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Abstract 

In this paper we introduce the concept of an iSurface; a 

surface coated with a multitude of identical nano-scale 

computing devices called iCells. Based on earlier 

extensive simulation work, we describe the computational 

limits of amorphous computing for image display 

applications and explain how such surfaces could be used 

to create a variety of novel fashion applications ranging 

from electronic wallpaper, active jewellery to adaptive 

clothing. 

 

1 Introduction 

The field of nano-technology is at the cutting-edge of 

contemporary research (e.g. [1]). Its goal is the 

development of complex machines that are so small as to 

be invisible to the naked eye and to operate on a molecular 

or even an atomic scale. 

In the future, this miniaturisation will inevitably include 

computing devices and, it is envisaged, these will be 

manufactured in such quantities that we will see the 

pervasive use of “Smart Matter” [2], nano-technology 

with computational ability. These tiny devices could be 

used to coat the surfaces of everyday environments and 

deliver novel functionality. Such surfaces, it is argued, 

could be used as video displays, user interfaces, and 

sensor arrays. The implication is that with ‘a coat of paint’ 

significant functionality can be added to any surface. We 

call this development of an ‘intelligent surface’ an 

iSurface, and the individual computing devices it is 

comprised of are called iCells.  These iCells can host a 

variety of mobile agents and these provide its 

functionality. 
 

The functionality required for an iSurface involves 

coordinated activity across surfaces that might be as large 

as the wall of a room. There are considerable problems 

involved since these surfaces are made up of literally 

thousands of microscopic devices communicating over 

short range. One possible way to realise the predicted 

functionality is by using an Amorphous Computing [3] 

approach. An Amorphous Computer is a multitude of 

identical tiny computing devices. These devices have 

limited processing capability, are only capable of 

communicating with their immediate neighbours, and can 

be unreliable. These ’particles‘, as they are known, could 

be painted onto a surface to form an ad hoc network, as 

envisioned for the iSurface. The central problem is how 

does one obtain useful global behaviour from this 

collection of hundreds or thousands of locally interacting 

particles? The field of Amorphous Computing attempts to 

solve this via the development of organisational principles 

and programming languages for Amorphous Computers. 

 

With the iSurface paradigm, users would be able to deploy 

distributed and spatially located applications to perform 

various tasks.  The computing devices, or iCells, would 

contain the instructions and data necessary for these 

applications and act in concert to realise the specific 

application.  Individually the iCells would be unlikely to 

perform all of the necessary actions for the applications to 

succeed, but when many iCells cooperate (or just interact) 

the desired behaviour could arise from their interactions; 

one of the underlying challenges then is how to engineer 

this emergent behaviour.  The code for these applications 

would be mobile agents; self-interested bits of code that 

can migrate around a network, finding hosts to execute 

themselves upon.  In this way, we can think of deploying 

smart skin applications as akin to infecting the intelligent 

surface with a smart virus, injected into the network and 

deliberately spreading and instantiating itself on the 

appropriate elements in the surface.  In this way, a cell 

might become host to several mobile agents, as well as its 

default behaviour, and thus be part of several different 

applications. 

 

We will first discuss the iSurface structure and the 

problems caused by load on the processor and 

communication system (iCell).  We will then discuss a 

video system application for the iSurface, the necessary 

capabilities necessary to implement it, and why load and 

iSurface damage make it unfeasible. We will suggest that 

although a video system, involving rapid updates of 

information, may never be feasible, the same techniques 

can be applied to applications that are not time-critical, 

such as a wallpaper system. This paper focuses on the use 
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of an iSurface for aesthetic purposes, that is, the display of 

images across a surface. 

 

 

[Figure 1] - Screenshot of the iSurface simulator. The 

three black boxes are buttons, the grey panel detects 

gestures, and the picture of the dog is a video display. 

 

1.2 Related Work 

 

Butera’s “Paintable” project [4] demonstrates the 

feasibility of a mobile code paradigm which has formed a 

basis for the mobile agents used as part of the system 

described in this paper.  However, Paintable never 

becomes data-heavy or time-critical; example applications 

are mainly distributed storage systems. 

 

2 The iSurface structure and iCell load 

The foundation for the iCell’s predicted capabilities is 

Smart Dust [5, 6, 7, and 8]. At the time of writing, a Smart 

Dust mote is very primitive compared to the average 

desktop machine; an 8MHz processor and 10Kbps 

communication speed.   Applying Moore’s Law to a 

Smart Dust mote allows us to calculate that, by 2020, an 

equivalent device would be operating at 8GHz with a 

communications speed of approximately 10Mbps. 

Modern processors can effectively perform one 

operation/instruction per processor cycle and thus we can 

assume that 8 MHz gives 8 MIPS (Millions of Instructions 

per Second) and 8 GHz gives 8000 MIPS. 

 

A simple way to picture the structure of the iSurface is to 

consider it as a gridwork of connections, with the iCells at 

the intersections. These connections can be considered to 

be perfect; full duplex communications between an iCell 

and its neighbours, all without the possibility of 

overlapping and colliding signals. 

Communication can be directed to a specific neighbour 

because of the dedicated connections and there is also a 

sense of direction with cells having the ability to 

determine relative up, down, left, and right, in terms of 

where their neighbours are. 

 
[Figure 2] – The iSurface paradigm; iCells arranged in a 

gridwork. 

 

 
[Figure 3] – Diagram of a conceptual iCell. 

 

We are able to state the minimum number of hops 

necessary for a message to propagate from any given node 

to any other. Assuming we have no damage to the surface; 

hops = |dx| + |dy| 

 

Where dx is the difference in x position between the two 

nodes, and dy is the difference in y position. 

 

It is easy to see that the iSurface is susceptible to queues 

of messages building up in the iCells and causing massive 

problems with communication. We have a network of 

devices, all running asynchronously, and due to the usage 

of mobile agents to give functionality to the iCells, the 

iSurface may not be homogenous in terms of what code 

they need to execute. 

Each iCell has finite processing power, and this is 

identical across the iSurface, therefore whatever 

processing time is available will be split between all code 

parts running on an iCell. This means that iCells with 

more code to execute will actually run slower than iCells 

with less code. 

We term this problem “iCell load”, and split this into 

“message load”, referring to the backlog of messages to 

communicate, and “agent load”, referring to the amount of 

code on the iCell. 

Message Load is calculated as the time taken to transmit 

the chosen message, plus the time taken to transmit all of 

the other messages before it in the output queue. 
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Agent Load is calculated as the time taken for the iCell 

core functionality to execute, as well as all of the agents.   

It can be seen as the time between a given agent being 

able to execute any given piece of code resident within it. 
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So how does iCell load affect the iSurface? In a simple 

device like the iCell, higher levels of message and agent 

load will cause delays in processing and sending data from 

the communications system. Whichever causes the largest 

delay is the dominant factor in the iCell load bottleneck. 

This means that the iSurface as a whole will be directly 

affected by its slowest components if an application 

makes use of them. 

 

We can think of this as a form of resistance to signals. 

Messages that try to go through the areas of high 

concentration end up being slowed down, and 

compounding the situation. Messages that go around the 

obstruction may avoid the load and travel further in the 

same time it takes a delayed message to traverse the high 

concentration. 

 

So the lesson learned is that to reduce iCell load, and thus 

maintain performance, we need to keep communications 

to a minimum and to try to minimise code on the iCells. 

For a system that is supposed to be hyperactive in terms of 

surface activity (code and communications) this is far 

from ideal. 

 

3 Implementing the iSurface video 

application 

One of the main issues the iSurface is likely to face with 

applications is the transmission or propagation of large 

amounts of data across the network, possibly to specific 

destinations. One such application would be to use the 

iSurface as a video display. This would require the 

propagation of image data across the surface to the right 

location at sufficient speed in order to update the picture 

24 frames a second. 

This is the speed at which the eye perceives smooth 

animation. 

A notion of positioning is at the heart of a video/picture 

application. Every iCell intended to display part of the 

image needs to know its position relative to some origin. 

This is the same origin that the image data refers to.  This 

is accomplished by causing the mobile agents to replicate 

themselves across the iSurface until a certain area has 

been covered.  The user would then send a message to one 

of the iCells that it was the new origin for the coordinate 

system.  The coordinates would propagate across the 

surface and be updated depending on the direction they 

are transmitted in. 

 

The image used for development and testing is 256 pixels 

by 256 pixels and uses a greyscale palette (8-bit). This 

means there is a total data size of 65536 bytes (or 64k). If 

we choose to transmit the entire picture from iCell to 

iCell, we automatically take a crippling performance hit. 

On a Smart Dust based surface with a 10kbps transfer rate, 

we would have transmission times of about 53 seconds 

between each pair of iCells. Flood filling this data across 

the 256 x 256 surface would take between 13420 seconds 

(about 224 minutes) and 26840 seconds (about 447 

minutes). The only advantage of this system is the ease 

with which an iCell can obtain its correct colour by simply 

indexing the image data at the correct point. We would 

argue that the only feasible alternative is to release a 

stream of pixel data into the system. Each message takes 

the form of a coordinate ('x' & 'y'), a pixel value (from 0 to 

255), and takes up a total of 7 bytes. This results in a 

transmission time of about 0.007 seconds per message on 

a Smart Dust based iCell. Although the amount of data 

entering the system has increased by a factor of 7, we 

have broken the data up into more manageable chunks. 

Flood filling a single pixel across the surface is relatively 

trivial, between 1.8 seconds and 3.6 seconds, but 

attempting this for all 65,536 pixels would literally take 

hours. 

The ideal solution would be to route the pixel data from 

the data entry point(s) to the target iCell using the 

coordinate system and the coordinate values stored in the 

message. As each iCell can transmit messages in specific 

directions an agent only need to decide the proper 

direction from itself to the target and retransmit 

accordingly. 

We have established experimentally that a system divided 

into quadrants, with strips of 128 iCells in each, and using 

a data encoding to take advantage of this structure, is the 

best approach, with a "score" of 128 cycles to form the 

image. As a cycle is the time taken to transmit one pixel 

message, we can calculate how long this would be in 

"real-time". On a Smart Dust based iCell we have a 

transmission time per cycle of 0.007 seconds. This gives 

us a time of 0.896 seconds to render a single frame; way 

over the 0.04 seconds required for convincing animation. 

Obviously, an iSurface based on Smart Dust couldn't cope 

with this application. However, we can calculate the 

communication speed necessary to run the application as 

it currently stands which would be 224,000 kbps, 22 times 

faster than Smart Dust and using Moore's Law we can 

guess at a target date of about 2012. 

 

4 iSurface “vista” wallpaper 
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The experimentation described in the previous section has 

demonstrated that the iSurface paradigm is unsuitable for 

data-heavy and time-critical applications.  Responsiveness 

of applications has been shown to suffer due to iCell load 

and the distances that data needs to travel across the 

iSurface.  The original aim of the research was for a user-

interface for an Amorphous Computer, and this kind of 

interactivity demands responsiveness. 

If we shifted the intended usage of the iSurface away from 

user interaction into a less interactive visual oriented 

domain we would reduce this need for responsiveness.   

We can now consider the iSurface as aesthetically 

focused, and this opens up many possibilities for 

applications for a slow iSurface.  

 

One possibility is we could use an iSurface as modifiable 

wallpaper.  The iSurface can already display pictures, as 

evidenced in the video display experimentation, but 

problems with transmitting large amounts of data within 

restrictive timescales mean that the video aspect of the 

system is not feasible. 

A video is essentially a slideshow where 24 slides are 

displayed every second in order to have smooth 

animation.  In this slow iSurface scenario, a wallpaper 

display could be a slideshow, without the requirements for 

updating the screen so often.  Instead, an update could 

take place over minutes, or even hours. 

 

Initially we’ll concentrate on describing the “vista” style 

wallpaper demonstrated in films such as Total Recall and 

Back to the Future.  In this form of electronic wallpaper 

the entire wall will display an image such as a photograph 

of the Grand Canyon, or some other natural world scene.  

It needn’t be just walls covered in this way; billboards 

would be a perfect application area for this, with images 

easily cycling through a variety of adverts. 

This display would operate in exactly the same way as the 

video display system; a coordinate system would be 

propagated across the iSurface, with the origin in the top 

left-hand corner of the room.  Image data would be 

streamed into the iSurface by whatever system the user 

wishes.  For the sake of argument we’ll assume the use of 

the optimal system described under the experimentation 

for the video display; input strips at the top and bottom of 

the wall.  The pixel data for the image would then be 

routed across the iSurface to the destination iCells.  

However, this time it does not matter if data is delayed, or 

arrives out of order, just as long as the image fully forms.  

This wallpaper system will suffer from the same problems 

as the regular video system if the iSurface is damaged.  As 

messages are directly routed to the destination iCell with 

no checks between iCells to see if a message has 

successfully transmitted, a message can be lost if an 

intermediate iCell is damaged.  With the removal of the 

time-critical factor it would be possible to create a better 

routing system.  There would now be the luxury of adding 

checks to see if a message was successfully transmitted, or 

it would be possible to simply propagate the pixel data 

message across the entire iSurface, guaranteeing that it 

would reach its destination if any path exists. 

 

One interesting feature of the video system is the way in 

which images form.  Essentially images start to form in 

the vertical centre of the iSurface and “grow” outwards 

towards the top and bottom of the screen and this is an 

interesting effect to watch.  These transitions between 

images have aesthetic merit of their own, and so might be 

desirable features to have in a wallpaper application.  

Transitions would be dependent on when pixel data 

arrives at the destination, and this in turn would be 

dependent on where and when the data enters the system.  

The outwards growing image example is a result of the 

optimal data entry we used for the video, but if one used 

another approach the transition would be completely 

different.   

 

For instance, if data were entered into the system in a 

random manner, the image would also form randomly.  In 

this case, the transition would look like a “dissolve”, 

where random pixels swap between images.   

To accomplish this we could to “shuffle” the pixel data 

before it enters the system.  This effectively takes the 

pixel stream, which is an array of bytes (assuming a 

greyscale or 256 colour image) or an array of 3 byte 

structures (Red, Green, and Blue), and making random 

swaps between elements of the array such in the following 

pseudo-code algorithm. 

 

PixelStream as Array(length) 

For i = 0 to length 

 Index1 = random(length) 

 Index2 = random(length) 

 TemporaryVariable = PixelStream[Index1] 

 PixelStream[Index1] = PixelStream[Index2] 

 PixelStream[Index2] = PixelStream[Index1] 

Next i 

 

When this enters the iSurface in the same streaming 

manner as in the existing video system we will see the 

image start to form randomly as data now arrives in the 

wrong order and in a non-optimal position to reach their 

destination iCell.   

 

By entering data in specific ways and places we could 

create effects such as “wipes” in various directions and 

shapes.  

With extra coding it would be easily possible to 

interpolate between the pixel colour values of the old 

image and that of the new image in order to create a 

“fade” effect.  Synchronisation would allow the entire 

image to fade at once, or combine it with the various wipe 

or dissolve transitions in order to create even more 

interesting visual effects.  

 

5 Animating the iSurface wallpaper 

So far this system concentrates on static images.  Based on 

the evidence of the video system, it is fair to say that full 

motion video is impossible using the current iSurface 

paradigm.  However, video games of the 8-bit and 16-bit 

era during the 1980s and 1990s were also incapable of 
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displaying full motion video, but were capable of 

displaying animated scenes through use of small bitmap 

images called sprites.  A sprite generally had a small 

number of frames that were bitmaps of limited size and 

animation was achieved by “blitting”, or rasterising, these 

frames to the screen.  Updating an entire screen was 

extremely costly for the processor and memory, and so 

sprites were kept as small as possible.  

A similar system could work for the iSurface.  As an 

example, say that we were displaying a countryside scene 

on the iSurface.  In the distance, over the rolling green 

hills, is a windmill, and cows are grazing nearby.  The 

windmill’s sails could be a sprite, with a small bitmap of 

them turning stored in the iCells that make up the 

windmill image.  With a bit of synchronisation the iCells 

could flip through the six or so frames that might make up 

this animation.  The cows could also be sprites, with an 

animation that sees them moving slightly.  As time is no 

longer really an issue for the iSurface, it might be possible 

to extend the use of sprites to small areas of grass blowing 

in the wind.  

 

For this system to be successful, we would need to define 

a significant number of coordinate systems similar to the 

iCell video system, each independent of each other and 

able to be identified separately.  These could be inserted 

by hand into the scene, and their frames injected directly 

into the area.  This would work on the same basis as 

defining a button; the sprite’s dimensions would be pre-

determined and then once injected into the scene the 

agents would spread until the specified dimensions are 

met.  A coordinate system specific to that sprite would be 

then grown and a stream of pixel data, like that of the 

video, would be passed into the sprite.  Each pixel element 

would have a frame number.  Using a synchronization 

method such as that described by [9] for use with 

Amorphous Computers would allow these frames to cycle 

correctly. 

 

Another simple method of animation on old video games 

was colour cycling.  For example a waterfall image might 

have the cascading water drawn with a range of blue 

shades.  The colours stored for individual pixels would 

begin to loop through the range of blue shades creating the 

illusion of the water moving.  Once an iSurface 

synchronises the iCells, the pixels showing certain values 

could begin to cycle through the pre-specified range of 

colours creating the effect of animation. 

Taking the use of changing colour one step further, it 

would be possible to have the iCells brighten or darken a 

shade of colour based on the time of day.  A scene could 

therefore darken into night, or brighten into daylight. 

 

6 Other methods of wallpaper generation 

Real wallpaper isn’t typically a photograph style scene; it 

is usually a repeated pattern of a limited size image.  The 

existing iSurface display system was not intended to 

display such repeated images and so it would be necessary 

to make some minor changes to the coding of the agents.  

Firstly, directed routing would no longer be possible, and 

secondly, the iCells would need a new way of identifying 

which pixel data to display. 

Simply propagating pixel data across the iSurface would 

solve the problem of routing data to the intended iCells.  

In order for a cell to know if it should display a given 

pixel would require changes to the way the coordinate 

system is handled.  This could be handled easily by 

allowing the coordinate system to form as before, but 

when the iCell processes a bit of pixel data it would 

perform a “modulo” operation on its stored coordinates 

with the dimensions of the pattern.  This would give 

coordinates within the dimensions of the pattern and thus 

the correct pixel location.  The result would be a repeated 

pattern across the iSurface. 

 

Excitable media also provides a rich source of material for 

dynamically created wallpaper.  Conway’s Game of Life 

in particular, would be an excellent application for a slow 

iSurface and would also provide scope for limited user 

interaction.  If iCells know the state of their neighbours, 

they can use the rules of Life to set their own state and 

thus the Game of Life will play itself out across the 

iSurface.  If iCells randomly switch their state 

occasionally, the system would continue to be perturbed 

and not settle into a stable state.  iCells could also react to 

the touch of users, switching to an on state and thus 

allowing the user some measure of interaction with the 

Life environment. 

 

7 iSurfaces as fashion accessories 

These slow iSurface applications would not be just limited 

to use as a coating for walls.  They would be usable on a 

patch of iCells of any shape or size.  LCD picture frames 

have already been released, and these display digital 

photographs that can be easily switched, possibly even 

showing a slideshow of digital pictures.  A patch of 

iSurface could easily replicate this functionality, coating 

picture frames, book covers, or providing decoration for 

larger artefacts such as tables, or doors. 

Where we believe the slow iSurface applications would 

really excel is in the fields of customisable clothing or 

body art.  As an example of customisable body art, we 

again take inspiration from the movie Total Recall.  There 

is a scene where a secretary is digitally painting her 

fingernails.  She selects a colour from a computer screen 

based palette using a stylus and taps it to her nails.  The 

nails instantly change to the selected colour.  This would 

be an extremely easy application for iCells, simply 

propagating a colour message to their neighbours by 

means of a flood-fill algorithm.  iCells would be mixed 

into nail polish and could be painted onto the nails, 

occasionally being touched up when the nail grows or is 

damaged. 

It would be possible to integrate an image based system 

into this, but it would be necessary to find a way to place 

and maintain an origin for a coordinate system on a 

growing substrate (the nail) that will also suffer damage 

when it is cut. 
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We can extend this vision of fashion iSurfaces to a whole 

family of accessories.  In this case we require a form of 

“coordination” between the different accessories that our 

hypothetical model is wearing in order to ensure that 

everything matches and doesn’t clash. 

A possible approach would be to slave everything to the 

clothes the model is wearing.  The clothes would need to 

transmit a signal that would inform the accessories to 

change to a specific colour or pattern.  This could be 

achieved by embedding the iCells in the clothing, and 

including a small RF transmitter somewhere in the outfit.  

iCells in the accessories would detect the signal and 

switch to images, patterns, or colours that correspond to 

this signal. 

Suggested accessories in the family include the 

aforementioned nail polish, as well as hair bands, 

wristbands, belts, shoes and bags. 

 

Another potential use for iCells in fashion accessories are 

as “stones” in bracelets, rings, necklaces and earrings.  

These iCells would be embedded in the place of the stones 

within the precious metal jewellery and would react to the 

signals sent from the clothing.  Using the synchronisation 

system for Amorphous Computing  described by [9] they 

could shift colour in an aesthetically pleasing way.   

 

The final possible use for iCells as a fashion accessory 

would be as body art or Tattoos.  Here the iCells would be 

actually placed on, or even inserted into or under, the skin.  

A patch of iCells with their own coordinate system could 

display and shift images to the wearer’s taste. 

Friera’s ‘Nanomedicine’ designs [10] propose a similar 

application for his nano-robots.  This would be 

accomplished by inserting an array of nano-scale light 

emitting devices under the skin.  This would also operate 

as an input system with the nano-devices able to detect 

variations in their positioning under the skin caused by 

pressure.  However, there is no proposal for programming 

the behaviour of these devices, either individual 

behaviours or global behaviour. 

 

8 Conclusions 

iCell load and communication contention have made 

aspects of the iSurface’s user interface functionality 

unachievable. In particular, iCell load causes the lack of 

responsiveness that the majority of time-critical iSurface 

applications, such as video replay, can exhibit, and our 

work has shown that this is an inherent problem for an 

amorphous comuter based system. 

 

This paper introduced the possibility of developing non-

time critical applications for the iSurface.  These are 

variations on the time-critical application. 

 

We began by describing the “wallpaper” agent.  This is 

derived from the video system, but takes advantage of the 

problems of delays in transmitting data to provide 

interesting aesthetic effects.  We described several 

methods of these graphical effects for a largely static 

image such as sprite animation or colour cycling. 

Moving away from large surfaces such as walls or 

pictures, We proposed the use of iSurfaces in fashion 

accessories such as jewellery, clothing and fake 

extensions like fingernails and that these could display 

colours or patterns based on user input or dictated by 

interaction between accessories to properly colour 

coordinate. These applications are where we believe 

interesting use and R&D opportunities for this technology  

might lie. 
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