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Abstract   
This article examines how emerging pervasive computing and affective computing 

technologies might enhance the adoption of ICT in eLearning which takes place in the home 
and wider city environment. In support of this vision we describe two cutting edge ICT 

environments which we are using as part of this research. The first is iSpace, a specialized 
pervasive computing test-bed taking the form of a two bed-roomed residential apartment 

situated at the University of Essex, the second a sophisticated eLearning platform based in 
Shanghai Jiao Tong University that caters for 17,000 learners. After describing these 

environments we then present our research that explores how emotion evolves during the 
learning process and how to leverage emotion feedback to provide adaptive eLearning 
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system. The motivation driving this work is our desire to improve the performance of the 
educational experience by mediating the delivery of interactive eLearning content to the 

learner based on the learner’s emotional state (e.g. confusion, frustration etc). Finally we 
report on the results about the emotion recognition from physiological signals which 

achieved a best-case accuracy rate of 86.5% for four types of learning emotion. As far as we 
know, this is the first report on emotion detection by data collected from close-to-real-world 

learning sessions. We also reported some finding about emotion evolution during learning, 
which were still not enough to validate Kort’s learning spiral model. 

 

Key Words:  eLearning (e-Learning), affective computing, emotion detection, pervasive 

computing, residential environments 
 

1. Introduction 
 

Pervasive computing and networks is accelerating the adoption and use of information and 

communication technology (ICT) into our everyday lives. Many home feature both internal and 
external networking, making it possible for people to access a huge variety of services from home 

automation to new types of media-based services. One such service is eLearning where learners 
may learn remote from schools, colleges and universities either in the comfort of their own home or 

whilst moving around the city. Lessons can be delivered on a variety of platforms ranging from 
conventional PCs, through IP TVs to mobile phones. Technology and information is a key driver in 

all areas of life from the home, through business to government. Indeed, many describe the modern 
world as knowledge based society(Clarke & Callaghan, 2007). For such a society learning is an 

important tool.  
In this paper, e-Learning means the delivery of a learning, training or education program 

assisted by ICT. In the past decade, eLearning has evolved from Computer-Aided Instruction, 
through Intelligent Tutoring System, to web-based learning, and to blended learning. Today, 

eLearning becomes heavily learner-centered, and therefore emphasizes Pervasive Learning and 
personalized learning technologies. Also known as ubiquitous or ambient learning, pervasive 

learning refers to learning that is available anywhere anytime (Thomas, 2008). To date, in these 
developments, there has been a bias towards the cognitive and relative neglect of the affective. 

Moore (2007) defines that “transactional distance” is a function of two sets of variables, dialog (D) 

and structure (S). The neglect of emotions could increase the transactional distance by decreasing 

the dialogs between teacher and students in both the classroom lecture and distance learning. 
Surveys showed that the lack of affective awareness is a serious problem in e-Learning(Luo, Wan, 
& Wu, 2006). Of course nobody denies the role of ‘affect’ or emotion in learning. Certainly 

teachers know that it plays a crucial role in motivation, interest, and attention. Research (Isen, 2000) 

has demonstrated, for example, that a slight positive mood does not just make you feel a little better 

but also induces a different kind of thinking, characterized by a tendency towards greater creativity 
and flexibility in problem solving, as well as more efficiency and thoroughness in decision making. 

These findings underscore the important effects of emotions on learning. Human brain is not just as 
a purely cognitive information processing system, but as a system in which both affective functions 

and cognitive functions are inextricably integrated with one another. 

The term affective computing was coined by Picard 1995  in the mid 90s to describe 

computer methods that are related to, derived from or deliberately designed to influence, emotions. 

It involves two areas: emotion synthesis used to artificially imitate some of the physical or 
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behavioral expressions associated with affective states, and emotion analysis which is often 
employed in decision making for interactive systems. Emotion synthesis is useful to develop ways 

to communicate with humans at a subjective level involving social participation, for example using 
robots. Emotion analysis could be used to monitor the emotional state of a subject, taking actions 

based on the type of individual feeling being experienced. Some computing systems are capable of 
displaying immediate reactions to people’s feelings by incorporating a combination of both emotion 

detection and emotion synthesis(Garzon, Ankaraju, Drumwright, & Kozma, 2002; Morishima, 
2000). As Picard and colleagues (2004) stated, most research on emotions has not touched upon 

learning. Therefore, “existing and future affective and cognitive research needs to be adapted and 
applied to actual learning situations. Thus far, most research on emotions does not bridge the gap to 

learning.”  
In this paper we describe a state of the art eLearning platform based in Shanghai Jiao Tong 

University (SJTU) and we have augmented this with research from a domestic intelligent home at 
Essex University: the iSpace. In particular, we will discuss how physiological based emotion 

sensing used initially for intelligent embedded agents is being integrated with the SJTU elearning 
system. The goal of this project is to improve the performance of the educational experience by 

mediating the delivery of interactive eLearning content to the learner based on the learner’s 
emotional state (e.g. confusion, frustration etc). In addition to difficulties associated with the 

complexity of the content, our remote learner’s experience stresses relating to their environment 
both of which are ignored in current eLearning systems but this work would address, as a 

consequence, should lead to better learning experiences and wider adoption of this technology. 
This article describes the development of an affective eLearning model, and demonstrates the 

machine’s ability to recognize learner emotions from physiological signals. The remainder of the 
paper is structured as follows. After introducing related work in section 2, section 3 introduces our 

existing e-Learning platform and residential pervasive environment. Section 4 describes our 
combined emotion and eLearning architectural model and its theoretical foundations whilst Section 

5 presents the preliminary experiments, emotion classification and data analysis. Finally in section 6 
we summarize our findings and describe our future work plans. 

 

2. Related Work 

The rapid evolution of ICT has led to new ways of learning and education. They can enable 

distance learners at home to receive and interact with educational materials and resources and to 
engage with teachers and peers in ways that previously may have been impossible. The survey 

information from the National Center for Education Statistics(NCES, 2006) reveal that the weighted 
estimate of the number of students being homeschooled in the United States in the spring of 2003 

was 1,096,000, a figure which represents a 29 percent increase from the estimated 850,000 students 

who were being homeschooled in the spring of 1999 with the percentage of the student population 

being homeschooled rising from 1.7 percent in 1999 to 2.2 percent in 2003. Within the 
homeschooled students in 2003, more than 41% students had engaged in some sort of distance 

learning. The newest survey from China Internet Network Information Center(CNNIC, 2007) 
collected data from 137.0 million Internet users. The results reveal that about 60% hosts are 

connected through broadband; 55% users are in the 18~30 age group which are the promising ages 
for learning; 76% users access Internet from home; 14.3% users access Internet for online education, 

rising from 6.3% in 2005, and 67% users who never take online education will surely or possibly 
accept online education.    
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The extension of cognitive theory to explain and exploit the role of affect in learning is, at best, 
in its infancy (Picard et al., 2004). Kort (2001) proposed a four quadrant learning spiral model in 

which emotions change while the learner moves through quadrants and up the spiral which, whilst 
offering a method for correlating emotions with learning, to the best of our knowledge has not been 

empirically validated. He also proposed five sets of emotion that may be relevant to learning, but, 
no empirical evidence exists to confirm the effects these emotions on learning. If this model could 

be proved, it would be important to computer based learning systems as it would offer a means to 
track the process of the learning, mediating the delivery of educational content to better match their 

progress. For these reasons we felt it important to investigate the available literature in detail and to 
try to validate the Kort learning spiral. The Affective Computing Group at MIT’s Media Lab is 

investigating the interplay of emotion, cognition, and learning as part of its “Learning Companion” 
project. This project is developing an ‘affective companion’ prototype that will provide emotional 

support to students in the learning process, assisting them by helping to alleviate frustration and 
self-doubt (Burleson, Picard, Perlin, & Lippincott, 2004). Studies carried out by the AutoTutor 

Group discovered a link between learning and the affective states of confusion, flow and boredom 
(Craig, Graesser, Sullins, & Gholson, 2004). According to Fowler’s work, the relationship between 

learning performance and the arousal is a type of inverted-U curve(Fowler, 1977). Emotion can also 
affect learner motivation (Keller & Suzuki, 1988). For user emotion modeling, researchers and 

developers widely refer to Russell’s (1980) two-dimension ‘circumplex model of affect’, where 
emotions are seen as combinations of arousal and valence. The OCC (Ortony, Clore, & Collins, 

1990) model has established itself as the standard appraisal model. This model specifies 22 emotion 
categories based on emotional reactions to situations constructed either as being goals of relevant 

events, as actions of an accountable agent, or as attitudes of attractive or unattractive objects. Conati 
and Zhou are using the OCC theory explicitly for recognizing user emotions in their educational 

game Prime Climb (Conati & Zhou, 2002). Katsionis and Virvou adapted OCC theory to model 
students’ emotions when they played an educational game (Katsionis & Virvou, 2005). Emotions 

are also used to design and model learning content. Papert(Papert, 1996) conducted a project that he 
described as ‘Instead of trying to make children love the math they hate, make a math they’ll love’ 

to design things-to-learn so as to elicit affect in ways that will facilitate learning. Beyond education 
applications, video content with emotion tags were modeled to support personalization that can be 

used for applications such as the automatic generation of ‘video highlights’ or personalized 
recommendations for video films(Hanjalic & Xu, 2005). Finally, a useful concept known as an 

‘affective loop’ that is defined as “an affective interaction process or cycle where emotion plays an 
important role in interaction involvement and evolution” which is being evaluated using a mobile 

messaging service, eMoto, which supports the use of affective gestures. 
Emotion recognition is one of the key steps towards affective computing. Many efforts have 

been taken recently to recognize emotions using facial expressions, speech and physiological 

signals (Cowie et al., 2001; Healey, 2000; Picard, Vyzas, & Healey, 2001). The identification and 

classification of emotional changes has achieved results ranging from 70~98% on six categories of 
facial expressions exhibited by actors (Bassili, 1979) to 50-87.5% for speech recognition(Nicholson, 

Takahashi, & Nakatsu, 2000). In physiological emotion detection some of the best results have been 
achieved by Healey(Healey, 2000) with 80~90% correct classification for 8 emotions, Haag et 

al.(2004) 90% for 3 valence states and Picard et al. (2001) with 81% for 8 emotions. It is suggested 
however that, because physiological measures are more difficult to conceal or manipulate than 

facial expressions and vocal utterances, and potentially less intrusive to detect and measure, they are 
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a more reliable representation of inner feelings and remain the most promising way for detecting 
emotions in computer science (Picard et al., 2001).  

 

3. Background 
The work reported in this article is based on the integration of an emotion sensing system used 

to augment the operation of an artificial intelligent system invented in University of Essex known as 
the iSpace (formally iDorm), with a massive e-Learning test bed in Shanghai. The Shanghai test bed 

consists of a large number of (hundreds) distributed smart classrooms, tens of thousands of enrolled 
students, and thousands of mobile phone users. 

 

The Pervasive eLearning Platform Developed in Shanghai 
Pervasive eLearning Platform is one type of eLearning platforms that provide “always on” 

education. It aims to support pervasive learning environments where learning resources and tools 
could be accessed by students anytime anywhere. It differs from the previous platforms by using 

wireless computing and pervasive computing technologies. The pervasive eLearning platform 
(figure 1) developed at the Network Education College of Shanghai Jiao Tong University delivers 

fully interactive lectures to PCs, laptops, PDA, IPTV and mobile phones. The core of the platform 
includes a number of "smart classrooms" distributed around Shanghai, the Yangtze River delta, and 

even in remote western regions of China such as Tibet, Yan’an, Xing Jiang and Nin Xia. They are 
equipped with numerous smart devices/sensors and specially developed software. For example, the 

touch screen of the room displays presentations (e.g. PowerPoint), while also acts as a whiteboard 
for handwriting. The instructor can write on materials projected on the screen using a laser E-Pen. 

To optimize the video quality, a pan-camera can follow the instructor when he/she moves around in 
the classroom. RFID (Radio Frequency IDentifier) tags are used to identify and track students. 

Another tracking camera is mounted in the front of the classroom and it captures students’ attention 
status by recognizing the ‘blink frequency’ of their eyes. During the class session, instructors can 

load their pre-prepared PowerPoint and Word documents and write on the whiteboard (even when 
they are away from the whiteboard). The students can also write individual notes on the instructors’ 

handwriting window. All these live lecture scenes can be recorded and archived for later review. 
Using this hi-tech environment, the teacher can move freely, demonstrate his body language, and 

interact with learners as naturally and easily as in a traditional face-to-face classroom. 
The Network Education College has about 16,000 Students, and 99% of them are working 

professionals who attend school part time. Their academic backgrounds, knowledge, and skills vary 
a great deal. Given such diversity, it is important to provide personalized learning services. The 

Shanghai system has harnessed data mining technologies to organize learning communities and 

provide learning content recommendation based on student profiles (L. P. Shen & Shen, 2005; R. 

M. Shen, Yang, & Han, 2003). The large number of students in this College and its expansive 
course delivery systems make it a perfect place to test new and emerging technologies.  

 
Insert ---- Figure 1 Pervasive eLearning Platform in Shanghai------ about Here 

 

The iSpace Pervasive Environment Test bed in Essex  

The intelligent Space (iSpace) (Callaghan et al., 2004) is a cutting-edge test bed, based at Essex 

University, for pervasive computing and intelligent environment work. iSpace is a full-size two-
bedroom home containing the usual rooms for sleeping, working, eating, washing, and entertaining 

(figure 2). This intelligent home has many networked systems ranging from building utilities to 
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information and media services. To shield users from the technical complexities of programming 
distributed computer systems, intelligent agents are employed to act on the user’s behalf. Occupants 

of the iSpace utilize a variety of services, including eLearning (the iSpace is University based, and 
occupants are frequently learners). Thus iSpace and the Smart Classroom share much in common. 

 
Insert ---- Figure 2 the iSpace Pervasive Environment Test bed in Essex ------ about Here 

 
In previous iSpace based work, there developed a real-time emotion detection system, which 

achieved an 85.2% correct recognition rate in recognizing three emotional valences (neutral, 
positive, and negative) from physiological signals(Leon, Clarke, & Callaghan, 2007). The emotion 

detection system comprises an eXperimental Vital-sign-based Emotional State Transmitter (X-Vest), 
a wearable artifact capable of communicating the wearer’s emotional state in real time using 

wireless technologies. The X-Vest integrates a finger clip with built-in sensors providing 3 
physiological signals, i.e., heart rate (HR), skin resistance (SR) and blood volume pressure (BVP). 

When this emotional sensing technique was applied to the agents controlling the iSpace systems, the 
number of times users disagreed with the agents settings dropped by a factor of two (Leon et al., 

2007). 

 

4. Model, Rational & R&D Strategy 
Our affective eLearning research involves empirically validating theory of emotions that could 

be used to build an affective eLearning model. The goal is to understand how learner’s emotions 
evolve during learning process, with the aim of being able to develop learning systems that 

recognize and respond appropriately to emotions exhibited by learners. The research consists of 
three main steps:  

1. To explore the potential for physiological sensing and emotion evolution for remote learning. 
2. To develop an affective learning model to combine emotion with the pervasive eLearning 

platform in Shanghai eLearning test bed. 
3. To evaluate and augment the affective learning model that integrates learning and emotion 

into educational practice. 
Step one is the theoretical basis for the second and third steps and forms the primary focus of 

the work reported in this paper. 
Picard (2004) stated, “Theories of affect in learning need to be tested and evolved. However, 

there is still very little understanding as to which emotions are most important in learning, and how 
they influence learning. To date there is no comprehensive, empirically validated, theory of emotion 

that addresses learning”. To fill in this tremendous gap between theory and practice, we examined 
several of the existing emotion theories in learning, so as to help construct our affective eLearning 

model. In the experiment reported in this article, we used Russell’s ‘circumplex model’ to describe 

user’s emotion space. We then used the emotion data detected during learning process to explore the 

affective evolution and empirically validate Kort’s ‘Learning Spiral Model’. Following is the 
description of these models and our ongoing research on the  affective e-Learning model. 

 

Models about Emotions in Learning 
Russell’s Circumplex Model of Affect 

In our search for an emotion theory we have focused on dimensional models because they cover 

the feeling of emotional experience both on a low level and a higher, cognitive level. One well 
established dimensional model is Psychologist Russell’s circumplex model of affect(Russell, 1980) 
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where emotions are seen as combinations of arousal and valence (figure 3). In Russell’s circumplex 
model of affect, emotions are distributed in a system of coordinates where the y-axis is the degree of 

arousal and the x-axis measures the valence, from negative to positive emotions. This model focuses 
on subjective experiences, which means emotions within these dimensions might not be placed 

exactly the same for all people. In fact, Figure 3 shows the author Russell’s own dimensional model 
of emotion. 

While Russell provides a comprehensive set of emotions, these are not well matched to our 
more focused application of learning, and are too many for learning we intend to use as part of our 

evaluation. Based on Kort (2001) proposed five sets of emotions relevant to learning, we chose a 
carefully selected subset we think the most important and highest frequency as the basic emotions 

for learning namely, interest/curiosity, engagement, confusion/comprehension, frustration, boredom 
and hopefulness/optimism. At this stage it is not clear that we have the optimum set for our needs, 

rather this is a starting point and undoubtedly this emotion set may evolve or take many 
investigations before it is well established. 

 
Insert ---- Figure 3 Russell’s circumplex model of affect--------- about Here 

 
Kort’s Learning Spiral Model 

Kort (2001) proposed a four quadrant learning spiral model in which emotions change while the 
learner moves through quadrants and up the spiral (figure 4). In quadrant I the learner is 

experiencing positive affect and constructing knowledge. At this point, the learner is working 
through the material with ease and has not experienced anything overly puzzling. Once 

discrepancies start to arise between the information and the learner’s knowledge structure, they 
move to quadrant II, which consists of constructive learning and negative affect. Here they 

experience affective states such as confusion. As the learner try to sort out the puzzle but fails, he 
might move into quadrant III. This is the quadrant of unlearning and negative affect, when the 

learner is experiencing emotions such as frustration. After the misconceptions are discarded, the 
learner moves into quadrant IV, marked by ‘unlearning’ and positive affect. While in this quadrant 

the learner is still not sure exactly how to go forward. However, they do acquire new insights and 
search for new ideas. Once they develop new ideas, they are propelled back into quadrant I; thus, 

concluding one cycle around the learning spiral of Kort’s model. As learners move up the spiral, 
cycle after cycle, they become more competent and acquire more domain knowledge. 

 

Insert ---- Figure 4 Kort’s Learning Spiral Model--------- about Here 

 

Towards the Affective eLearning Model  
The work described here focuses on how, when we have got the emotion states, we can make 

sense of and make use of this information to build an affective eLearning Model, which should 
support either synchronous classroom education or asynchronous self learning. We have built the 

following two prototypes to explore affective eLearning Model. 
Emotion-aware Smart Classroom. Smart Classrooms are the core of the pervasive eLearning 

platform. Expert teachers are able to recognize the emotional state of their students and respond in 
ways that positively impact on learning, but in the eLearning case, there are large numbers of 

remote students in distributed classrooms and mobile users; thus the challenge is, how could a 
teacher circumvent this? We provided a solution for such problems via the incorporation of 

students’ emotional information into the pervasive eLearning platform. Firstly we simply feedback 
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the students emotions back to the lecturer in real-time, that the lecturer would adapt the lecture 
style, speed and content based on the students’ emotional statistics. As emotion plays an important 

role in interaction involvement and evolution, the teacher should be aware of the students’ 
emotional states (and emotional footprint) when organizing group discussions so as to enhance the 

information flow within the group by smoothing the emotion flow. We are collecting data to 
investigate the computational model of emotion-aware group interaction dynamics. 

Emotion-aware Adaptive Content Delivery. Based on our previous work (L. P. Shen & Shen, 
2005), we built a prototype to provide personalized service based on the learner’s emotions. The 

aim of this prototype is to incorporate the learner's emotional states together with the learner's 
cognitive abilities, and his/her learning goals, to generate appropriate responses to the learner. We 

are using the prototype to explore the interaction between the user and learning system, to detect 
user emotional responses to system behavior, and to eventually provide adaptive and personalized 

service to the learner. 
 

4. Preliminary Experiments and Results 
We use the same method as Picard (Picard et al., 2001) that data was gathered from a single 

subject over many weeks of time, and at two different places (one in UK and another in China), 

standing in contrast to efforts that examine many subjects over a short recording interval(usually 
single session on only one day). Although this is limited to one subject, the data set is larger than 

those used in traditional affect recognition studies involving multiple subjects. There are many 
reasons to focus on one subject in the preliminary experiment. Ekman (Ekman, Levenson, & 

Friesen, 1983) acknowledge that even simply labeled emotions like “joy” and “anger” can have 
different interpretations across individuals within the same culture; so subjects might elicit different 

physiological patterns for the same emotion. When lots of subjects have been examined over a short 
amount of time, researchers might have difficulty finding significant physiological patterns in part 

because physiology can vary subtly with how each individual interprets each emotion. By using one 
subject, we tried to focus on the same personal interpretation of the emotions, and could learn the 

affective evolution during the long experiment period. For pervasive/personal computing 
applications, we desire the machine to learn an individual’s patterns, and not just some average 

response formed across a group, which may not apply to the individual. However, the methodology 
for gathering and analyzing the data in this paper is not dependent on the subject; the approach 

described is general. 
The subject in our experiments was a healthy female PhD student. The preliminary experiment 

was firstly carried out in the intelligent inhabited environment, iSpace of Essex University, and later, 
in the e-Learning lab of Shanghai Jiaotong University. This experiment focused on gathering 

physiological data for real-time emotion detection, and to explore the affective evolution during 

learning. 

 

Experimental Method / Gathering Affective Data 
Collecting good affective data is crucial to the results of the experiment; however, this is usually 

not as easy as in the computer vision or speech recognition. Cameras and microphones are reliable 
and easy to use, but there are factors influence the reliability of the bio-sensors. For example, 

whether or not the subject just washed her hands, how much gel she applied under an electrode, 
how tight the electrodes were placed, and even the humidity could affect the readings. What’s more, 

emotion is subjective reaction to the environment, and people might not be totally aware of their 
feelings that the ground truth of the data is uncertain at some time.  
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We carefully design the experiment to obtain high quality physiological data for affect analysis. 
The subject sit in her quiet comfortable lab, learning as usual, the emotion was elicited naturally 

according to the situation, and the subject reported her own emotion by selecting one of the four 
emotions whenever she felt any change, which was used to label the data. The materials she read or 

watch was on her own selection with the only requirement that the difficulty level should be 
moderate. This set-up is more natural and closer to the real world, contrasting to those using guided 

imaginary technique (Clynes, 1977) and classified emotion picture set (Center for the Study of 
Emotion and Attention, 2001) in many experiments, where emotions were subject-elicited, and 

might be just external expressions instead of internal feelings, and the presented emotions might be 
different from expected emotions.  

Though we select 8 frequently occurred emotions in our eLearning model, in this preliminary 
experiment, we only focus on 4 distinctly different emotions: engagement in the quadrant I of 

Russell two-dimensional affective model (positive valence, high arousal), confusion in quadrant II 
(negative valence, high arousal), frustration in quadrant III (negative valence, low arousal), and 

hopefulness in quadrant IV (positive valence, low arousal). 
The first data set was collected in iSpace where the subject lived and worked for 4 months. 

During the experiment, she wore the X-Vest which provided the valence value and data from three 
raw biosensors (Skin Resistance (SR), Heart Rate (HR) and Blood Volume Pressure (BVP)). An 

UPnP control point was used to collect data from the X-Vest UPnP Device every 2 seconds (the 
sample rate was adjustable by the experimenter via a menu; the base rate that the X-Vest sent data 

was once a second). The subject was asked to conduct the experiment twice a day for 5 days, 
wearing the X-Vest while she was learning. Each session lasted at least 40 minutes. 10 learning 

sessions were collected. All the raw data, valence, and self reports were recorded together with time 
tag in a data file for further study and analysis. 

The second data set was collected in e-Learning lab SJTU where the subject was studying for 
her PhD. Data were gathered from three sensors:  a skin conductance (SC) sensor measuring 

electrodermal activity from the middle of the three segments of the index and ring fingers on the 
palm side of the left hand, a photoplethysmyograph measuring blood volume pressure (BVP) placed 

on the tip of the middle finger of the left hand, and a pre-amplified electroencephalograph sensor 
measuring EEG activity from the brain whose electrodes were placed on PCz, A1 and A2 according 

to the 10-20 International System of Electrode Placement. In our case, three EEG electrodes were 
sufficient (Lévesque, 2006). Sensors and sampling were provided by the Thought Technologies 

ProComp5 suite, chosen because the suite was small enough to attach to a wearable computer. 
Signals were sampled at 256 Hz. The ProComp5 could automatically compute the heart rate (HR) as 

a function of the inter-beat intervals of the blood volume pressure, BVP and could separate different 

kinds of brainwaves into , , , low and high with filters. The frequencies and relationships 

with emotion of each brainwave were listed in Table 1. Totally 18 40-minute sessions were 

conducted within two weeks experiment. Each sample of data set II comprised 3 raw data (SC, BVP, 
EEG), the HR from BVP, 5 brainwaves from EEG, 5 power percentages of the brainwaves and the 

label with time tag.  
 

Insert ---- Table 1 Brainwaves and Their Relationship with Emotion--------- about Here 

 

Data Preprocessing and Feature Extraction 
For the data collected, data set I had totally 12000 samples and data set II had totally 11059200 

samples. For data set II such big data set would make data training and data classification very time-
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consuming. According to the fact that emotion won’t change so frequently as much as 256Hz, we 
fuse n samples into 1 sample to make it more efficient. We used very simple fusion algorithm that 

we computed the mean of the non-oscillating signals (SC, BVP, HR, the power percentages of the 5 
brainwaves) and the FFT (Fast Fourier Transform Algorithm) of the oscillating signals (EEG, 5 

brainwaves from EEG) as the corresponding values of the resulting sample.  Finally We got 1 
sample every 1 second When n=256 and we got 1 sample every 8 seconds when n=2048.  

Because the signals involved have different and complex sources, and different value ranges, we 
explore a feature-based approach to classification at the same time. The third kinds of samples were 

the features we extracted over 60-second raw samples with same label. Let represent the value 

of the n
th

 sample of the raw signal,  refer to the normalized signal (zero mean, unit variance): 

 

Where  and  are the means and standard deviations of X as explained below. Following are 

six statistical features we investigated: 
1. the means of the raw signals 

                                              (1) 

Where N is the number of the raw samples within 60 minutes 

2. the standard deviations of the raw signals 

                    (2) 

3. the means of the absolute values of the first differences of the raw signals 

                              (3) 

4. the means of the absolute values of the first difference of the normalized signals 

                                (4) 

5. the means of the absolute values of the second differences of the raw signals 

                                (5) 

6. the means of the absolute values of the second differences of the normalized signals 

                                  (6) 

The features (1) ~ (6) were chosen to cover and extend a range of typically measured statistics in the 

emotion physiology literature(Vyzas & Picard, 1998). One advantage of this features is that they 
can easily be computed in an online way (Vyzas & Picard, 1999), which makes them advantageous 

for real-time recognition systems. However, the statistical features do not exploit knowledge we 

have about the physical sources of the signals. Factors such as hand washing, gel application, and 

sensor placement can easily affect the statistics. These influences combine with the subject’s daily 
mood and with other cognitive and bodily influences in presently unknown ways, making them hard 

to model. In an effort to compensate for some of the non-emotion-related variations of the signals, 
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let hX refer to the smoothed sample set after applying a Hanning window h (Oppenheim, Schafer, 
& Buck, 1998), hX=X*h, we also compute another set of 3 physiology-dependent features: 

7. the means of the hX 

                                     (7) 

8. the means of the first difference of the hX 

                 (8) 

9. a form of contrast normalization of the hX 

                        (9) 

 
We computed features (1) ~ (6) over the 8 non-oscillating signals (SC, BVP, HR, the power 

percentages of the 5 brainwaves) and computed features (7) ~ (8) over SC and HR, and computed 
features (9) over SC, finally we got 53 features every 60 seconds. 

 

Classification and Results 
We have got one sample sets for data set I (one sample every 2 seconds) and three sample sets 

for data set II: one sample every 1 second, one sample every 8 seconds, and one 53-feature sample 
every 60 seconds. The 53 features was reduced and selected with Fisher Projection (Duda & Hart, 

1973). And then two pattern classification methods were tested: support vector machine (SVM) and 
K-nearest neighbor (KNN).  

SVM maps training vectors into a higher dimensional space and then finds a linear separating 
hyperplane with the maximal margin in this higher dimensional space. The mapping function is 

called the kernel function. We selected to use the radial basis function (RBF) kernel:  

                     (10) 

The problem of SVM then requires the solution of the following optimization problem:  

   (11) 

Where is the number of samples is in the training set, is the 

attributes,  is the label. 

By using the software LIBSVM (Chang & Lin, 2007), we first find the best parameter C 

and with cross-validation, then use the best parameter C and  to train the whole training set, and 

finally test over the testing set.  KNN was tested with k=1~10 with native MATLAB functions. 

 
Results of the classification 

The results we obtained by applying the methods described above on data set I and data set II 
are listed on Table 2 and Table 3. From Table 2 we could see that when we added the valence just 

used the three raw SC, BVP and HR signals, the recognition rates by LibSVM and KNN were 
67.4% and 58.2% respectively, but when we added the valence information input from the X-Vest 

which achieved 85.2% correct rate, the rates rise to 81.8% and 77.3% respectively. This is no 
surprising because valence was also computed from SC, BVP and HR, using a UK patent 
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classification technology that adding it to the final classifier formed a two-layer classifier. For data 
set II, when we just used SC, BVP and HR attributes, the rates are 68.6% and 59% by SVM and 

KNN, and when we just used the power percentages of 5 EEG brainwaves, the rates are 66.1% and 
60.3%; but when we used these two groups of attributes together, the rates are as high as 86.5% and 

76.0% respectively. From Table 3 we found that the brainwave power percentages contributed more 
than the sheer EEG powers from FFT, and the raw data were better than feature extraction in this 

case. 
 

Insert ---- Table 2 Recognition Rates of Four Learning Emotions for Data Set I --------- about Here 

Insert ---- Table 3 Recognition Rates of Four Learning Emotions for Data Set II --------- about Here 

 
Emotion Evolution Results 

Kort (2001) suggested that learning behavior would manifest itself in a spiral-like form i.e. a 
series of linked cycles separated in time. In order to learn how emotion evolves during learning the 

subject’s emotion was displayed, in real time on a colored four quadrant diagram (colors are often 
used to express arousal, where red represents emotions with high arousal and blue is calm and 

peaceful (Fagerberg, Ståhl, & Höök, 2004) (figure 6). From the emotion distribution (Table 4) for 
all the 55200 samples (data set I + 1 sample every one second data set II ) of 28 learning sessions, 

engagement and confusion are the most important and frequently occurred emotions in learning, 
and frustration is the least. We believe that the emotion distribution is related to the learning content. 

If the learning content is too difficult for the subject, then there should be more confusions and 
frustrations. This distribution result is reasonable because the learning content was selected by the 

subject herself and the difficulty level was moderate. The transition distribution (Table 5) showed 
that there were a lot of turns between engagement and confusion in both directions, and then a lot 

from confusion to frustration, hopefulness to engagement, from confusion to hopefulness, and from 
frustration to hopefulness in frequency order. There occurred one loop during single session and 

two loops spanning two successive sessions. But there were more quasi-loops running through 3 
quadrants within minutes (figure 6). Kort (2001) didn’t provide any information about the loop 

duration(seconds, hours). From our experiment, there were shorter loops within several minutes and 
longer loop more than 40 minutes. Of all the 28 learning sessions there are only three loops and 

some other quasi-loops which couldn’t prove the Kort’s learning spiral model. But we believe that 
from macroscopically view there might be some emotional loops during learning a knowledge or set 

of well-structured knowledge, which need further study to validate. However, we hope these initial 
results will prove encouraging to others who have speculated on this relationship and hopefully will 

motivate more detailed work on this aspect.  
 

Insert ---- Figure 5 Affective Loop during Learning Process--------- about Here 

Insert ---- Table 4 the Emotion Distribution for All the 55200 Samples --------- about Here 

Insert ---- Table 5 the Transition Distribution for All the 147 Emotion Transitions ------ about Here 
 

5. Conclusion 
The motivation for this work was to improve the performance of the eLearning experience by 

mediating the delivery of interactive content to the learner based on sensing and responding to the 

learners emotional state (e.g. engaged, confused, frustrated etc). This paper describes the first steps 
towards realizing this vision by proposing an affective e-Learning model that makes use of 

physiological signals to sense emotion evolution during learning. We gathered physiological data 
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from one subject in two different places over many weeks achieving a best-case classification rate 
of 86.5% which was yielded by SVM with raw data. This opens up a number of possibilities, such 

as providing emotional feedback to teachers or e-Learning systems for remote learners. As far as we 
know, this is the first report on emotion detection by data collected from close-to-real-world 

learning sessions. The correction rate is even better than those in lab-setting ones, for example, 81% 
for 8 emotions(Picard et al., 2001). When brainwave signals were added to the other peripheral 

physiological data, the classification rate rose significantly from 68.6% to 86.5%, this suggested 
that there are close relationships between brainwaves and emotions during learning. From our 

experiment, we couldn’t find sufficient empirical evidence of Kort’s affective learning spirals, but 
this won’t influence our research on emotion evolution during learning, which is the basis which of 

more formal analysis and sophisticated automated management of affective online learning. Other 
noteworthy observations included that engagement and confusion were the most important and 

frequently occurred emotions in learning, and that using the power percentages of brainwaves 
yielded better results than using the sheer FFT powers of brainwaves.  

The results reported in this paper stem from first-stage studies of a much longer term research 
program. Whilst such results are very encouraging, and may have proved some basic principles, 

they still need further refinement. In particular we flag the following issues for future research:  

 Kort’s learning spiral model is restricted to a constructive approach and it needs to be 

broadened out to include other ‘types’ of learning process as suggested in (Fowler & 
Mayes, 1999). 

 The experimental lessons used to evaluate this model needs to be more formally designed to 
reveal learning behaviours, be more diverse and representative (in this paper we were 

simply concerned about proving the underlying principle, but to take this analysis further, 
the learning material need to be more formally designed) 

 The multi-modal pattern analysis of signals from face, voice, body and the surrounding 
situation is likely to achieve better emotion recognition results which we will investigate in 

the next step.  
 We have built two prototypes to leveraged the emotion detected, but there still need further 

investigations to establish a affective e-Learning model combining emotion feedback with 
the existing pervasive e-Learning platform. 

 There are factors, other than learning, that could influence emotion; for example, who you 
are learning with; what you are learning; how are you learning; where you are learning; 

why you are learning and so on. It may be that combining these variables at the right degree 
is the key to a better affective learning model. 

Our current experiments are based only on one participant; clearly, to make the results more 

reliable, we would need to have a bigger and more controlled sample. However, we contend, the 

value of our work is to demonstrate that the general principles involved are feasible hopefully via 
these encouraging initial results, motivate a more detailed study. The results we obtained with this 

data may not be the same for other subjects. However, the methodology for gathering and analyzing 
the data in this paper is not dependent on the subject; the approach described in this paper is general.  

As is clear from our discussion, in this paper we are reporting results from the first phase of a 
much longer term research program. Our immediate aims are to design structured learning material, 

and gather data from more participants. Next we plan to research on and develop the affective 

learning model. And consider wider issues, such as the role of psychological state in the learning 

process. Finally we aim to deploy this model in the Shanghai eLearning platform and evaluate it 

with real learners.  Our hope is that this work should lead to better learning experiences and 
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wider adoption of this technology. We will look forward to reporting on this work as it moves 

from research to real deployment over the coming years. 
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Figure 1 Pervasive eLearning Platform in Shanghai 
 

 
 

 
 

Figure 2 the iSpace Pervasive Environment Test bed in Essex 
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Figure 3 Russell’s circumplex model of affect 
 

 

 
Figure 4 Kort’s Learning Spiral Model 
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Figure 5 Affective Loop during Learning Process 
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Table 1: Brainwaves and Their Relationship with Emotion 
 

Wave Type Frequency When wave is dominant 

 Delta 0-4 Hz Deep sleep 

 Theta 4-8 Hz Creativity, dream sleep drifting thoughts 

 Alpha 8-13 Hz Relaxation, calmness, abstract thinking 

Low  Beta 15-20 Hz 

High  Beta 20- 40 Hz 

Relaxed focus. High alertness, mental activity. Agitation, 

anxiety 

 

Table 2: Recognition Rates of Four Learning Emotions for Data Set I 
 

Attribute Space LibSVM KNN 

SC,BVP,HR  67.4% 58.2%  

SC, BVP, HR, valence 82.5% 77.3% 

 
Table 3: Recognition Rates of Four Learning Emotions for Data Set II 

 

Attribute Space LibSVM KNN 

SC,BVP,HR 68.6%(1s) 59%(8s) 

EEG power% for Brainwaves 66.1%(1s) 60.3%(8s) 

SC,BVP,HR EEG power% for 

Brainwaves 

86.5%(1s) 76.0%(8s) 

SC,BVP,HR EEG FFTs 63% (8s) 59% (8s) 

52 Features Subsets (60s) 80.5% 73.7% 
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Table 4: The Emotion Distribution for All the 55200 Samples 
 

emotions sample numbers percentage 

engagement 19892 36.0% 

confusion 18321 33.2% 

frustration 5769 10.5% 

hopefulness 11218 20.3% 

Total: 55200 100% 

 
 

Table 5: The Transition Distribution for All the 147 Emotion Transitions 
 

transitions       to 

from 
engagement confusion frustration hopefulness 

engagement  52 2 3 

confusion 32  13 10 

frustration 6 5  7 

hopefulness 12 1 3  

 


