
Presented at ‘Intelligent Environments 2010’, Kuala Lumpur, Malaysia, 19-21 July 2010

© Essex University 2010 1

An Adjustable Autonomy Agent for Intelligent
Environments

Matthew Ball, Vic Callaghan, Michael Gardner
School of Computer Science and Electronic Engineering University of Essex, Colchester, UK

mhball@essex.ac.uk

Abstract- Autonomy of embedded agents in intelligent

environments is highly debated topic; while some believe that

agents should have very minimal autonomy and should only act

as directly instructed by the user, others consider providing

agents with autonomy to be an essential aspect to building

intelligent environments. This paper reports on the current

progress of our project to enable human users and agents to

collaborate in managing intelligent environments as a team. We

seek to develop an adjustable-autonomy agent in an effort to

explore user acceptance of pervasive computing and the use of

autonomous agents therein, as wells as aiming to improve the

robustness and reliability of future intelligent environment

systems. We present our Adjustable-autonomy Behaviour-Based

Agent (ABBA) architecture model and discuss our initial trials

with our prototype system, built on a smart home emulator,

which demonstrate the plausibility of employing adjustable-

autonomy in full-scale intelligent environments and pervasive

computing systems.

Keywords- intelligent environments; human-agent teamwork;

pervasive computing; adjustable-autonomy; mixed-initiative

interaction

I. INTRODUCTION

People have their own individual needs and preferences,
which can differ greatly from each other and may change
significantly over time. Hence, many pervasive computing
systems, such as intelligent environments, need to be tailored
specifically to their user. Obviously, it would not be feasible to
have an expert (or indeed a team of experts) develop, tailor and
continuously maintain a specific system for each of a large
number of users. Instead, two mainstream approaches to this
management problem have emerged from recent research that
argue intelligent environments should be programmed and
managed over time after deployment by embedded-agents,
either autonomously by agents or as directly instructed by the
end-user. Autonomous-agent driven systems have the
advantage that they remove the cognitive load from the user,
whilst end-user driven systems have the advantage that, unlike
autonomous agents, the system is not required to guess the
intentions and needs of the user. We, however, believe that a
more ideal system would provide both options for management
using human-agent teamwork. In this paper we explore the
issues with taking an exclusively autonomous-agent or
exclusively end-user driven approach to management,
following on from our previous works [1][2]. Section II
discusses the exclusive approaches of management and

illustrates the problems that one may encounter with them.
Section III presents our architecture model for an Adjustable-
autonomy Behaviour-Based Agent (ABBA). Section IV
explains our prototype system that allows for adjustable
autonomy and we described two trials conducted using the
prototype that demonstrate the plausibility of employing an
adjustable-autonomy agent to manage an intelligent
environment. Finally, Section V gives a concluding discussion.

II. THE MANAGEMENT PROBLEM

In this section we describe the two different approaches of
end-user and autonomous-agent driven management systems
and highlight some issues that may be encountered with them.

When we talk about management, we mean the configuring
(forming topographical connections) and programming
(customising the functionality) of intelligent environments.
Figure 1 shows an abstract view of how a general pervasive
intelligent environment is managed. It shows a controller
(which could be a program, intelligent agents, etc.), the
environment and a user; these are connected in a cycle, which
we will refer to as the management cycle. The management
cycle starts with the user acting in the environment based on
their perceptions and preferences. These preferences are then
captured, either implicitly through autonomous sensing or
explicitly through end-user programming, by the controller,
which drives the effectors and produces actions in the
environment based what it has recorded about the user’s needs.
The cycle is completed by the user perceiving the effects of the
controller’s actions in the environment and responding in some

Figure 1. The management cycle

Presented at ‘Intelligent Environments 2010’, Kuala Lumpur, Malaysia, 19-21 July 2010

© Essex University 2010 2

way, which in turn, leads to cumulative loops around the cycle.

As introduced earlier, in recent research there are two
mainstream approaches to IE management. Firstly, an end-user
driven approach can be taken. In this approach it is the
responsibility of the end-user to program the IE, although the
user of the system may not actually have any knowledge of
computer programming nor any technical knowledge of the
system. To enable the end-user to program the behaviour rules
more easily, an end-user driven approach usually adopts a
simplified programming mechanism, as in [3][4][5]. The
second approach is to make the system autonomous. The
system then employs autonomous-agents to program itself by
learning from the user’s behaviours and interactions with the
environment in context with the current environmental [6][7].
End-user driven and autonomous-agent driven approaches can
be seen as being at two opposite ends of a scale [2][8]. The
Ball Management Contention Diagrams, shown in Figure 2,
illustrate the problems of exclusively using one of these
approaches of management and how these problems might be
overcome by taking a hybrid human-agent teamwork approach.

An end-user driven approach empowers the user, giving
them complete control in managing the system while, an
autonomous-agent driven system disempowers the user
handing complete control over to a collection of agents. In
most situations, producing a system that empowers the user
might seem the logical choice; however, problems can arise in
a fully end-user driven system since the intelligence of the
management system is dependent on the creativity,
intelligence, willingness and ability of the user. This is
depicted in Figure 2(a); the environment and the controller
effectively become one entity; the controller becomes little
more than an interface to the environment and hence the
pervasive intelligent environment relies completely on the user
for it to be adaptable and intelligent. Such a complex system
cannot rely on all users to be creative, intelligent, willing and
able enough to manage the system in all manner of situations;
for example users may be too busy or lose confidence in their
ability from time to time, or users may well have a physical
disability and find it very difficult or even impossible to
interact with the computer devices. In these situations, an
autonomous system is clearly the superior choice; it greatly
reduces the cognitive and sometimes the physical load placed
on the user in programming and managing the system.
Although, issues may also arise in a fully autonomous
management system since there is no direct communication
between the user and agent, as depicted in Figure 2(b); the user
and the agent (controller) are operating separately although
they are effectively working towards the same task – control
the environment to suit the user’s requirements. At some point
the system has to rely on guesswork to assume the user’s
requirements and from time-to-time an agent will inevitably
guesses wrongly, which could be highly annoying to the user or
indeed completely unacceptable. Moreover, if the management
system is operating in an unknown or restricted environment, it
may not be able to get enough information to make a rational
decision or take action, which again may lead to the user’s
displeasure or perhaps a complete failure of the system.

We seek to combine these two distinct approaches and
create a hybrid system in which the end-user and autonomous-

agents (as the controller) work together as a team, depicted in
Figure 2(c). If the user and agent collaborate together, this
reduces the chance of guesswork needing to be done and if
either the user or agent cannot, for whatever reason, manage
the system in the usual way, they can seek help from the other.
This creates an overall more robust and reliable management
system. Also, the user is no longer forced to either manage and
program the environment themselves or be at the complete
mercy of autonomous agents, instead they can manage the
environment at level at which they feel comfortable doing so.

 (a). Separation in an end-user driven system

(b). Separation in an autonomous system

(b). A human-agent teamwork based system

Figure 2. Ball Management Contention Diagrams – An illustration of
problems of exclusive management

Presented at ‘Intelligent Environments 2010’, Kuala Lumpur, Malaysia, 19-21 July 2010

© Essex University 2010 3

III. ENABLING HUMAN-AGENT TEAMWORK THROUGH

ADJUSTABLE AUTONOMY

In this section we consider how we can enable human-agent
teamwork in intelligent environments by employing the
concepts of adjustable-autonomy and mix-initiative interaction
and we present and describe our architecture model for our
Adjustable-autonomy Behaviour-Based Agent (ABBA).

Bradshaw et al. describe adjustable-autonomy as
maintaining “the system being governed at a sweet spot
between convenience (i.e. being able to delegate every bit of an
actor’s work to the system) and comfort (i.e. the desire to not
delegate to the system what it can’t be trusted to perform
adequately)” [9]. That is to say, adjustable autonomy allows an
agent to ‘back-off’ and let the user take control of certain tasks
that would usually be done autonomously, whenever the user
so wishes. A closely related concept to this is mixed-initiative
interaction. Mixed-initiative interaction can be defined as two
or more parties (for example agents and users) each providing a
level of initiative in collaboratively completing a task [9].
Using these two concepts, autonomous systems can be made to
‘share’ their tasks with human users, so that they are completed
as a team. In other areas of AI and robotics, researchers have
successfully applied these concepts to enable human-agent
teamwork in their systems, for example: Allen and Ferguson’s
human-machine collaborative planning system [10] allows
humans and agents to work together to plan the evacuation of
an island and researchers at NASA have developed a mars
rover that allows users to take control of specific subsystems at
any time whilst all others remain operating autonomously [11].

 Figure 3 shows our Adjustable-autonomy Behaviour-Based
Agent (ABBA) architecture model that allows for the agent’s
level of autonomy to be adjusted and enables the user to
collaborate in the creation of behaviour rules in intelligent
environments. It is inspired by the incremental synchronous

learning (ISL) agent developed by Hagras et al. [12]. The
ABBA architecture takes the general form of a behaviour-
based architecture, as pioneered by Brooks at MIT [13]. In
such architectures a number of agent behaviours run in parallel.
A controller is employed to coordinate the behaviours or their
given outputs into one single output to achieve the desired
agent functionality. The ABBA architecture model uses two
sets of behaviour rules: one active set and one potential set.
Each behaviour rule is assigned with a confidence level. A rule
can only have an effect on the environment if it is active and
can only be active if it has a high enough confidence level.
Rules with a low confidence can only be potential behaviour
rules and cannot effect the environment. All behaviour rules
are visible to all components of the agent. The behaviour
arbiter component regulates the behaviour rules; it reduces the
confidence of all rules overtime. If an active rule’s confidence
level drops below a certain threshold, it will drop down into the
potential set and if a potential rule’s confidence level drops
below a very low threshold (zero for example) then it is
deleted. This confidence degradation reduces the chance that
the agent’s memory will become full. The coordinator
regulates/merges the output of all the active behaviours into
one single output so that each behaviour rule effects the
external environment to an appropriate degree. Additionally,
when an active behaviour rule effects the environment the
coordinator increases the level of confidence of that rule, where
the amount increased depends on the degree the rule is
effecting the environment. Thus, the more a rule is used and
the more it effects the environment, the less chance it will have
of dropping into the potential set and ceasing to be active.

To adjust autonomy of ABBA, the amount of confidence
the agent can give to a rule, new or existing, is restricted; both
the user and the agent can program behaviour rules in the
potential set but depending on the level of autonomy the agent
may require the user to add additional confidence to

Figure 3. ABBA – Adjustable-autonomy Behaviour-Based Agent

Presented at ‘Intelligent Environments 2010’, Kuala Lumpur, Malaysia, 19-21 July 2010

© Essex University 2010 4

autonomously programmed rules before they can become
active. Through this confidence based mechanism we can
force the agent to collaborate and hence alter its level of
autonomy. By changing the level of autonomy by explicitly
restricting the agent’s confidence in this way we create a style
of task delegation in which the user can choose to adopt or
delegate a task to a certain degree. One can imagine a sliding-
scale switch (similar to a volume control) that represents the
level of autonomy of management: one end of the scale
represents fully autonomous-agent driven management and the
opposite end represents exclusively end-user driven. The user
could use this theoretical sliding scale switch to explicitly say
to what degree they wish to contribute to a given task, i.e. to
what degree the management should be done autonomously.
To further this analogy, one could imagine the pervasive
intelligent environment being divided up into sub-systems, for
example heating, lighting and security. Behaviour rules could
then be categorised into these sub-systems; thus allowing us to
create a theoretical mixing desk consisting of many sliding-
scale switches to control the level of autonomy throughout the
entire system.

Direct collaboration could also be used in the system to
‘fine tune’ the level of autonomy further. Perhaps the simplest
form of collaboration in our system would be for the agent to
develop a rule and present it to the user for them to accept or
reject it. Here we can say the system is highly autonomous as
it requires a lot of initiative from the agent and little from the
user. In order to reduce autonomy further, we must increase
the level of initiative from the user. This can be done by giving
the user the option of altering the rule before accepting it. The
same choices could also be offered to the agent if a user has
created a rule in a more end-user driven system or if a user
suggests an alteration to a rule generated by the agent. Hence,
we can create a kind of back-and-forth communication in a
way that is quite similar to Allen and Ferguson’s collaborative
planning system [10]. Each participant will be able to suggest
new rules and accept, reject, or alter the others suggested rules.
This collaborative mechanism will allow either participant to
provide varying levels of initiative to the collaboration; the
more a participant makes suggestions for new rules and
alterations to the other’s suggested rules, the more initiative
they provide. Changing the way that the collaborative
mechanism is triggered will help to adjust the level of the
agent’s autonomy. For example, in a more autonomous
system, when an agent generated potential rule’s confidence
level has reached a high enough level, say 75% (i.e. when the
agent has seen the user repeat the same action a number of
times in the environment), the remaining 25% confidence will
have to be gotten from the user before the potential rule can
become active and the agent will start a collaboration. Here,
since the system requires an input from the user, we can say
that the agent is no longer fully autonomous because of an
explicit restriction of its confidence in its own generated rules.
The agent’s level of autonomy is then adjusted further
implicitly in the collaboration depending on the level of
initiative provided by the user; if the user simply excepts the
potential rule we can say the agent operated with a higher level
of autonomy than if the user makes an alteration to the agent
generated rule. In this way we provide an agent architecture
model, in which the level of autonomy is adjusted in two ways:

firstly an initial level is explicitly set by the user (task
delegation) and the level of autonomy can then be adjusted
further implicitly through direct collaboration.

IV. BUILDING A PROTOTYPE AGENT

In this section we describe our implemented prototype
version of ABBA and two trials undertaken that show the
plausibility of employing adjustable-autonomy in intelligent
environments.

In order to test the plausibility of adjustable-autonomy
agents in intelligent environments a prototype version of
ABBA has been implemented using two SunSPOT devices
interfacing with an mDorm. A SunSPOT (Sun Small
Programmable Object Technology) is a small, wireless, battery
powered device based on an ARM processor. Using the
Squawk Java virtual machine, it allows programmers to create
projects that used to require specialized embedded system
development skills easily using java. The hardware platform
includes an ARM processor, a radio, and a range of built-in
sensors as well as the ability to easily interface to external
devices [14]. An mDorm is a miniature intelligent
environment designed to act as a emulator for the Essex iDorm
and iSpace, two real-world intelligent environment test-beds at
the University of Essex described in [1]. The mDorm uses two
sets of lights, a heater and an extractor fan as actuators and is
equipped with temperature and light level sensors. One
SunSPOT, the internal SunSPOT, is connected internally to the
mDorm; this acts as a controller for the mDorm, monitoring
and effecting the current state of the environment directly. The
second SunSPOT, the remote SunSPOT, is external to the
mDorm but interfaces with it through the internal SunSPOT via
a radio communication link. Figure 4 shows a diagram of the
prototype set-up and Figure 5 shows an image of the real setup
with an mDorm connected to PC to provide text-based output,
both the remote and internal SunSPOT devices are circled in
green. Our prototype agent is implemented on the remote
SunSPOT, external to the mDorm, so that it has the potential to
be used with multiple environments (mDorms); this being a
major point of further investigation in upcoming stages of our
research, as described in [1]. The agent prototype has been
implemented as a simplified version of ABBA previously
described in section III, with the agent’s adjustable-autonomy
mechanism being based around a confidence utility. The agent
is able to learn behaviour rules autonomously through
monitoring of user actions in the environment and can also be
programmed with rules directly by a human user using a
programming-by-example methodology [15]. A rule in the

Figure 4. Diagram of the prototype system setup

Presented at ‘Intelligent Environments 2010’, Kuala Lumpur, Malaysia, 19-21 July 2010

© Essex University 2010 5

ABBA system is a mapping of a state to a set of actions, taking
a similar form to:

 IF CurrentState = StateX THEN DO ActionsX (1)

Where StateX describes a context (a set of environmental
conditions) and ActionsX describes a set of actions either leant
by the agent or programmed by the user that reach a desired
environmental state.

The prototype is currently implemented to test the task
delegation form of adjusting autonomy – explicitly setting an
autonomy level, as described in section III. As this is only a
early prototype, the autonomous learning mechanism is an
extremely simplistic form of evidential learning; it learns a
specific behaviour rule upon observing repeated user actions by
increasing the confidence of the rule at each observation of the
same action in the same context (state of the environment). In
order to adjust the agent’s level of autonomy, two of the
agent’s traits are altered: its confidence restriction and its
assertiveness. By placing a boundary on how much confidence
an agent can assign to a rule in total, we limit the level of
initiative provided by the agent in programming behaviour
rules, forcing it to collaborate, and thus the system will require
more initiative from the user and become less autonomous. We
can make an agent more or less assertive by changing the
amount of confidence that an agent can assign to a rule at any
one time (each time it observes the given action). A more
assertive agent will be able to increase the amount of
confidence of a rule more in any single observation of the
given action than a less assertive (more conscientious) agent
can in any one time. Thus, a more conscientious agent will
collect more evidence before programming a rule so that it, one
could say, puts more effort and care into what it programs; this
will use a higher level of initiative in programming than a more
assertive agent and, hence, we can say a more conscientious
agent is more autonomous in programming behaviour rules
than an assertive agent. Figure 6 illustrates the range of
autonomy (depicted by the diagonal line on the graph) along
which our prototype agent can be adjusted: as the agent
becomes increasingly conscientious and less restricted it
becomes more autonomous; conversely, as the confidence
restriction placed on the agent becomes heavier and the agent
becomes more assertive (basing it decisions on less evidence) it
becomes less autonomous.

For simplicity in the prototype, the agent was only
implemented to control lighting in the mDorm based on the
time of day. The time of day was simulated in the mDorm as
being either Morning, Afternoon, Evening or Night; each
period lasting ten seconds (pausing when a user wants to
change settings or program a rule). Two trials were run on the
prototype system to test if the confidence based mechanism can
adjust the autonomy of the agent. In both trials the aim was to
create the following rule so that it belongs to the active set of
behaviours:

 IF CurrentState = “Night” THEN DO SetLightsMax (2)

In the first trial the agent’s autonomy level was set to
100%, meaning it was unrestricted in the total amount of
autonomy it could assign to a rule, so it could program an
active rule with no initiative from the user, but was also very
conscientious, needing to see the same action in the same
context repeated a high number of times (six in this small-scale
experiment) before it could assign full confidence to the
respective rule. In order to complete this trial, the user simply
waited until the Night time period and set the level of the lights
to its maximum allowed value (240), and then repeated this
another five times. The confidence level was then high enough
for the rule to become an active behaviour (i.e. have a
confidence level greater than 90%). Figure 7 gives a sample of
the agent’s text-based output; it shows the agent capturing the
user’s action for the sixth time, the rule becoming active and
finally the agent triggering the rule in the next Night time
period, instructing the internal SunSPOT to effect the

Figure 5. Real-life prototype system setup

Figure 6. Graph illustrating range of autonomy in the
prototype ABBA

 .
 .

Remote Agent Running
Remote Agent Running
User has changed state:..Night: setLightsTo->240
Incresing confidence of rule:..[0] :- Night:
setLightsTo-> 240
 New confidence level is:..96
 Rule is now active!
Remote Agent Running
 .
 .

 [Omitted Text]
 .
 .

Remote Agent Running
Time is :-Night
Trigger rule:Night: setLightsTo-> 240 .
 .

Figure 7. Example output from first trial

Presented at ‘Intelligent Environments 2010’, Kuala Lumpur, Malaysia, 19-21 July 2010

© Essex University 2010 6

environment.

For the second trial the agent’s autonomy level was set to
only 50%. Here the agent should be required to take some input
from the user to be able to program behaviour rules for the
mDorm, as it has a higher confidence restriction (restricted to
50%) and it will also be more assertive than in the previous
trial – it will only require to see an action repeated three times
before it assigns its maximum allowed confidence. To
complete this trial, the user firstly acted in the same manner as
he did in the first trial: waiting until the Night period and
adjusted the lights to maximum. However, after this was
repeated three times, the agent reached its maximum
confidence level and prompted the user to accept or reject the
rule. The user accepted the rule, which then gave the rule the
remaining 50% confidence it needed to become active. The
accept-or-reject decision by the user represents a simplistic
form of collaboration in the ABBA prototype, as describe in
section III. Figure 8 is an example of the text-based output
from the second trial; it shows the agent detecting the action for
the third time and asking the user to accept or reject the rule as
it has assigned the maximum confidence allowed.

In comparison, one can see that in the first trial the ABBA
agent is more autonomous than it is in the second. During the
first trail the agent relied only on its own initiative to program
the active rule and did so by collecting more evidence on which
to base its decision, whereas, in the second trial, the agent used
a lesser amount of initiative, collected less evidence and hence
relied on the additional initiative of the user to make the rule
active. We recognise that this implementation of the ABBA
prototype is extremely simplistic and very limited in its
functionality; however, the success of the trials does
demonstrate the plausibility of adding the extra dynamic of
adjustable-autonomy into a full-scale intelligent environment
and using mixed-initiative interaction to enable human-agent
teamwork.

V. CONCLUSION

The vast majority of previously researched intelligent
environment management systems have taken either an
exclusively autonomous-agent or end-user driven approach.
Although these research efforts have been fruitful, taking such
an exclusive approach will undoubtedly cause problems for
some users and in certain situations as pervasive computing
technology develops further. Hence, we argue that future
management systems of intelligent environments must allow
for human-agent teamwork and adjustable-autonomy. This
will be especially important for users with very specific needs
that can change unexpectedly overtime, such as those with
physical disabilities and deteriorating medical conditions; the
extra dynamic of adjustable-autonomy will enable future
systems to be highly customisable to their users and to be more
robust and reliable in certain situations. In this paper we have
presented ABBA – an Adjustable-autonomy Behaviour-Based
Agent architecture model and discussed our initial prototype
system, built on a smart home emulator, in which the agent’s
level of autonomy can be adjusted by tuning two different
variables: assertiveness of the agent and a maximum
confidence restriction. The successful trials of the prototype

demonstrate the plausibility a fully-functional adjustable-

autonomy intelligent environment.

REFERENCES

[1] Ball, M., Callaghan, V., Gardner, M., Trossen, D., “Achieving Human-
Agent Teamwork In eHealth Based Pervasive Intelligent Environments”,
in Proceedings of 4th International Conference on Pervasive Computing

Technologies for Healthcare 2010, Germany, IEEE Xplore (2010).

[2] Ball, M., Callaghan, V., Gardner, M., Trossen, D., “Exploring
Adjustable Autonomy and Addressing User Concerns in Intelligent
Environments”, in Proceedings of the 5th International Conference on
Intelligent Environments 2009, Spain, IOS Press (2009).

[3] Humble, J., Crabtree, A., Hemmings, T., Åkesson, K.P., Koleva, B.,
Rodden, T., Hansson, P., “’Playing with the Bits’, User-Configuration of
Ubiquitous Domestic Environments”, Proceedings of UbiComp 2003,
Springer-Verlag (2003), 256-263.

[4] Gajos, K., Fox, H., Shrobe, H., “End user empowerment in human
centered pervasive computing”, in Proceedings of Pervasive 2002,

(2002), 1-7.

[5] Chin, J., Callaghan, V., Clarke, G., “An End User Tool for Customising
Personal Spaces in Ubiquitous Computing Environments”, in Lecture
Notes in Computer Science: Ubiquitous Intelligence and Computing,
Springer-Verlag (2006), 1080-1089.

[6] Hagras, H., Callaghan, V., Colley, M., Clarke, G., Pounds-Cornish, A.,
Duman, H., “Creating an Ambient-Intelligence Environment Using
Embedded Agents”, in IEEE Intelligent Systems, Vol.19, No.6, (2004),
12-20.

[7] Mozer, M.C., “Lessons from an adaptive home”, in Smart

Environments: Technology, Protocals and Applications, Wiley (2005),
273-298.

[8] Callaghan, V., Clarke, G.S., and Chin, S.J.Y., “Some Socio-Technical
Aspects Of Intelligent Buildings and Pervasive Computing Research”, in
Intelligent Buildings International Journal, Earthscan, 1:1, (2008).

[9] Bradshaw, J.M., Feltovich P.J., Jung, H., Kulkarni, S., Taysom, W.,
Uszok A., “Dimensions of adjustable autonomy and mixed-initiative
interaction”, in Agents and Computational Autonomy: Potential, Risks,

and Solutions, (M. Nickles, M. Rovatos, and G. Weiss, Ed.), Springer-
Verlag (2004), 17–39.

[10] Allen, J., Ferguson, G., “Human-Machine Collaborative Planning”, in
Proceedings of the NASA Planning and Scheduling Workshop, (2002)

[11] Dorais, G. A., Bonasso, R. P., Kortenkamp, D., Pell, B., and
Schreckenghost, D., “Adjustable autonomy for human-centered
autonomous systems on Mars”, In Proc. Of the First International
Conference of the Mars Society, (1998).

[12] Hagras, H., Colley, M., Callaghan, V., Clark, G., Duman, H. and
Holmes, A., “A fuzzy incremental synchronous learning technique for
embedded-agents learning and control in intelligent inhabited
environments,” in Proc. IEEE Int. Conf. Fuzzy Syst., HI, 2002, pp. 139–
145.

[13] Brooks, R., “Intelligence Without Representation”, in Artificial
Intelligence, (1991) 47:139-159.

.

.

 [Omitted Text]
 .
 .

Remote Agent Running
User has changed state:..Night: setLightsTo->240
Incresing confidence of rule:..[0] :- Night:
setLightsTo-> 240
Autonomous agent has assigned maximum confidence...
Confidence level is now:..50
Do you wish to accept or reject the rule?
Press switch 1 for accept or switch 2 for reject... .
Switch 1 :- User accepts rule
 New confidence level is:..100
 Rule is now active!
Remote Agent Running
 .

Figure 8. Example output from second trial

Presented at ‘Intelligent Environments 2010’, Kuala Lumpur, Malaysia, 19-21 July 2010

© Essex University 2010 7

[14] Sun Microsystems, “Frequently Asked Questions”, in SunSPOT World,
accessed onine March 2010, at www.sunspotworld.com/docs/general-
faq.html

[15] Lieberman, H., “Your Wish Is My Command: Programming By
Exampl”, Morgan Kaufmann, San Fransico (2001).

