interpolation provided by the RAW-E’s Gaussian fuzzy sets inherently implies a filtering in the input signals 

since close sensor or residual values would produce similar rules. Furthermore, all the agents are designed to 

eliminate duplicated or inconsistent rules and thus many rules that were generated as a consequence of the noise are 

continuously discarded. 

 

The answer to the above question however could lie in another element associated with AANN residuals, extra 

granularity (remember that Gaussian fuzzy sets would fuzzify different levels of physical arousal). RAW-E was the 

agent that created the greater number of rules (1345) of the three available models (see Table 5). RAW-E’s capacity 

for rule creation seemed to work to developing an enhanced initial behavioural model but did not perform as well 

during the adaptation phase since many rules did not seem to reflect durable changes with only 76% actually being 

utilised. Nonetheless the number of fired rules did not seem to add much to the comparison between the agents since 

differences are not statistically significant. However the extra granularity achieved by RAW-E’s through the use of 
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AANN residuals could have in reality been a destabilizing factor rather than making control more accurate.  More 

specifically HR mean residual values located in the intrinsic overlapping of Gaussian fuzzification could have 

blurred the distinction between situations in which rules applicable to a given activity were similar but not equal in 

terms of emotional content. That is, two comparable actions could have been respectively associated with a positive 

and a negative emotion because residuals were in the overlapping zone. In fact, fuzzified residual values close to 

emotions’ HR thresholds are difficult to differentiate in terms of whether they stem from motion, sensor corruption 

or an actual emotional state (see Figure 6b).  

 

In other words, very close HR values could have been associated with inexistent or contrasting emotional classes 

while all remaining input parameters showed similar values. This ambiguity in the information about a particular 

activity could have led to erroneous RAW-E actions during the 6-day adaptation phase especially at the moment of 

deciding which rules to use. This phenomenon consequently promoted the creation of new rules to compensate for 

those that were ineffective.  DISCRETE-E´s use of singleton fuzzy sets is a straightforward solution for this 

dilemma since neighbouring values in this kind of fuzzification is non-existent and thus leads to more specific, 

accurate rules.  

 

Although RAW-E’s contrasting performance in the training and adaptation phases might seem to be a typical case 

of data overfitting, various elements depicted in Tables 5 through 7 rule out this hypothesis.  First of all, overfitting 

might be an explanation for RAW-E generating too many rules but not to its relative failure in the user comfort 

analysis. For instance, NON-E had fewer inputs and yet it struggled to respond to the user preferences. This means 

that despite the RAW-E having a larger number of rules (produced during the training and adaptation phases), it 

failed to create an accurate model of user actions and did not produce as good a behavioural model as the 

DISCRETE-E. Second, AOFIS agents are not fixed inference models. They perform continuous online adaptations 

by replacing, modifying or creating new rules that in theory would improve the initial behavioural model. Thus, we 

would expect a greater number of user interventions during RAW-E´s first sessions which would gradually reduce 

as the agent makes adjustments to the initial model and discards flawed rules. This however was not the case and 

RAW-E was overridden more often in the second sessions (see Table 8). This is also an indication that enhanced 
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“resolution” or granularity did not succeed in enabling RAW-E´s to come up with a better modelling in the long 

term.  

 

In summary, we could then develop two possible explanations for DISCRETE-E’s superiority. Based on our 

experimental results, it could be argued that the link between user actions and emotional states is better modelled by 

the agents using high-level emotional labels (positive, negative and neutral) rather than raw indications of 

physiological changes. That is, user actions are better described and interpreted in terms of accepted emotional 

labels than through variable, mixed measures of emotional changes derived from raw physical state.  

 

On the other hand, the modest performance of RAW-E particularly in the category of user comfort reveals that the 

sole addition of sensing information, the user’s physiological state in this case, into the agent’s input vector does not 

guarantee improved modelling of user’s activities. It is the inclusion of meaningful emotional data that provides a 

valuable insight not only into the current activities but also into the relationship between ambience conditions and 

the user’s state of mind.  

 

7. Conclusions 

 

The experimental results suggest that the utilisation of emotional data can improve the performance of Smart Home 

agents, particularly in those categories involving the modelling of user activities and comfort. Emotions provide the 

agents with a more accurate model of why and when the user undertakes certain activities at certain times. It is 

apparent that by knowing the affective motivations that accompany specific actions it is possible to endow software 

agents with a more accurate representation of the events taking place inside an intelligent inhabited environment.  

 

In summary, our research has provided the following answers to the questions posed at the beginning of this paper: 

 

• “Is emotion detection useful i.e. does it improve the way pervasive systems model user behaviour inside IIEs?”  

Yes, it was found that the model created by DISCRETE-E using behavioural and emotional information did 

require a lot less modifications than the one from a non-emotional agent based on behavioural data only. 
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• “Can emotion detection enhance adaptability and increase the agent’s capability to adjust the environment to 

reflect user’s habitual behaviour and thereby increase their comfort?”  Yes, there is evidence that during the 

time the DISCRETE-E was controlling the iSpace, fewer manual interventions (the user manually changing 

ambience settings using the available actuators) were required, thus indicating that the user was satisfied with 

the way the DISCRETE-E controlled the environment. Although it is possible to argue that DISCRETE-E was 

controlling the iSpace in the fourth night when the participant felt unwell (see Table 1) and this alone could 

have contributed to fewer user interventions on that session, it is evident that the DISCRETE-E showed a 

consistently better (or at least similar) performance than the other two agents in 4 out of the 5 remaining 

sessions. Using the same training data and operating under comparable circumstances, the DISCRETE-E 

needed fewer adaptations to the model and also fewer user interventions which indicate better learning. Was 

there any effect on the DISCRETE-E derived from the user feeling sick? In theory, because Evening-1 was the 

only outlier in the user’s conduct, DISCRETE-E should have created new rules to compensate for the lack of 

knowledge about what was happening. Indeed on that session, the DISCRETE-E did not make any adaptation 

but created 180 new rules (compare to NON-E’s 116 and RAW-E’s 396). 

 

• “Ancillary to these questions is the question of how emotion detection information should be included in 

pervasive systems. Should it be based on the raw indication of physiological changes or on high-level (pre-

processed) dimensions  of emotion?”  Figure 4 is a clear indication that HR residuals estimated from raw 

physiological data are intrinsically noisy. The fuzzification of such residuals by means of Gaussian functions 

seemed to promote the creation of an excessive number of rules that had a direct (negative) effect on the 

agent’s performance. This was inferred from the fact that the RAW-E agent needed a greater number of 

adaptations to its behavioural model (see Tables 5-7). It is important to note that it is not the difference in 

membership functions what makes RAW-E to perform poorly against DISCRETE-E but the nature of the 

emotional information they handle. While SPRT modules provide a smoother, more stable measure of 

physiological changes, the simple quantification of residual’s statistics is highly affected by non-emotional 

sensor behaviour. In this respect the DISCRETE-E’s high-level emotional classes provided by the 

AANN/SPRT mechanism worked better.  
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• ”Other questions related to this issue involve the emotional dimensions being detected – positive, negative and 

neutral and whether these are sufficient to improve user comfort?”  For the particular experimental setup 

presented here it is manifest that, based on the measures described earlier, a crisp valence-based tripartite 

emotional classification seems adequate to produce a better model of the user activities and also greater 

comfort than a non-emotional agent and one that uses raw measures of physiological changes. We therefore 

suggest that the use of emotional states in pervasive environments should be founded on discrete emotional 

classes, e.g. negative, positive, anger, sadness, happiness, etc. The use of features extracted from raw 

physiological measures does not seem to be the appropriate for real-time emotional interaction inside 

Smarthomes. 

 

The findings presented here provide encouraging evidence of the importance of emotions for the analysis of human 

behaviour and information processing.  However, some weaknesses and limitations inherent to the novelty of the 

experiments presented here are also palpable.  

 

For the purpose of generalization, it might be desirable to extend the number of participants to include individuals 

from different age groups and who undertake a more varied set of activities. For example, the distinct psychological 

stressors that the elderly face are contrasting to those of young adults and might render the agents’ emotional and 

adaptive response clearly insufficient. It would also be desirable to compare the DISCRETE-E and RAW-E against 

non-emotional agents featuring more sophisticated adaptive mechanisms and larger input vectors that cater for 

supplementary contextual and physiological information such as the user’s location, respiration rate and/or 

temperature; it might be possible that additional behavioural information improves the performance of non-

emotional agents. Also, it remains to be determined whether a DISCRETE-E that classifies emotions into additional 

subgroups (happiness, anger, sadness, etc.) would outperform such better-equipped non-emotional agent. 

 

In the same manner, the present study only provides a partial, incomplete and somehow unbalanced answer to a 

more fundamental question: Do emotions permanently underlie our decisions and prompt us to act? We adhere to 

the view that emotions are essential for decision making but the evidence included here raises some questions. In our 
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work we have assumed that the actions reflected in Tables 3 and 4 were associated with an emotional change but it 

is conspicuous that such actions also involved a degree of body motion. So, were the actions reflected in the rules 

the result of an emotional episode, e.g. the user stood up from the couch because he needed to go back to work and 

that is why his emotional state went from positive to neutral, or was the alleged emotional episode just a sensor 

perturbation caused by the motion involved in the action itself? We have explained our reasons to believe that the 

SPRT modules are sufficiently reliable to conclude that an affective change indeed occurred in the particular 

situations represented in Tables 3 and 4. The fact that many other rules, reflecting actions with no emotional 

changes, were produced seems to be additional proof of this. However, further studies and perhaps novel 

methodologies are needed to confidently uncover events that are purely sensor/motion-related and have no 

emotional content and those that arise from sentient phenomena. In this context there seems to be no other option 

but to perform long-term studies where affective computing is complemented with pervasive systems so that 

contextual information assists in differentiating such events. Thus, whilst forming an encouraging initial step, we 

hope this paper will motivate other, and perhaps larger experiments, which we anticipate will support these initial 

findings.  

 

In summary, the specific objective of this work has been to contribute to a better understanding of emotions in the 

context of designing pervasive computing agents and gain currency towards a closer link between affective and 

pervasive computing. Finally, for our future work we are planning to refine these techniques, and deploy them in 

other pervasive computing environments. For example, we are collaborating with Shanghai Jiao Tong University 

(SJTU) in a project that is investigating how these methods might be used to improve that performance of pervasive 

learners using the open e-Learning platform at SJTU Network Education College (Shen et al., 2007). We also intend 

to investigate the use of affective pervasive computing in the context of policymaking, work relations and assistive 

technology. 

 

 

Appendix I 

Implementation of the SPRT 
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Considering that the measured parameter is a continuous function A(t) that should be categorized according to two 

stochastic processes A1(t) and A2(t), both possessing a normal distribution with means μ1, μ2 and standard 

deviation 2, the calculation of the SPRT at stage x is: 

    (1) 

and the decision boundaries are given by 

If  

  then A(t)= A1(t) 

If  

  then  A(t)= A2(t) 

Where and are related to the probability error of misclassifying A(t) into process A1 and A2 

respectively and are given by   

 

 

 

Where  and  are the desired confidence values to recognize A1(t) and A2(t) respectively. Alpha ( ) and beta ( ) 

are selected in such a way that the system will choose A1(t) with at least (1- ) probability and A2(t) will be selected 

with probability at least (1- ). Very small values of  and  increase confidence in the recognition results but would 

require more data samples before moving to any of the two solution spaces. In some cases the values of the 

confidence intervals could be obtained from experimental data previously acquired. For the purpose of this work 

presented here a standard significance value of 0.05 for both alpha ( ) and beta ( ) was chosen. 
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