
Simpleware Device Surrogates
Enabling high-level description & interaction with resource constrained devices
 (Presented at IE10, Kuala Lumpur, Malaysia 19-21 July 2010)

James Dooley
Vic Callaghan
Hani Hagras

Essex Universty
Colchester
Essex
jpdool@essex.ac.uk

Abstract — As the Home Area Network (HAN) evolves, there is an
increase in both the number and diversity of device deployment. This
includes embedded devices whose resource constraints do not permit
the efficient performance of high level middleware functionality. We
herein present the functionality and knowledge representations
required to enable such “simpleware” devices to be dynamically
represented by proxy within our Nexus middleware framework. We
also present a use case to illustrate the proposed solution.

Keywords: Sensor Network; Home Area Network; Middleware;

I.I. INTRODUCTION

As a subset of the wider pervasive / ubiquitous computing
research context [1][2], the “smart home” vision seeks to
enable the deployment and intelligent automation of digital
resources in the home [3][4]. These resources reside on
tangible computing devices which are physically distributed
throughout the home and interconnected by a common
network infrastructure we call the “Home Area Network”
(HAN) [5][6][7] as shown in Figure 1.

A.A. Embedded devices in the Home Area Network

The cutting edge of computing technology has traditionally
been viewed as that of computational throughput. In todays
world, there are now other criteria (such as physical size and
operational power consumption) by which computing
technology is measured. This is driven by the need for small
and efficient electronic devices on which advanced software
can be executed. These “embedded devices” are deployed into
an ever increasing number of physical objects that surround us
in our everyday lives, thus validating Mark Weisers vision of
ubiquitous technology “receding into the background” [1].
These devices join the traditional Desktop PC and games
consoles on the HAN to result in a dynamic and distributed
computing system that is feature rich and multi-purpose.

As with distributed systems in general [8], heterogeneity
is a key property of the HAN device set (i.e devices in the
home are different in terms of their hardware and software).
This includes resource constrained devices that are unable to
execute complex software (e.g middleware). Such devices are
almost exclusively used for sensing and acting purposes due to
low computational performance and power requirements (in
some cases harvesting power from their surroundings or
taking several years to exhaust their batteries).

B.B. The “Digital Divide”1 Problem

Figure 1 shows the “home gateway” which can permit
regulated external access to / from the “connected home”2 and
its digital resources (known as “entities” in our Nexus
framework). These entities are hosted by devices that populate
the HAN (shown as ovals and triangles).

As with our previous Nexus publications [6][7][9], the
HAN is shown in Figure 1 without any topology details
(switches, routers, access points, ethernet, wi-fi, etc.). This
reflects our perspective of the device interconnection at the
transport layer (layer 4) of the well known OSI model. That is,
we do not care so much on how the lower level technologies
deliver data between devices, we care only that it is achieved.
Building on this; communications in the Nexus framework are
established with any entity in the same home deployment
through several well defined protocols (including discovery,
presence, query, knowledge retrieval, invocations and
eventing) that form a functional middleware.

1. This phrase is often used to describe the divide between people that are
able and unable to use desktop computer technology [10].

2. A home to which internet access is available by some means.

Figure 1: The Home Area Network (ovals = regular Nexus devices;
triangle = gateways; diamonds = simpleware devices).

It is, however, inevitable that some devices are unable to
fulfill the execution requirements imposed by the Nexus
middleware (as indicated by diamonds in Figure 1). The
reasons for this are varied but include :

• Incapacity : The device may be unable to execute the
necessary software due to a lack of some resource such
as processing capability, memory, storage, etc.

• Designed Inability : The device is capable of
executing the Nexus middleware, but does not as the
result of some design decision.

• Isolation : The communications capabilities available
to the device (e.g USB) are unable to route messages to
the HAN. Thus communication is not possible either to
or from other Nexus participants.

The resulting “digital divide” provides a separation in
which certain devices are currently excluded from the Nexus
sphere of communication. We herein label these sub-
middleware capable devices as having “simpleware”. Solving
this problem requires a solution that :

“Enables simpleware devices to publish fully functional
entities that exhibit behaviour and structure as defined

by the Entity abstract data type of the Nexus framework”

It is implicit (by the very nature of simpleware devices)
that the solution need not implement a full middleware stack.

C.C. This Paper

Motivated by increasing the range of embedded devices
that are eligible for inclusion in Nexus deployments; The
purpose of this paper is to propose, describe and demonstrate a
solution to the previously described “digital divide” problem
within the context of the Nexus framework.

We begin by examining some related work in the area of
sensor networks to tap into existing knowledge concerning the
enablement of small resource limited devices that need to
communicate their data to consumers. The discourse
continues to explore device descriptions which examine what
information is communicated and the form (structure) in
which that information is represented.

Following the related work section, we provide an
overview of the relevant Nexus framework features. This is
intended to prime the reader and set the scene for the finer
details of our proposed solution which is then presented.

Finally, as an aide to validation and depth of
understanding, we provide the description of a real use case
and a conclusion section that summarises the consequences /
shortcomings of the proposed solution.

II.II. RELATED WORK

A.A. Sensor Networks

Motivated by a great many applications (including habitat
monitoring [11]), much research in the area of sensor networks
has focused on the low level communication of both raw and
processed data within the sensor network infrastructure (for

example by using multi-hop routing [12]). In support of this,
it has also been recognised that middleware offers “a novel
approach to fully meeting the design and implementation
challenges of wireless sensor network technologies” [13].

Existing middleware solutions for sensor networks adopt a
wide array of approaches and entire detailed surveys exist that
compare them [13][14][15]. For example, some approaches
treat the entire sensor network as a virtual database [16][17]
[18], while others task (and optimise) the sensor network
specific to individual application requirements. In one case
[19] the sensor network appears as a unified Java virtual
machine (called a Single System Image) in which an object-
oriented java program can be efficiently distrinuted and
executed. Showing some similarities, EnviroTrack [20]
provides a novel abstraction layer that hides the complexities
of managing the sensor network and exposes objects which
applications can handle conveniently and natively.

A common pattern (Figure 2) has emerged (especially
where the network in which the application resides is logically
separate to the sensor network) in which a “gateway” (a.k.a
“proxy”, a.k.a “base station”) acts as an interface for access
from higher level infrastructure3 [21][22][23].

B.B. Describing Devices

There have been many attempts to codify, classify or
otherwise label groups of devices. These have been presented
in the form of taxonomies, ontologies or general descriptions.
Some focus on one set of criterion in establishing their
classification scheme, such as the work reported by Weiser in
one of the baptising publications [1] of ubiquitous computing.
Therein, a very simple classification of three device types was
provided based on size : tabs (inch scale), pads (foot scale)
and boards (yard scale). Each of these classifications had some
implied usability in the environment (for example, pads were
described as being “scrap computers … that can be grabbed
and used anywhere; they have no individualized identity or
importance”) that Weiser used as a descriptive aide (it is
therefore neither exhaustive, nor complete).

In the years since Weisers classification, more formal
ontologies have emerged for expressing device description in a
machine readable way [24][25][26][27]. Notably, [26] extends
the frame based FIPA device ontology [27] and provides a
description that is split into five logical parts : device,
hardware and software descriptions, device status and service.

3. Outside the academic sphere, the award winning “pachube” project
deserves recognition here for internet scale, multi-site sensor monitoring.

Figure 2: The gateway pattern (triangle = gateway; diamonds =
simpleware devices)

Suitable to the smart home vision, the AMIGO project [28]
has produced a consumer electronic device ontology based
around a concept of device types (for example “audio
device”), this imposes a certain level of “ontological
commitment” [29], that our Nexus framework seeks to avoid.

III.III. AN OVERVIEW OF THE NEXUS FRAMEWORK

Nexus is our information centric, distributed HAN
middleware that builds on an abstraction of entities and facets.

A.A. Entities

An entity is a self describing, type independent (physical,
virtual, conceptual, etc.) abstract representation of an “object”
that can be dynamically discovered and interacted with (using
action invocation, event notification and facet retrieval). Each
entity has a unique and immutable ID that is URN encoded
and namespace qualified, where the namespace provides a hint
as to the broad type of the entity (e.g the identity
“urn:nexus:user:james” indicates the “james”4 user entity).

B.B. Facets

An individual facet is a mutable XML document that has a
URN encoded name unique in the entity facet set (e.g. exactly
zero or one facets named “urn:nexus:facet:basic”, may exist
per entity). Each facet document has a common root element
(named “Facet”) with two attributes : parent entity ID and
facet name. Any content is permitted in this element allowing
existing ontologies and XML schemas to be reused in our
framework. The set of facets that an entity possesses
collectively form a novel self descriptive information space.

C.C. Actions

Our framework shares a similar invokable action concept
to other middleware (such as UPnP). Action definitions (in the
“entity” facet) declare named and typed (integer, boolean,
string, etc.) input and output variables. Invocation is achieved
over the network with all input variable values set, and returns
a completed set of output variable values (or an error).

D.D. Events

An individual event is URN named and consists of a
parameter set where each parameter is named and typed.
Events are sent asynchronously through URN named event
channels (an entity may have zero or more event channels)
that are described in the “entity” facet and can be subscribed
across the network.

E.E. Classification

The general mantra concerning the classification of entities
in the Nexus framework is to avoid the static definition of
types / classes and allow observers to dynamically specify
their own criteria. That is, an entity is neither required nor
inhibited from declaring any form of “type” / “class” (the
previously described entity ID namespace is an exception).

Consequently; It is necessary for a dynamic “classification

4. In reality, a unique value such as a UUID value would be used here.

operation” to exist whereby classification rules are executed
against the information space (facets) of an entity. If all the
classification rules are satisfied by an entity, the entity is said
to be of that class. More formally :

where :

r : A single classification rule,

R : A set of classification rules,

match(e, r) : The entity e satisfies the classification rule r,

C(e, R) : The entity e satisfies the classification rule
set R and is therefore of the associated
“class”.

Using this, the following inclusion map would derive a
sub-set of members (RE) from an entity set (E), where all the
entity members e ∈ RE are of the same class
(according to the classification rule set R) :

IV.IV. OUR METHOD

Similar to other related work, our method uses a gateway
proxy approach. Specific to our solution, the proxy
communicates with simpleware devices using messages
through the multi-transport iris component of our framework.
As a result, the proxy creates, configures and publishes
surrogate entities to the HAN as shown in Figure 3.

A.A. The Device Proxy Protocol (DPP)

The simpleware devices implement and behave according
to a finite state machine as shown in Figure 4, where the states
are described as :

• Orphaned : The initial state in which the device is not
associated with any proxy and broadcasts regular

∀r∈R : match r , e ⇔ C e , R

Figure 3: Iris components in the Proxy device.

C : REE , C e , R=e

PROXY_DISCOVERY messages. Upon recieving a
response, the simpleware device will request service by
sending a directed PROXY_REQUEST message (that
includes the id of the entity to create). Only if the proxy
accepts (by a PROXY_ASSOCIATED message), will
the simpleware device change state to
Associated:Configuration. A simpleware device can
return to this state at any time due to failure or a
RESET message from the proxy.

• Associated:Configuration : In this state, the
simpleware device can configure the structure (facets,
event channels and actions) of its surrogate entity. This
must be done in an unpublished state to avoid state
synchronisation errors or a backlog of requests which
may stress the overall system (for example, in our
experimentation, the relatively slow process of
retrieving a facet template from EEPROM and then
uploading it to the proxy caused considerable action
invocation latency, thus reducing application QoS).

• Associated:Operational : In this state the surrogate
entity is fully functional and published to the HAN.
The proxy maintains a queue from which action
invocations are sequentially forwarded to the
simpleware device (our experimentation shows that
without this, the device can become overwhelmed). All
other HAN functionality is internally handled by the
proxy. At any time (unless occupied by an action
invocation) the simpleware device can update a facet
held by the proxy using xquery (for example to reflect
a change in sensor value) or generate an event for
distribution by the proxy to event subscribers.

B.B. The Nexus Device Ontology

Every surrogate entity that is created by a proxy for a
simpleware device is tagged with a “device” facet (named
“urn:nexus:facet:device”) to indicate what the entity
represents (as opposed to any other kind of entity). The use of
this facet is not exclusive to simpleware devices and can be

used in any entity that represents a computational device.

As previously discussed; Nexus does not seek to establish
static / finite taxonomies of entities. Therefore our device
ontology seeks to be descriptive, allowing applications to
carry out dynamic classification against its content. Figure 5
shows a partially completed example device facet for an entity.

Within the root “Facet” element of the document, the
single “DeviceDescription” element contains our ontology
and has three sub-elements :

• “DeviceInfo” : Contains a descriptive account of the
device intended for viewing by human users. A name,
general descriptive sentence, icon and graphic elements
are missing here as they all appear elsewhere in another
generic entity facet (the “basic” facet).

• “PowerSaving” : Reserved for future use. We intend to
describe wake-on-lan like behaviour so devices can be
put to sleep and awoken, thus making the home more
energy efficient (a pervasive topic in todays world).

• “Hardware” : Describes the core hardware of the
device5 (CPU, RAM, etc.), but not capabilities (such as
display, audio, etc.) which should be described in a
more abstract way in other facets (e.g a “media-
playback” facet, or “user-interface” facet).

Driven by ad-hoc application developments that need
some information and thus ask the question “in which facet
does that belong?”, we anticipate that this ontology will
expand. Care must be taken that the information to be included
is appropriate. For example; physical size, is not exclusive to a
computational device, and therefore belongs in another facet.

5. Removed due to space constraints.

Figure 4: Finite State Machine of an embedded device.

Figure 5: A partial device facet example
(xml namespaces removed for clarity).

<Facet facet-name=”urn:nexus:facet:device”
parent-id=”urn:nexus:device:1bd3cd77-be94-4d0e-

9d2a-7a1d86dfc80f”>
 <DeviceDescription>
 <DeviceInfo>
 <ProductName>
 Arduino Duemilanove
 </ProductName>

 <Manufacturer>tinker.it</Manufacturer>

 <ManufacturerUrl>
 http://www.tinker.it/
 </ManufacturerUrl>

 <Version>
 <MajorVersion>1</MajorVersion>
 <MinorVersion>0</MinorVersion>
 </Version>

 </DeviceInfo>

 <PowerSaving> … </PowerSaving>

 <Hardware> … </Hardware>

 </DeviceDescription>
</Facet>

http://www.tinker.it/

V.V. USE CASE

A.A. Overview of the Use Case

The purpose of this use case is to demonstrate a user
initiated asynchronous event that is generated from a simple
sensor device (included in the Nexus sphere of
communications by proxy), to which an application reacts. As
a whole this use case demonstrates many features of the Nexus
framework (including actions, eventing, discovery, and
facets), but we would like to emphasise the concept of
“Recombinant applications” which can be composed from
multiple re-usable functional blocks that are discovered and
bound at runtime. The use-case components are :

1. RF-ID reader : This simpleware device is composed
of an 8-bit micro-controller with and RF-ID reader
module. Communications are achieved with the proxy
device via USB.

2. Alphanumeric LCD display : Another USB
simpleware device that has a “setText” action.

3. Proxy Device : This is the higher capability device
that implements the proxy side of the DPP over USB.

4. Controller Application : Subscribes to the RF-ID
reader and has in built logic to control other HAN
entities in reaction to RF-ID tag events.

5. Music Source Entity : An entity representing a music
source (MP3 file), complete with “media facet”
describing the encoded music and an alias entry in the
“Basic facet” that matches an RF-ID tag.

6. Speaker Entity : An entity that streams an audio
source over the network, decodes it and renders it as
human audible sound.

B.B. Component Configuration

In this use case there are two simpleware devices (RF-ID
reader and a text display) that require a proxy to participate in
the Nexus deployment. They both communicate over USB and
successfully follow the Device Proxy Protocol. This results in
the proxy publishing a surrogate of each to the HAN.

When the control application starts, it searches for RFID
readers and subscribes to them (for event notifications). It may
also search the HAN for the textual LCD and speakers, but the
Nexus framework performs this process exceptionally fast and
so it can be performed as needed in later steps.

C.C. Use Case Execution6

When a tag is passed in front of the RF-ID reader, it
notifies the application controller (that has previously
subscribed to the reader) with an event that contains, among
other things, the unique tag ID. This is labelled (1) in Figure 6.

Being stateless, the controller does not internally know
what entity the tag ID relates to. Therefore, the controller must
submit a query to the HAN using the Nexus discovery

6. Those readers familiar with the UPnP A/V specification will notice a
similar pattern in this use case.

protocols to find the entity to which the tag is associated,
labelled (2) in Figure 6. For simplicity in our use case, the tag
ID matches exactly one entity which is an MP3 encoded audio
source (i.e music file).

The application searches the HAN for a suitable
“speaker” entity (or uses the result of a previous search) and
invokes the “setSource” action (with the URL extracted from
the “media facet” of the entity identified in the previous step)
to tell the speakers what to render. The “play” action is then
invoked on the same speaker entity to start streaming and
rendering the media, labelled (3) in Figure 6.

If a search of the HAN also yields an appropriate textual
display, then the artist name and track name are extracted from
the media facet of the entity identified in step (2) and sent to
the found display using its “setText” action. This is labelled
(4) in Figure 6.

VI.VI.CONCLUSIONS

Motivated by the inability of certain simpleware devices to
fulfill the information and functional needs of high-level
software within the smart home context. This paper has
proposed a methodology for certain devices to act as proxy
and provide surrogates for the resources that simpleware
devices possess.

Previous to the solution proposed in this paper, any device
that wished to participate in the Nexus framework would need
to fulfill the requirements of executing high-level middleware.
Experience has shown those requirements to be between 100
and 200Mhz with ~32Mb of RAM and a few hundred
megabytes of storage space (for an embedded linux OS, java
virtual machine, middleware, supporting libraries and then
application code). Our proposed solution now reduces that
requirement to any device that can implement the DPP state
machine and protocol. Experimentation reveals that
inexpensive devices with 8-bit micro-controllers (such as the

Figure 6: Use case process.

open source “Arduino” range) are more than capable of these
requirements. This means that deployments can have a higher
granularity (more devices individually providing small
functional contributions) and be cheaper to deploy (cheaper
hardware) / maintain (lower power requirements).

There is however a price to pay for the drastic reduction in
required device functionality; Although proxies are
dynamically discovered at runtime, the solution relies on a
client-server model (between simpleware devices and a
proxy). There are two primary problems that could exist with
this centralised model :

1. If the proxy device fails for some reason, then all the
connected simpleware devices that it is responsible
for disappear from the Nexus deployment. The DPP
state machine has built in failure recovery for this and
will attempt to find an alternative proxy if available.

2. The proxy device must be suitably capable of
providing enough surrogates for the intended number
of simpleware devices. In some deployments this
number may raise to a point where the proxy device
is overwhelmed and fails (i.e scalability limits).

The novelty of this paper and the solution it presents lie in
the specific way that simpleware devices are transposed by
proxies into the HAN as configurable surrogate entities that
present their own descriptions as component facets.

REFERENCES

[1] M. Weiser. “The Computer for the Twenty-First Century,” Scientific
American, pp. 94-10, September 1991.

[2] T. Hoare and R. Milner. “Grand Challenges for Computing Research”.
The Computer Journal. Vol. 48, no. 1, pp. 49–52. The British
Computer Society: London. 2005.

[3] W.K. Edwards and R. Grinter. “At Home with Ubiquitous Computing:
Seven Challenges”. Proceedings of the Conference on Ubiquitous
Computing (Ubicomp 2001). Atlanta, GA. 2001.

[4] S. Helal, W. Mannm H. El-Zabadani, J. King, Y. Kaddoura and E.
Jansen. “The Gator Tech Smart House: A Programmable
Pervasive Space”. Computer. IEEE Computer society press.
Vol.38, Issue 3, pp.50-60. 2005.

[5] W. Treese. “Putting it Together : The Home Area Network”. Networker.
2000.

[6] J. Dooley, V. Callaghan, H. Hagras and P. Bull. “Discovering the
Home”. 5th International Conference on Intelligent Environments
(IE'09). Barcelona, July 2009.

[7] J. Dooley, V. Callaghan, H. Hagras and P. Bull.. “Discovering the
Home : Advanced Concepts”. 2nd International Conference on the
Applications of Digital Information and Web Technologies
(ICADIWT). London, August 2009.

[8] G. Coulouris, J. Dollimore and T. Kindberg. “Distributed Systems :
Concepts and Design” third edition. Addison Wesley. 2001.

[9] J. Dooley, V. Callaghan, H. Hagras and P. Bull. “Resource Discovery in
the Home Area Network”. International Journal of Information
studies, vol. 1, no. 4, pp. 251-262. October 2009.

[10] P. Cochrane. “Peter Cochrane's Blog: Digital divide? What digital
divide?,” Silicon.com. November 2006.

[11] A. Cerp, J. Elson, D. Estrin, L. Girod, M. Hamilton and J. Zhao.
"Habitat Monitoring: Application Driver for Wireless
Communication Technology," Proc. ACM SIGCOMM Workshop
Data Comm., ACM Press, pp. 20-41. 2001.

[12] A. Woo, T. Tong and D. Culler. “Taming the underlying challenges of
reliable multihop routing in sensor networks”. In Proceedings of
the 1st Intl. Conf. on Embedded Networked Sensor Systems.
SenSys '03. pp. 14-27. ACM, New York, NY. November, 2003.

[13] S. Hadim and N. Mohamed, "Middleware: Middleware Challenges and
Approaches for Wireless Sensor Networks," IEEE Distributed
Systems Online, vol. 7, no.3, pp.1. March, 2006.

[14] M.M. Wang, J.N. Cao, J. Li and and S.K. Das. “Middleware for wireless
sensor networks: A survey”. Journal of Computer Science and
Technology. Vol. 23, no. 3, pp. 305–326. May 2008.

[15] K. Henricksen and R. Robinson. “A survey of middleware for sensor
networks: state-of-the-art and future directions”. In Proceedings of
the international Workshop on Middleware For Sensor Networks
(MidSens '06). vol. 218, pp. 60-65. ACM, New York, NY.
November, 2006.

[16] P. Bonnet, J. Gehrke and P. Seshadri. “Towards Sensor Database
Systems”. In Proceedings of the Second international Conference
on Mobile Data Management. Lecture Notes In Computer Science,
vol. 1987. pp. 3-14. Springer-Verlag. January, 2001.

[17] S.R. Madden, M.J Franklin, J.M. Hellerstein and W. Hong. “TinyDB: an
acquisitional query processing system for sensor networks”. ACM
Trans. Database Syst. Vol. 30, no.1, pp. 122-173. March 2005.

[18] C. Srisathapornphat, C. Jaikaeo and C. Shen. “Sensor Information
Networking Architecture and Applications”. IEEE Personal
Communications, Vol. 8. pp. 52-59. 2001.

[19] R. Barr, J.C Bicket, D.S Dantas, B. Du, T.W. Kim, B. Zhou, and E.G
Sirer. “On the need for system-level support for ad hoc and sensor
networks”. SIGOPS Operating Systems Review. Vol.36, no.2, pp.
1-5. April 2002.

[20] T. Abdelzaher, B. Blum, Q. Cao, D. Evans, J. George, S. George, T. He,
L. Luo, S. Son, R. Stoleru, J. Stankovic and A. Wood.
“EnviroTrack: Towards an Environmental Computing Paradigm
for Distributed Sensor Networks”, IEEE International Conference
on Distributed Computing Systems. March 2004.

[21] K. Aberer, M. Hauswirth, and A. Salehi. “Infrastructure for Data
Processing in Large-Scale Interconnected Sensor Networks”. In
Proceedings of the 2007 international Conference on Mobile Data
Management (MDM'07). IEEE Computer Society, pp. 198-205.
May 2007.

[22] H. Song. “Implementing a wireless base station for a sensor network”,
Thesis (M. Eng.), Massachusetts Institute of Technology, Dept. of
Civil and Environmental Engineering, 2004.

[23] V. Trifa, S. Wieland, D. Guinard and T.M. Bohnert. “Design and
Implementation of a Gateway for Web-based Interaction and
Management of Embedded Devices”, Proceedings of the 2nd
International Workshop on Sensor Network Engineering
(IWSNE'09). June, 2009.

[24] C. Chrysoulas, G. Koumoutsos, S. Denazis, K. Thramboulidis and O.
Koufopavlou. “Dynamic Service Deployment using an
Ontologybased Description of Devices and Services,” International
Conference on Networking and Services (ICNS '07), pp. 80 2007.

[25] M. Sarnovsky, P. Kostelnik, J. Hreno, P. Butka. “Device Description in
HYDRA Middleware”, In Proceedings of the 2nd Workshop on
Intelligent and Knowledge oriented Technologies 2007 (WIKT'07),
pp.71-74. November 2007 .

[26] A. Bandara, T.R. Payne, D. de Roure, and G. Clemo. “An Ontological
Framework for Semantic Description of Devices”, International
Semantic Web Conference (ISWC). 2004.

[27] “FIPA Device Ontology Specification”, Foundation For Intelligent
Physical Agents (FIPA). Last retrieved on 20/02/2010.
http://www.fipa.org/specs/fipa00091/

[28] N. Georgantas, et al . “Amigo middleware core: Prototype
implementation and documentation”, IST Amigo Project,
deliverable 3.2. Technical report, IST-2004-004182 (2006).

[29] R. Davis, H. Shrobe, and P. Szolovits. “What is a Knowledge
Representation?”. AI Magazine, vol. 14, no. 1, pp. 17-33. 1993.

http://www.fipa.org/specs/fipa00091/

