
Presented at The 4th Int’l Conference on Intelligent Environments, University of Washington, Seattle, 21-22 July 2008

© University of Essex 2008 1

USING AN AMORPHOUS COMPUTER FOR VISUAL

DISPLAY APPLICATIONS IN INTELLIGENT

ENVIRONMENTS

A.M.King, V.Callaghan, G.Clarke

University of Essex, United Kingdom, amking@essex.ac.uk / vic@essex.ac.uk / graham@essex.ac.uk

Keywords: Nanotechnology, Amorphous Computing,

Pervasive Computing, Visual Display.

Abstract

In this paper we introduce the concept of an iSurface; a

surface coated with a multitude of identical nano-scale

computing devices called iCells. Based on earlier

extensive simulation work, we describe the computational

limits of amorphous computing for image display

applications and explain how such surfaces could be used

to create a variety of novel fashion applications ranging

from electronic wallpaper, active jewellery to adaptive

clothing.

1 Introduction

The field of nano-technology is at the cutting-edge of

contemporary research (e.g. [1]). Its goal is the

development of complex machines that are so small as to

be invisible to the naked eye and to operate on a molecular

or even an atomic scale.

In the future, this miniaturisation will inevitably include

computing devices and, it is envisaged, these will be

manufactured in such quantities that we will see the

pervasive use of “Smart Matter” [2], nano-technology

with computational ability. These tiny devices could be

used to coat the surfaces of everyday environments and

deliver novel functionality. Such surfaces, it is argued,

could be used as video displays, user interfaces, and

sensor arrays. The implication is that with ‘a coat of paint’

significant functionality can be added to any surface. We

call this development of an ‘intelligent surface’ an

iSurface, and the individual computing devices it is

comprised of are called iCells. These iCells can host a

variety of mobile agents and these provide its

functionality.

The functionality required for an iSurface involves

coordinated activity across surfaces that might be as large

as the wall of a room. There are considerable problems

involved since these surfaces are made up of literally

thousands of microscopic devices communicating over

short range. One possible way to realise the predicted

functionality is by using an Amorphous Computing [3]

approach. An Amorphous Computer is a multitude of

identical tiny computing devices. These devices have

limited processing capability, are only capable of

communicating with their immediate neighbours, and can

be unreliable. These ’particles‘, as they are known, could

be painted onto a surface to form an ad hoc network, as

envisioned for the iSurface. The central problem is how

does one obtain useful global behaviour from this

collection of hundreds or thousands of locally interacting

particles? The field of Amorphous Computing attempts to

solve this via the development of organisational principles

and programming languages for Amorphous Computers.

With the iSurface paradigm, users would be able to deploy

distributed and spatially located applications to perform

various tasks. The computing devices, or iCells, would

contain the instructions and data necessary for these

applications and act in concert to realise the specific

application. Individually the iCells would be unlikely to

perform all of the necessary actions for the applications to

succeed, but when many iCells cooperate (or just interact)

the desired behaviour could arise from their interactions;

one of the underlying challenges then is how to engineer

this emergent behaviour. The code for these applications

would be mobile agents; self-interested bits of code that

can migrate around a network, finding hosts to execute

themselves upon. In this way, we can think of deploying

smart skin applications as akin to infecting the intelligent

surface with a smart virus, injected into the network and

deliberately spreading and instantiating itself on the

appropriate elements in the surface. In this way, a cell

might become host to several mobile agents, as well as its

default behaviour, and thus be part of several different

applications.

We will first discuss the iSurface structure and the

problems caused by load on the processor and

communication system (iCell). We will then discuss a

video system application for the iSurface, the necessary

capabilities necessary to implement it, and why load and

iSurface damage make it unfeasible. We will suggest that

although a video system, involving rapid updates of

information, may never be feasible, the same techniques

can be applied to applications that are not time-critical,

such as a wallpaper system. This paper focuses on the use

mailto:amking@essex.ac.uk
mailto:vic@essex.ac.uk
mailto:graham@essex.ac.uk

Presented at The 4th Int’l Conference on Intelligent Environments, University of Washington, Seattle, 21-22 July 2008

© University of Essex 2008 2

of an iSurface for aesthetic purposes, that is, the display of

images across a surface.

[Figure 1] - Screenshot of the iSurface simulator. The

three black boxes are buttons, the grey panel detects

gestures, and the picture of the dog is a video display.

1.2 Related Work

Butera’s “Paintable” project [4] demonstrates the

feasibility of a mobile code paradigm which has formed a

basis for the mobile agents used as part of the system

described in this paper. However, Paintable never

becomes data-heavy or time-critical; example applications

are mainly distributed storage systems.

2 The iSurface structure and iCell load

The foundation for the iCell’s predicted capabilities is

Smart Dust [5, 6, 7, and 8]. At the time of writing, a Smart

Dust mote is very primitive compared to the average

desktop machine; an 8MHz processor and 10Kbps

communication speed. Applying Moore’s Law to a

Smart Dust mote allows us to calculate that, by 2020, an

equivalent device would be operating at 8GHz with a

communications speed of approximately 10Mbps.

Modern processors can effectively perform one

operation/instruction per processor cycle and thus we can

assume that 8 MHz gives 8 MIPS (Millions of Instructions

per Second) and 8 GHz gives 8000 MIPS.

A simple way to picture the structure of the iSurface is to

consider it as a gridwork of connections, with the iCells at

the intersections. These connections can be considered to

be perfect; full duplex communications between an iCell

and its neighbours, all without the possibility of

overlapping and colliding signals.

Communication can be directed to a specific neighbour

because of the dedicated connections and there is also a

sense of direction with cells having the ability to

determine relative up, down, left, and right, in terms of

where their neighbours are.

[Figure 2] – The iSurface paradigm; iCells arranged in a

gridwork.

[Figure 3] – Diagram of a conceptual iCell.

We are able to state the minimum number of hops

necessary for a message to propagate from any given node

to any other. Assuming we have no damage to the surface;

hops = |dx| + |dy|

Where dx is the difference in x position between the two

nodes, and dy is the difference in y position.

It is easy to see that the iSurface is susceptible to queues

of messages building up in the iCells and causing massive

problems with communication. We have a network of

devices, all running asynchronously, and due to the usage

of mobile agents to give functionality to the iCells, the

iSurface may not be homogenous in terms of what code

they need to execute.

Each iCell has finite processing power, and this is

identical across the iSurface, therefore whatever

processing time is available will be split between all code

parts running on an iCell. This means that iCells with

more code to execute will actually run slower than iCells

with less code.

We term this problem “iCell load”, and split this into

“message load”, referring to the backlog of messages to

communicate, and “agent load”, referring to the amount of

code on the iCell.

Message Load is calculated as the time taken to transmit

the chosen message, plus the time taken to transmit all of

the other messages before it in the output queue.

Presented at The 4th Int’l Conference on Intelligent Environments, University of Washington, Seattle, 21-22 July 2008

© University of Essex 2008 3























cellinqueueoflength

q

q

msg

speedcomms

size

speedcomms

size
cellmsgt

1 _

_
),(

Agent Load is calculated as the time taken for the iCell

core functionality to execute, as well as all of the agents.

It can be seen as the time between a given agent being

able to execute any given piece of code resident within it.























cellinagentsofnumber

a

a

corecell

ondpernsinstructio

size

ondpernsinstructio

size
cellp

1

_

sec__

sec__
)(

So how does iCell load affect the iSurface? In a simple

device like the iCell, higher levels of message and agent

load will cause delays in processing and sending data from

the communications system. Whichever causes the largest

delay is the dominant factor in the iCell load bottleneck.

This means that the iSurface as a whole will be directly

affected by its slowest components if an application

makes use of them.

We can think of this as a form of resistance to signals.

Messages that try to go through the areas of high

concentration end up being slowed down, and

compounding the situation. Messages that go around the

obstruction may avoid the load and travel further in the

same time it takes a delayed message to traverse the high

concentration.

So the lesson learned is that to reduce iCell load, and thus

maintain performance, we need to keep communications

to a minimum and to try to minimise code on the iCells.

For a system that is supposed to be hyperactive in terms of

surface activity (code and communications) this is far

from ideal.

3 Implementing the iSurface video

application

One of the main issues the iSurface is likely to face with

applications is the transmission or propagation of large

amounts of data across the network, possibly to specific

destinations. One such application would be to use the

iSurface as a video display. This would require the

propagation of image data across the surface to the right

location at sufficient speed in order to update the picture

24 frames a second.

This is the speed at which the eye perceives smooth

animation.

A notion of positioning is at the heart of a video/picture

application. Every iCell intended to display part of the

image needs to know its position relative to some origin.

This is the same origin that the image data refers to. This

is accomplished by causing the mobile agents to replicate

themselves across the iSurface until a certain area has

been covered. The user would then send a message to one

of the iCells that it was the new origin for the coordinate

system. The coordinates would propagate across the

surface and be updated depending on the direction they

are transmitted in.

The image used for development and testing is 256 pixels

by 256 pixels and uses a greyscale palette (8-bit). This

means there is a total data size of 65536 bytes (or 64k). If

we choose to transmit the entire picture from iCell to

iCell, we automatically take a crippling performance hit.

On a Smart Dust based surface with a 10kbps transfer rate,

we would have transmission times of about 53 seconds

between each pair of iCells. Flood filling this data across

the 256 x 256 surface would take between 13420 seconds

(about 224 minutes) and 26840 seconds (about 447

minutes). The only advantage of this system is the ease

with which an iCell can obtain its correct colour by simply

indexing the image data at the correct point. We would

argue that the only feasible alternative is to release a

stream of pixel data into the system. Each message takes

the form of a coordinate ('x' & 'y'), a pixel value (from 0 to

255), and takes up a total of 7 bytes. This results in a

transmission time of about 0.007 seconds per message on

a Smart Dust based iCell. Although the amount of data

entering the system has increased by a factor of 7, we

have broken the data up into more manageable chunks.

Flood filling a single pixel across the surface is relatively

trivial, between 1.8 seconds and 3.6 seconds, but

attempting this for all 65,536 pixels would literally take

hours.

The ideal solution would be to route the pixel data from

the data entry point(s) to the target iCell using the

coordinate system and the coordinate values stored in the

message. As each iCell can transmit messages in specific

directions an agent only need to decide the proper

direction from itself to the target and retransmit

accordingly.

We have established experimentally that a system divided

into quadrants, with strips of 128 iCells in each, and using

a data encoding to take advantage of this structure, is the

best approach, with a "score" of 128 cycles to form the

image. As a cycle is the time taken to transmit one pixel

message, we can calculate how long this would be in

"real-time". On a Smart Dust based iCell we have a

transmission time per cycle of 0.007 seconds. This gives

us a time of 0.896 seconds to render a single frame; way

over the 0.04 seconds required for convincing animation.

Obviously, an iSurface based on Smart Dust couldn't cope

with this application. However, we can calculate the

communication speed necessary to run the application as

it currently stands which would be 224,000 kbps, 22 times

faster than Smart Dust and using Moore's Law we can

guess at a target date of about 2012.

4 iSurface “vista” wallpaper

Presented at The 4th Int’l Conference on Intelligent Environments, University of Washington, Seattle, 21-22 July 2008

© University of Essex 2008 4

The experimentation described in the previous section has

demonstrated that the iSurface paradigm is unsuitable for

data-heavy and time-critical applications. Responsiveness

of applications has been shown to suffer due to iCell load

and the distances that data needs to travel across the

iSurface. The original aim of the research was for a user-

interface for an Amorphous Computer, and this kind of

interactivity demands responsiveness.

If we shifted the intended usage of the iSurface away from

user interaction into a less interactive visual oriented

domain we would reduce this need for responsiveness.

We can now consider the iSurface as aesthetically

focused, and this opens up many possibilities for

applications for a slow iSurface.

One possibility is we could use an iSurface as modifiable

wallpaper. The iSurface can already display pictures, as

evidenced in the video display experimentation, but

problems with transmitting large amounts of data within

restrictive timescales mean that the video aspect of the

system is not feasible.

A video is essentially a slideshow where 24 slides are

displayed every second in order to have smooth

animation. In this slow iSurface scenario, a wallpaper

display could be a slideshow, without the requirements for

updating the screen so often. Instead, an update could

take place over minutes, or even hours.

Initially we’ll concentrate on describing the “vista” style

wallpaper demonstrated in films such as Total Recall and

Back to the Future. In this form of electronic wallpaper

the entire wall will display an image such as a photograph

of the Grand Canyon, or some other natural world scene.

It needn’t be just walls covered in this way; billboards

would be a perfect application area for this, with images

easily cycling through a variety of adverts.

This display would operate in exactly the same way as the

video display system; a coordinate system would be

propagated across the iSurface, with the origin in the top

left-hand corner of the room. Image data would be

streamed into the iSurface by whatever system the user

wishes. For the sake of argument we’ll assume the use of

the optimal system described under the experimentation

for the video display; input strips at the top and bottom of

the wall. The pixel data for the image would then be

routed across the iSurface to the destination iCells.

However, this time it does not matter if data is delayed, or

arrives out of order, just as long as the image fully forms.

This wallpaper system will suffer from the same problems

as the regular video system if the iSurface is damaged. As

messages are directly routed to the destination iCell with

no checks between iCells to see if a message has

successfully transmitted, a message can be lost if an

intermediate iCell is damaged. With the removal of the

time-critical factor it would be possible to create a better

routing system. There would now be the luxury of adding

checks to see if a message was successfully transmitted, or

it would be possible to simply propagate the pixel data

message across the entire iSurface, guaranteeing that it

would reach its destination if any path exists.

One interesting feature of the video system is the way in

which images form. Essentially images start to form in

the vertical centre of the iSurface and “grow” outwards

towards the top and bottom of the screen and this is an

interesting effect to watch. These transitions between

images have aesthetic merit of their own, and so might be

desirable features to have in a wallpaper application.

Transitions would be dependent on when pixel data

arrives at the destination, and this in turn would be

dependent on where and when the data enters the system.

The outwards growing image example is a result of the

optimal data entry we used for the video, but if one used

another approach the transition would be completely

different.

For instance, if data were entered into the system in a

random manner, the image would also form randomly. In

this case, the transition would look like a “dissolve”,

where random pixels swap between images.

To accomplish this we could to “shuffle” the pixel data

before it enters the system. This effectively takes the

pixel stream, which is an array of bytes (assuming a

greyscale or 256 colour image) or an array of 3 byte

structures (Red, Green, and Blue), and making random

swaps between elements of the array such in the following

pseudo-code algorithm.

PixelStream as Array(length)

For i = 0 to length

 Index1 = random(length)

 Index2 = random(length)

 TemporaryVariable = PixelStream[Index1]

 PixelStream[Index1] = PixelStream[Index2]

 PixelStream[Index2] = PixelStream[Index1]

Next i

When this enters the iSurface in the same streaming

manner as in the existing video system we will see the

image start to form randomly as data now arrives in the

wrong order and in a non-optimal position to reach their

destination iCell.

By entering data in specific ways and places we could

create effects such as “wipes” in various directions and

shapes.

With extra coding it would be easily possible to

interpolate between the pixel colour values of the old

image and that of the new image in order to create a

“fade” effect. Synchronisation would allow the entire

image to fade at once, or combine it with the various wipe

or dissolve transitions in order to create even more

interesting visual effects.

5 Animating the iSurface wallpaper

So far this system concentrates on static images. Based on

the evidence of the video system, it is fair to say that full

motion video is impossible using the current iSurface

paradigm. However, video games of the 8-bit and 16-bit

era during the 1980s and 1990s were also incapable of

Presented at The 4th Int’l Conference on Intelligent Environments, University of Washington, Seattle, 21-22 July 2008

© University of Essex 2008 5

displaying full motion video, but were capable of

displaying animated scenes through use of small bitmap

images called sprites. A sprite generally had a small

number of frames that were bitmaps of limited size and

animation was achieved by “blitting”, or rasterising, these

frames to the screen. Updating an entire screen was

extremely costly for the processor and memory, and so

sprites were kept as small as possible.

A similar system could work for the iSurface. As an

example, say that we were displaying a countryside scene

on the iSurface. In the distance, over the rolling green

hills, is a windmill, and cows are grazing nearby. The

windmill’s sails could be a sprite, with a small bitmap of

them turning stored in the iCells that make up the

windmill image. With a bit of synchronisation the iCells

could flip through the six or so frames that might make up

this animation. The cows could also be sprites, with an

animation that sees them moving slightly. As time is no

longer really an issue for the iSurface, it might be possible

to extend the use of sprites to small areas of grass blowing

in the wind.

For this system to be successful, we would need to define

a significant number of coordinate systems similar to the

iCell video system, each independent of each other and

able to be identified separately. These could be inserted

by hand into the scene, and their frames injected directly

into the area. This would work on the same basis as

defining a button; the sprite’s dimensions would be pre-

determined and then once injected into the scene the

agents would spread until the specified dimensions are

met. A coordinate system specific to that sprite would be

then grown and a stream of pixel data, like that of the

video, would be passed into the sprite. Each pixel element

would have a frame number. Using a synchronization

method such as that described by [9] for use with

Amorphous Computers would allow these frames to cycle

correctly.

Another simple method of animation on old video games

was colour cycling. For example a waterfall image might

have the cascading water drawn with a range of blue

shades. The colours stored for individual pixels would

begin to loop through the range of blue shades creating the

illusion of the water moving. Once an iSurface

synchronises the iCells, the pixels showing certain values

could begin to cycle through the pre-specified range of

colours creating the effect of animation.

Taking the use of changing colour one step further, it

would be possible to have the iCells brighten or darken a

shade of colour based on the time of day. A scene could

therefore darken into night, or brighten into daylight.

6 Other methods of wallpaper generation

Real wallpaper isn’t typically a photograph style scene; it

is usually a repeated pattern of a limited size image. The

existing iSurface display system was not intended to

display such repeated images and so it would be necessary

to make some minor changes to the coding of the agents.

Firstly, directed routing would no longer be possible, and

secondly, the iCells would need a new way of identifying

which pixel data to display.

Simply propagating pixel data across the iSurface would

solve the problem of routing data to the intended iCells.

In order for a cell to know if it should display a given

pixel would require changes to the way the coordinate

system is handled. This could be handled easily by

allowing the coordinate system to form as before, but

when the iCell processes a bit of pixel data it would

perform a “modulo” operation on its stored coordinates

with the dimensions of the pattern. This would give

coordinates within the dimensions of the pattern and thus

the correct pixel location. The result would be a repeated

pattern across the iSurface.

Excitable media also provides a rich source of material for

dynamically created wallpaper. Conway’s Game of Life

in particular, would be an excellent application for a slow

iSurface and would also provide scope for limited user

interaction. If iCells know the state of their neighbours,

they can use the rules of Life to set their own state and

thus the Game of Life will play itself out across the

iSurface. If iCells randomly switch their state

occasionally, the system would continue to be perturbed

and not settle into a stable state. iCells could also react to

the touch of users, switching to an on state and thus

allowing the user some measure of interaction with the

Life environment.

7 iSurfaces as fashion accessories

These slow iSurface applications would not be just limited

to use as a coating for walls. They would be usable on a

patch of iCells of any shape or size. LCD picture frames

have already been released, and these display digital

photographs that can be easily switched, possibly even

showing a slideshow of digital pictures. A patch of

iSurface could easily replicate this functionality, coating

picture frames, book covers, or providing decoration for

larger artefacts such as tables, or doors.

Where we believe the slow iSurface applications would

really excel is in the fields of customisable clothing or

body art. As an example of customisable body art, we

again take inspiration from the movie Total Recall. There

is a scene where a secretary is digitally painting her

fingernails. She selects a colour from a computer screen

based palette using a stylus and taps it to her nails. The

nails instantly change to the selected colour. This would

be an extremely easy application for iCells, simply

propagating a colour message to their neighbours by

means of a flood-fill algorithm. iCells would be mixed

into nail polish and could be painted onto the nails,

occasionally being touched up when the nail grows or is

damaged.

It would be possible to integrate an image based system

into this, but it would be necessary to find a way to place

and maintain an origin for a coordinate system on a

growing substrate (the nail) that will also suffer damage

when it is cut.

Presented at The 4th Int’l Conference on Intelligent Environments, University of Washington, Seattle, 21-22 July 2008

© University of Essex 2008 6

We can extend this vision of fashion iSurfaces to a whole

family of accessories. In this case we require a form of

“coordination” between the different accessories that our

hypothetical model is wearing in order to ensure that

everything matches and doesn’t clash.

A possible approach would be to slave everything to the

clothes the model is wearing. The clothes would need to

transmit a signal that would inform the accessories to

change to a specific colour or pattern. This could be

achieved by embedding the iCells in the clothing, and

including a small RF transmitter somewhere in the outfit.

iCells in the accessories would detect the signal and

switch to images, patterns, or colours that correspond to

this signal.

Suggested accessories in the family include the

aforementioned nail polish, as well as hair bands,

wristbands, belts, shoes and bags.

Another potential use for iCells in fashion accessories are

as “stones” in bracelets, rings, necklaces and earrings.

These iCells would be embedded in the place of the stones

within the precious metal jewellery and would react to the

signals sent from the clothing. Using the synchronisation

system for Amorphous Computing described by [9] they

could shift colour in an aesthetically pleasing way.

The final possible use for iCells as a fashion accessory

would be as body art or Tattoos. Here the iCells would be

actually placed on, or even inserted into or under, the skin.

A patch of iCells with their own coordinate system could

display and shift images to the wearer’s taste.

Friera’s ‘Nanomedicine’ designs [10] propose a similar

application for his nano-robots. This would be

accomplished by inserting an array of nano-scale light

emitting devices under the skin. This would also operate

as an input system with the nano-devices able to detect

variations in their positioning under the skin caused by

pressure. However, there is no proposal for programming

the behaviour of these devices, either individual

behaviours or global behaviour.

8 Conclusions

iCell load and communication contention have made

aspects of the iSurface’s user interface functionality

unachievable. In particular, iCell load causes the lack of

responsiveness that the majority of time-critical iSurface

applications, such as video replay, can exhibit, and our

work has shown that this is an inherent problem for an

amorphous comuter based system.

This paper introduced the possibility of developing non-

time critical applications for the iSurface. These are

variations on the time-critical application.

We began by describing the “wallpaper” agent. This is

derived from the video system, but takes advantage of the

problems of delays in transmitting data to provide

interesting aesthetic effects. We described several

methods of these graphical effects for a largely static

image such as sprite animation or colour cycling.

Moving away from large surfaces such as walls or

pictures, We proposed the use of iSurfaces in fashion

accessories such as jewellery, clothing and fake

extensions like fingernails and that these could display

colours or patterns based on user input or dictated by

interaction between accessories to properly colour

coordinate. These applications are where we believe

interesting use and R&D opportunities for this technology

might lie.

References

[1] The Foresight Institute, http://www.foresight.org/

[2] MEMS Research at PARC,

http://www.parc.com/smart-matter

[3] H. Abelson, D. Allen, D. Coore, C. Hanson, G.

Homsy, T. Knight, R. Nagpal, E. Rauch, G. Sussman,

and R. Weiss, “Amorphous computing”,

Communications of the ACM, 43(5), May 2000.

[4] W. Butera, “Programming a Paintable Computer",

PhD Thesis, MIT Media Lab, 2001

[5] S. Hollar, “COTS Dust”, Master’s Thesis, 2000

[6] V. Hsu, J. Kahn, K. Pister, “Wireless communication

for Smart Dust”, January 1998

[7] J. Kahn, R. Katz, K. Pister, “Next Century

Challenges: Mobile Networking for Smart Dust”, date

and location of publication unknown

[8] K. Pister, J. Kahn, and B. Boser, "Smart Dust:

Wireless Networks of Millimeter-Scale Sensor

Nodes. Highlight Article in 1999 Electronics

Research Laboratory Research Summary", 1999,

Available at

http://robotics.eecs.berkeley.edu/~pister/SmartDust/

[9] E. D’Hondt, “Exploring the Amorphous Computing

Paradigm”, Masters Thesis, Vrije Universiteit

Brussel, August 2000

[10] R A. Freitas Jr., “Nanomedicine”, Volume I: Basic

Capabilities, Landes Bioscience, Georgetown, TX,

1999

http://www.parc.com/smart-matter
http://robotics.eecs.berkeley.edu/~pister/SmartDust/

