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Abstract- Autonomy of embedded agents in intelligent 

environments is highly debated topic; while some believe that 

agents should have very minimal autonomy and should only act 

as directly instructed by the user, others consider providing 

agents with autonomy to be an essential aspect to building 

intelligent environments. This paper reports on the current 

progress of our project to enable human users and agents to 

collaborate in managing intelligent environments as a team. We 

seek to develop an adjustable-autonomy agent in an effort to 

explore user acceptance of pervasive computing and the use of 

autonomous agents therein, as wells as aiming to improve the 

robustness and reliability of future intelligent environment 

systems.  We present our Adjustable-autonomy Behaviour-Based 

Agent (ABBA) architecture model and discuss our initial trials 

with our prototype system, built on a smart home emulator, 

which demonstrate the plausibility of employing adjustable-

autonomy in full-scale intelligent environments and pervasive 

computing systems. 
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I. INTRODUCTION 

People have their own individual needs and preferences, 
which can differ greatly from each other and may change 
significantly over time.  Hence, many pervasive computing 
systems, such as intelligent environments, need to be tailored 
specifically to their user.  Obviously, it would not be feasible to 
have an expert (or indeed a team of experts) develop, tailor and 
continuously maintain a specific system for each of a large 
number of users.  Instead, two mainstream approaches to this 
management problem have emerged from recent research that 
argue intelligent environments should be programmed and 
managed over time after deployment by embedded-agents, 
either autonomously by agents or as directly instructed by the 
end-user.  Autonomous-agent driven systems have the 
advantage that they remove the cognitive load from the user, 
whilst end-user driven systems have the advantage that, unlike 
autonomous agents, the system is not required to guess the 
intentions and needs of the user.  We, however, believe that a 
more ideal system would provide both options for management 
using human-agent teamwork. In this paper we explore the 
issues with taking an exclusively autonomous-agent or 
exclusively end-user driven approach to management, 
following on from our previous works [1][2].  Section II 
discusses the exclusive approaches of management and 

illustrates the problems that one may encounter with them.  
Section III presents our architecture model for an Adjustable-
autonomy Behaviour-Based Agent (ABBA).  Section IV 
explains our prototype system that allows for adjustable 
autonomy and we described two trials conducted using the 
prototype that demonstrate the plausibility of employing an 
adjustable-autonomy agent to manage an intelligent 
environment.  Finally, Section V gives a concluding discussion. 

II. THE MANAGEMENT PROBLEM 

In this section we describe the two different approaches of 
end-user and autonomous-agent driven management systems 
and highlight some issues that may be encountered with them.  

When we talk about management, we mean the configuring 
(forming topographical connections) and programming 
(customising the functionality) of intelligent environments. 
Figure 1 shows an abstract view of how a general pervasive 
intelligent environment is managed.  It shows a controller 
(which could be a program, intelligent agents, etc.), the 
environment and a user; these are connected in a cycle, which 
we will refer to as the management cycle.  The management 
cycle starts with the user acting in the environment based on 
their perceptions and preferences.  These preferences are then 
captured, either implicitly through autonomous sensing or 
explicitly through end-user programming, by the controller, 
which drives the effectors and produces actions in the 
environment based what it has recorded about the user’s needs.  
The cycle is completed by the user perceiving the effects of the 
controller’s actions in the environment and responding in some 

 
Figure 1. The management cycle 
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way, which in turn, leads to cumulative loops around the cycle. 

As introduced earlier, in recent research there are two 
mainstream approaches to IE management.  Firstly, an end-user 
driven approach can be taken.  In this approach it is the 
responsibility of the end-user to program the IE, although the 
user of the system may not actually have any knowledge of 
computer programming nor any technical knowledge of the 
system.  To enable the end-user to program the behaviour rules  
more easily, an end-user driven approach usually adopts a 
simplified programming mechanism, as in [3][4][5].  The 
second approach is to make the system autonomous.  The 
system then employs autonomous-agents to program itself by 
learning from the user’s behaviours and interactions with the 
environment in context with the current environmental [6][7].  
End-user driven and autonomous-agent driven approaches can 
be seen as being at two opposite ends of a scale [2][8].  The 
Ball Management Contention Diagrams, shown in Figure 2, 
illustrate the problems of exclusively using one of these 
approaches of management and how these problems might be 
overcome by taking a hybrid human-agent teamwork approach. 

An end-user driven approach empowers the user, giving 
them complete control in managing the system while, an 
autonomous-agent driven system disempowers the user 
handing complete control over to a collection of agents.  In 
most situations, producing a system that empowers the user 
might seem the logical choice; however, problems can arise in 
a fully end-user driven system since the intelligence of the 
management system is dependent on the creativity, 
intelligence, willingness and ability of the user.  This is 
depicted in Figure 2(a); the environment and the controller 
effectively become one entity; the controller becomes little 
more than an interface to the environment and hence the 
pervasive intelligent environment relies completely on the user 
for it to be adaptable and intelligent.  Such a complex system 
cannot rely on all users to be creative, intelligent, willing and 
able enough to manage the system in all manner of situations; 
for example users may be too busy or lose confidence in their 
ability from time to time, or users may well have a physical 
disability and find it very difficult or even impossible to 
interact with the computer devices.  In these situations, an 
autonomous system is clearly the superior choice; it greatly 
reduces the cognitive and sometimes the physical load placed 
on the user in programming and managing the system.  
Although, issues may also arise in a fully autonomous 
management system since there is no direct communication 
between the user and agent, as depicted in Figure 2(b); the user 
and the agent (controller) are operating separately although 
they are effectively working towards the same task – control 
the environment to suit the user’s requirements.  At some point 
the system has to rely on guesswork to assume the user’s 
requirements and from time-to-time an agent will inevitably 
guesses wrongly, which could be highly annoying to the user or 
indeed completely unacceptable. Moreover, if the management 
system is operating in an unknown or restricted environment, it 
may not be able to get enough information to make a rational 
decision or take action, which again may lead to the user’s 
displeasure or perhaps a complete failure of the system.  

We seek to combine these two distinct approaches and 
create a hybrid system in which the end-user and autonomous-

agents (as the controller) work together as a team, depicted in 
Figure 2(c).  If the user and agent collaborate together, this 
reduces the chance of guesswork needing to be done and if 
either the user or agent cannot, for whatever reason, manage 
the system in the usual way, they can seek help from the other.  
This creates an overall more robust and reliable management 
system.  Also, the user is no longer forced to either manage and 
program the environment themselves or be at the complete 
mercy of autonomous agents, instead they can manage the 
environment at level at which they feel comfortable doing so. 

 
 (a). Separation in an end-user driven system 

 

(b). Separation in an autonomous system 

 

(b). A human-agent teamwork based system 

Figure 2. Ball Management Contention Diagrams – An illustration of 
problems of exclusive management 
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III. ENABLING HUMAN-AGENT TEAMWORK THROUGH 

ADJUSTABLE AUTONOMY 

In this section we consider how we can enable human-agent 
teamwork in intelligent environments by employing the 
concepts of adjustable-autonomy and mix-initiative interaction 
and we present and describe our architecture model for our 
Adjustable-autonomy Behaviour-Based Agent (ABBA). 

Bradshaw et al. describe adjustable-autonomy as 
maintaining “the system being governed at a sweet spot 
between convenience (i.e. being able to delegate every bit of an 
actor’s work to the system) and comfort (i.e. the desire to not 
delegate to the system what it can’t be trusted to perform 
adequately)” [9].  That is to say, adjustable autonomy allows an 
agent to ‘back-off’ and let the user take control of certain tasks 
that would usually be done autonomously, whenever the user 
so wishes.  A closely related concept to this is mixed-initiative 
interaction.  Mixed-initiative interaction can be defined as two 
or more parties (for example agents and users) each providing a 
level of initiative in collaboratively completing a task [9].  
Using these two concepts, autonomous systems can be made to 
‘share’ their tasks with human users, so that they are completed 
as a team.  In other areas of AI and robotics, researchers have 
successfully applied these concepts to enable human-agent 
teamwork in their systems, for example: Allen and Ferguson’s 
human-machine collaborative planning system [10] allows 
humans and agents to work together to plan the evacuation of 
an island and researchers at NASA have developed a mars 
rover that allows users to take control of specific subsystems at 
any time whilst all others remain operating autonomously [11]. 

 Figure 3 shows our Adjustable-autonomy Behaviour-Based 
Agent (ABBA) architecture model that allows for the agent’s 
level of autonomy to be adjusted and enables the user to 
collaborate in the creation of behaviour rules in intelligent 
environments.  It is inspired by the incremental synchronous 

learning (ISL) agent developed by Hagras et al. [12].  The 
ABBA architecture takes the general form of a behaviour-
based architecture, as pioneered by Brooks at MIT [13].  In 
such architectures a number of agent behaviours run in parallel.  
A controller is employed to coordinate the behaviours or their 
given outputs into one single output to achieve the desired 
agent functionality.  The ABBA architecture model uses two 
sets of behaviour rules: one active set and one potential set.  
Each behaviour rule is assigned with a confidence level.  A rule 
can only have an effect on the environment if it is active and 
can only be active if it has a high enough confidence level.  
Rules with a low confidence can only be potential behaviour 
rules and cannot effect the environment.  All behaviour rules 
are visible to all components of the agent.  The behaviour 
arbiter component regulates the behaviour rules; it reduces the 
confidence of all rules overtime.  If an active rule’s confidence 
level drops below a certain threshold, it will drop down into the 
potential set and if a potential rule’s confidence level drops 
below a very low threshold (zero for example) then it is 
deleted.  This confidence degradation reduces the chance that 
the agent’s memory will become full.  The coordinator 
regulates/merges the output of all the active behaviours into 
one single output so that each behaviour rule effects the 
external environment to an appropriate degree.  Additionally, 
when an active behaviour rule effects the environment the 
coordinator increases the level of confidence of that rule, where 
the amount increased depends on the degree the rule is 
effecting the environment.  Thus, the more a rule is used and 
the more it effects the environment, the less chance it will have 
of dropping into the potential set and ceasing to be active.   

To adjust autonomy of ABBA, the amount of confidence 
the agent can give to a rule, new or existing, is restricted; both 
the user and the agent can program behaviour rules in the 
potential set but depending on the level of autonomy the agent 
may require the user to add additional confidence to 

 

 

Figure 3. ABBA – Adjustable-autonomy Behaviour-Based Agent 
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autonomously programmed rules before they can become 
active.  Through this confidence based mechanism we can 
force the agent to collaborate and hence alter its level of 
autonomy.  By changing the level of autonomy by explicitly 
restricting the agent’s confidence in this way we create a style 
of task delegation in which the user can choose to adopt or 
delegate a task to a certain degree.  One can imagine a sliding-
scale switch (similar to a volume control) that represents the 
level of autonomy of management: one end of the scale 
represents fully autonomous-agent driven management and the 
opposite end represents exclusively end-user driven.  The user 
could use this theoretical sliding scale switch to explicitly say 
to what degree they wish to contribute to a given task, i.e. to 
what degree the management should be done autonomously.  
To further this analogy, one could imagine the pervasive 
intelligent environment being divided up into sub-systems, for 
example heating, lighting and security.  Behaviour rules could 
then be categorised into these sub-systems; thus allowing us to 
create a theoretical mixing desk consisting of many sliding-
scale switches to control the level of autonomy throughout the 
entire system.   

Direct collaboration could also be used in the system to 
‘fine tune’ the level of autonomy further.  Perhaps the simplest 
form of collaboration in our system would be for the agent to 
develop a rule and present it to the user for them to accept or 
reject it.  Here we can say the system is highly autonomous as 
it requires a lot of initiative from the agent and little from the 
user.  In order to reduce autonomy further, we must increase 
the level of initiative from the user.  This can be done by giving 
the user the option of altering the rule before accepting it.  The 
same choices could also be offered to the agent if a user has 
created a rule in a more end-user driven system or if a user 
suggests an alteration to a rule generated by the agent.  Hence, 
we can create a kind of back-and-forth communication in a 
way that is quite similar to Allen and Ferguson’s collaborative 
planning system [10].  Each participant will be able to suggest 
new rules and accept, reject, or alter the others suggested rules.  
This collaborative mechanism will allow either participant to 
provide varying levels of initiative to the collaboration; the 
more a participant makes suggestions for new rules and 
alterations to the other’s suggested rules, the more initiative 
they provide.  Changing the way that the collaborative 
mechanism is triggered will help to adjust the level of the 
agent’s autonomy.  For example, in a more autonomous 
system, when an agent generated potential rule’s confidence 
level has reached a high enough level, say 75% (i.e. when the 
agent has seen the user repeat the same action a number of 
times in the environment), the remaining 25% confidence will 
have to be gotten from the user before the potential rule can 
become active and the agent will start a collaboration.  Here, 
since the system requires an input from the user, we can say 
that the agent is no longer fully autonomous because of an 
explicit restriction of its confidence in its own generated rules.  
The agent’s level of autonomy is then adjusted further 
implicitly in the collaboration depending on the level of 
initiative provided by the user; if the user simply excepts the 
potential rule we can say the agent operated with a higher level 
of autonomy than if the user makes an alteration to the agent 
generated rule.  In this way we provide an agent architecture 
model, in which the level of autonomy is adjusted in two ways: 

firstly an initial level is explicitly set by the user (task 
delegation) and the level of autonomy can then be adjusted 
further implicitly through direct collaboration. 

IV. BUILDING A PROTOTYPE AGENT 

In this section we describe our implemented prototype 
version of ABBA and two trials undertaken that show the 
plausibility of employing adjustable-autonomy in intelligent 
environments. 

In order to test the plausibility of adjustable-autonomy 
agents in intelligent environments a prototype version of 
ABBA has been implemented using two SunSPOT devices 
interfacing with an mDorm.  A SunSPOT (Sun Small 
Programmable Object Technology) is a small, wireless, battery 
powered device based on an ARM processor. Using the 
Squawk Java virtual machine, it allows programmers to create 
projects that used to require specialized embedded system 
development skills easily using java. The hardware platform 
includes an ARM processor, a radio, and a range of built-in 
sensors as well as the ability to easily interface to external 
devices [14].  An mDorm is a miniature intelligent 
environment designed to act as a emulator for the Essex iDorm 
and iSpace, two real-world intelligent environment test-beds at 
the University of Essex described in [1].  The mDorm uses two 
sets of lights, a heater and an extractor fan as actuators and is 
equipped with temperature and light level sensors. One 
SunSPOT, the internal SunSPOT, is connected internally to the 
mDorm; this acts as a controller for the mDorm, monitoring 
and effecting the current state of the environment directly.  The 
second SunSPOT, the remote SunSPOT, is external to the 
mDorm but interfaces with it through the internal SunSPOT via 
a radio communication link.  Figure 4 shows a diagram of the 
prototype set-up and Figure 5 shows an image of the real setup 
with an mDorm connected to PC to provide text-based output, 
both the remote and internal SunSPOT devices are circled in 
green. Our prototype agent is implemented on the remote 
SunSPOT, external to the mDorm, so that it has the potential to 
be used with multiple environments (mDorms); this being a 
major point of further investigation in upcoming stages of our 
research, as described in [1].  The agent prototype has been 
implemented as a simplified version of ABBA previously 
described in section III, with the agent’s adjustable-autonomy 
mechanism being based around a confidence utility.   The agent 
is able to learn behaviour rules autonomously through 
monitoring of user actions in the environment and can also be 
programmed with rules directly by a human user using a 
programming-by-example methodology [15].  A rule in the 

 

 

Figure 4. Diagram of the prototype system setup 
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ABBA system is a mapping of a state to a set of actions, taking 
a similar form to:  

 IF CurrentState = StateX THEN DO ActionsX (1) 

Where StateX describes a context (a set of environmental 
conditions) and ActionsX describes a set of actions either leant 
by the agent or programmed by the user that reach a desired 
environmental state. 

The prototype is currently implemented to test the task 
delegation form of adjusting autonomy – explicitly setting an 
autonomy level, as described in section III.  As this is only a 
early prototype, the autonomous learning mechanism is an 
extremely simplistic form of evidential learning; it learns a 
specific behaviour rule upon observing repeated user actions by 
increasing the confidence of the rule at each observation of the 
same action in the same context (state of the environment).  In 
order to adjust the agent’s level of autonomy, two of the 
agent’s traits are altered: its confidence restriction and its 
assertiveness.  By placing a boundary on how much confidence 
an agent can assign to a rule in total, we limit the level of 
initiative provided by the agent in programming behaviour 
rules, forcing it to collaborate, and thus the system will require 
more initiative from the user and become less autonomous.  We 
can make an agent more or less assertive by changing the 
amount of confidence that an agent can assign to a rule at any 
one time (each time it observes the given action).  A more 
assertive agent will be able to increase the amount of 
confidence of a rule more in any single observation of the 
given action than a less assertive (more conscientious) agent 
can in any one time.  Thus, a more conscientious agent will 
collect more evidence before programming a rule so that it, one 
could say, puts more effort and care into what it programs; this 
will use a higher level of initiative in programming than a more 
assertive agent and, hence, we can say a more conscientious 
agent is more autonomous in programming behaviour rules 
than an assertive agent.  Figure 6 illustrates the range of 
autonomy (depicted by the diagonal line on the graph) along 
which our prototype agent can be adjusted: as the agent 
becomes increasingly conscientious and less restricted it 
becomes more autonomous; conversely, as the confidence 
restriction placed on the agent becomes heavier and the agent 
becomes more assertive (basing it decisions on less evidence) it 
becomes less autonomous. 

For simplicity in the prototype, the agent was only 
implemented to control lighting in the mDorm based on the 
time of day.  The time of day was simulated in the mDorm as 
being either Morning, Afternoon, Evening or Night; each 
period lasting ten seconds (pausing when a user wants to 
change settings or program a rule).  Two trials were run on the 
prototype system to test if the confidence based mechanism can 
adjust the autonomy of the agent.  In both trials the aim was to 
create the following rule so that it belongs to the active set of 
behaviours: 

 IF CurrentState = “Night” THEN DO SetLightsMax (2) 

In the first trial the agent’s autonomy level was set to 
100%, meaning it was unrestricted in the total amount of 
autonomy it could assign to a rule, so it could program an 
active rule with no initiative from the user, but was also very 
conscientious, needing to see the same action in the same 
context repeated a high number of times (six in this small-scale 
experiment) before it could assign full confidence to the 
respective rule.  In order to complete this trial, the user simply 
waited until the Night time period and set the level of the lights 
to its maximum allowed value (240), and then repeated this 
another five times.  The confidence level was then high enough 
for the rule to become an active behaviour (i.e. have a 
confidence level greater than 90%).  Figure 7 gives a sample of 
the agent’s text-based output; it shows the agent capturing the 
user’s action for the sixth time, the rule becoming active and 
finally the agent triggering the rule in the next Night time 
period, instructing the internal SunSPOT to effect the 

 

Figure 5. Real-life prototype system setup 

 

Figure 6. Graph illustrating range of autonomy in the  
prototype ABBA 

 
 . 
 . 

Remote Agent Running 
Remote Agent Running 
User has changed state:..Night: setLightsTo->240 
Incresing confidence of rule:..[0] :- Night: 
setLightsTo-> 240 
     New confidence level is:..96 
     Rule is now active! 
Remote Agent Running 
 . 
 . 

 [Omitted Text] 
 . 
 . 

Remote Agent Running 
Time is :-Night 
Trigger rule:Night: setLightsTo-> 240 . 
 . 

Figure 7. Example output from first trial 
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environment. 

For the second trial the agent’s autonomy level was set to 
only 50%. Here the agent should be required to take some input 
from the user to be able to program behaviour rules for the 
mDorm, as it has a higher confidence restriction (restricted to 
50%) and it will also be more assertive than in the previous 
trial – it will only require to see an action repeated three times 
before it assigns its maximum allowed confidence.  To 
complete this trial, the user firstly acted in the same manner as 
he did in the first trial: waiting until the Night period and 
adjusted the lights to maximum.  However, after this was 
repeated three times, the agent reached its maximum 
confidence level and prompted the user to accept or reject the 
rule.  The user accepted the rule, which then gave the rule the 
remaining 50% confidence it needed to become active.  The 
accept-or-reject decision by the user represents a simplistic 
form of collaboration in the ABBA prototype, as describe in 
section III.  Figure 8 is an example of the text-based output 
from the second trial; it shows the agent detecting the action for 
the third time and asking the user to accept or reject the rule as 
it has assigned the maximum confidence allowed. 

In comparison, one can see that in the first trial the ABBA 
agent is more autonomous than it is in the second.  During the 
first trail the agent relied only on its own initiative to program 
the active rule and did so by collecting more evidence on which 
to base its decision, whereas, in the second trial, the agent used 
a lesser amount of initiative, collected less evidence and hence 
relied on the additional initiative of the user to make the rule 
active.  We recognise that this implementation of the ABBA 
prototype is extremely simplistic and very limited in its 
functionality; however, the success of the trials does 
demonstrate the plausibility of adding the extra dynamic of 
adjustable-autonomy into a full-scale intelligent environment 
and using mixed-initiative interaction to enable human-agent 
teamwork.     

V. CONCLUSION 

The vast majority of previously researched intelligent 
environment management systems have taken either an 
exclusively autonomous-agent or end-user driven approach.  
Although these research efforts have been fruitful, taking such 
an exclusive approach will undoubtedly cause problems for 
some users and in certain situations as pervasive computing 
technology develops further. Hence, we argue that future 
management systems of intelligent environments must allow 
for human-agent teamwork and adjustable-autonomy.  This 
will be especially important for users with very specific needs 
that can change unexpectedly overtime, such as those with 
physical disabilities and deteriorating medical conditions; the 
extra dynamic of adjustable-autonomy will enable future 
systems to be highly customisable to their users and to be more 
robust and reliable in certain situations.  In this paper we have 
presented ABBA – an Adjustable-autonomy Behaviour-Based 
Agent architecture model and discussed our initial prototype 
system, built on a smart home emulator, in which the agent’s 
level of autonomy can be adjusted by tuning two different 
variables: assertiveness of the agent and a maximum 
confidence restriction. The successful trials of the prototype 

demonstrate the plausibility a fully-functional adjustable-

autonomy intelligent environment. 
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