
From Chapter 24 Springer-Verlag book; The Application of Pervasive ICT Series: Computer Communications and
Networks, Steventon, Alan; Wright, Steve (Eds.) 2006, XVIII, 438 p. 162 illus., Softcover ISBN: 1-84628-002-8.
January 2006

© Springer-Verlag,2006 1

Programming iSpaces: A Tale of Two Paradigms

Victor Callaghan, Martin Colley, Hani Hagras,
Jeannette Chin, Faiyaz Doctor, Graham Clarke,

University of Essex, Colchester, CO4 3SQ, UK
Email: vic@essex.ac.uk URL:http://iieg.essex.ac.uk

Abstract
There is an increasing amount of research into intelligent space (e.g. pervasive computing, ambient
intelligence, intelligent environments, smart homes etc). Much of the current research focuses on
environments populated by numerous computing devices, sensors, actuators, various wired and
wireless networking systems. A popular vision for such spaces is that lay-users will be able acquire
unique sets of networked appliances and direct them to produce the collective functionality they desire
(sometimes described as “decorating their iSpace). Thus, a significant question posed by such visions
is how the non-technical user would be able to “program” an iSpace to produce the desired
functionality. In this paper we discuss two different approaches to addressing this challenge. The first
approach is based on the use of embedded autonomous agents which discretely sense the user’s actions
in the environment and, in a life-long learning mode, autonomously “programs” the iSpace to match
the user’s habitual behaviour (implicit programming). The second approach is based on the
application of programming-by-example techniques (PBE) in which the system enters a discrete
teaching phase in which the user “programs” the iSpace by demonstrating the required behaviour to
the system (explicit programming). We give details of systems we have developed including the iDorm
test-bed, our ISL & AOFIS agents, the dComp ontology (including the notion of virtual appliances and
coordinated communities) and our TOP end-user programming methodology, reporting on results of
various trials. We discuss the relative advantages of each approach covering topics such as
performance, efficiency, cognitive loading, privacy and creativity, and conclude that future systems
will probably require agents at lower system levels and end-user programming at the user level.

1. Introduction

“iSpace, the final frontier”; this parody of Startrek encapsulates many of our aspirations for this area
as, in the longer term, iSpaces are likely to be the key to mankind's successful exploration of deep
space. In outer-space, or hostile planetary habitats, it is inevitable that people will survive in wholly
technologically supported artificial environments [Clarke 00]. Such environments will contain
numerous communicating computers embedded into a myriad of devices, sensing, acting, delivering
media, processing data and providing services that enhance the lifestyle and effectiveness of the
occupant, and, in outer-space, preserving human life. Such environments will also include robots
[Colley 01]. In today’s iSpaces, whilst human life will not normally be at stake the underlying
principles and technology are much the same. Today our homes are rapidly being filled with diverse
types of products ranging from simple lighting systems to sophisticated entertainment systems, all
adding to the functionality and convenience available to the home user [Chin 03]. The iSpace approach
envisages that, one day soon, most artefacts will contain embedded computers and network connections
opening up the possibility for hundreds of communicating devices, cooperating in communities serving
the occupant(s). The seeds of this revolution have already been sown in that pervasive technologies
such as the internet and mobile phones already boast over 200 and 680 million users, respectively
[Facts 03] [GSM 01]. Today embedded computers account for 98% of all computer production, with an
annual production of around 8 billion microprocessors [Metcalfe 01], most being integrated into
domestic appliances such as video recorders, washing machines, mobile phones and all manner of
everyday electronic appliances. Furthermore, nano-technology is opening up new possibilities such as
embedding dust particle sized computers into hitherto unconventional mediums such as clothing fibres,
paint pigments etc. Thus, the embedded market is massive and ripe for the addition of networking to
realise the iSpace vision. Whilst these technological advances are fuelling significant changes in both
the high-tech marketplace and liv ing-environments, the most radical paradigm shift perhaps originated
from the way these technologies can be applied. Firstly communities of appliances can collaborate to

From Chapter 24 Springer-Verlag book; The Application of Pervasive ICT Series: Computer Communications and
Networks, Steventon, Alan; Wright, Steve (Eds.) 2006, XVIII, 438 p. 162 illus., Softcover ISBN: 1-84628-002-8.
January 2006

© Springer-Verlag,2006 2

provide new synergetic functionalities (e.g. a telephone ringing can be made to interact with other
devices, such as pausing the TV), creating higher order “virtual appliances”. Secondly the nature of the
device is being questioned; is it a traditional appliance with multiple prefixed functionalities or is it an
appliance with its constituent sub-functionalities, logically or physically, decomposed (functional
decomposition is intrinsic to the pervasive computing world). Thirdly, programming of key
functionalities (e.g. coordinated community actions) is transferred from the manufacturer to the user,
empowering end-users to design novel functionalities that match their individual needs. When users
are given the freedom to choose combinations of devices, then they can create unique and novel
functionalities, some of which may not have been envisaged by the manufacturers, making pre-
programmed solutions virtually impossible. One challenge, and the focus of much of the discussion in
this paper, is how to manage and configure (program) such coordinated pervasive computing devices to
do the end-users bidding, without the user incurring prohibitive cognitive loads; a task that, without
support, could quickly become prohibitive and an obstacle to the achievement of the pervasive home
networking environment vision. In this paper we explore the issue of programming iSpaces by
examining two possible approaches to supporting programming in the end-users environment; the use
of autonomous intelligent embedded-agents and the application of programming by example.

2. Degrees of Intelligence and Autonomy

For the iSpace vision to be realised in domestic environments, people must be able to use computer-
based artefacts and systems in a way that gives them some control over aspects of the system, whilst
eliminating cognitive awareness of parts of the system they have no interest in, and are happy to leave
to automation or implicit programming processes. Where the line between fully autonomous intelligent
systems and manual programming should be drawn is a subject of much research and argument. At the
University of Essex we have chosen to provide an approach that allows the full spectrum of
possibilities to be experimented with; we have therefore developed a range of autonomous intelligent
embedded agents and some user-centric techniques. In this paper we present a review of all these
techniques, although we shall start by describing our test-beds for intelligent spaces the iDorm and the
new iDorm-2.

3.0 The iDorm

 The intelligent dormitory (iDorm) shown in Figure 1 is a real pervasive computing test-bed
comprised of a large number of embedded sensors, actuators, processors and networks in the form of a
student bed-sitting room. The iDorm is a multi-use, multi-user space containing areas for different
activities such as sleep, work and entertaining. It contains the normal mix of furniture found in a typical
student study/bedroom environment, including a bed, work desk and a wardrobe.

Fig. 1 - The iDorm

A common interface to the iDorm and its devices is implemented through Universal Plug and Play
(UPnP) which is an event-based communication middleware that allows devices to plug and play thus
enabling automatic discovery and configuration. A gateway server is used to run the UPnP software
devices that interface with the hardware devices on their respective networks. Our experimental agent
mechanisms are built on top of the low level UPnP control architecture enabling it to communicate
with the UPnP devices in the iDorm and thus allowing it to monitor and control these devices. Figure 2
shows the logical network infrastructure of the iDorm.

From Chapter 24 Springer-Verlag book; The Application of Pervasive ICT Series: Computer Communications and
Networks, Steventon, Alan; Wright, Steve (Eds.) 2006, XVIII, 438 p. 162 illus., Softcover ISBN: 1-84628-002-8.
January 2006

© Springer-Verlag,2006 3

Figure 2 - The iDorm logical network infrastructure.

Entertainment is one of the behaviours used as a benchmark in the iDorm for performance assessment
in projects such as the BT led PHEN1 project. There is a standard multi-media PC driving both a flat-
screen monitor and a video projector which can be used for both working and entertainment, see Figure
3.

Figure 3 - Entertainment and work in the iDorm.

 Any networked computer that can run a standard Java process can access and control the iDorm
directly. Thus any PC can also act as an interface to control the devices in the room. Equally interfaces
to the devices could be operated from wearable artefacts that can monitor and control the iDorm
wirelessly such as a handheld PDA supporting Bluetooth wireless networking or a mobile phone shown
in Figure 4. In principle, it is possible to adjust the environment from anywhere and anytime subject to
user and device privileges. There is also an internet Fridge in the iDorm (see Figure 4d) that
incorporates a PC with touch screen capability, which can also be used to control the devices in the
room. Control can of course still be exerted directly on the devices themselves via conventional
switches buttons etc.

 (a) (b) (c) (d)

Figure 4 - PC interface. b) iPAQ interface. c) Phone interface. d) iFridge interface.

1 http://iieg.essex.ac.uk/phen

From Chapter 24 Springer-Verlag book; The Application of Pervasive ICT Series: Computer Communications and
Networks, Steventon, Alan; Wright, Steve (Eds.) 2006, XVIII, 438 p. 162 illus., Softcover ISBN: 1-84628-002-8.
January 2006

© Springer-Verlag,2006 4

There are a variety of computers in the iDorm which are used to interface with sensors and actuators
and run agents; all of them being configured as JAVA environments. At the low performance end we
use TINI2 and SNAP3 embedded internet boards, these are mainly used for sensors and actuators. There
are also more powerful processor boards capable of running agents such as jStik4 & ITX5. For
experiments where maximum flexibility is required, it is also possible to run agents on UPnP enabled
workstations. This allows the granularity of agent to device to be varied, from an agent controlling an
entire environment, down to one-to-one mappings between devices and agents.

3.1 The iDorm-2

With the success of the iDorm, Essex University is currently constructing a new test-bed to support
R&D in Pervasive ICT. The new facility, funded by the HE SRIF programme takes the form of a
domestic apartment and has been called iDorm-2.

The iDorm-2 has been built from the ground up to be an experimental pervasive computing
environment with many special structural features such as cavity walls/ceilings containing power &
network outlets together with provision for internal wall based sensors and processors etc. There are
numerous networks in place ranging from wired and power-line through wireless to broadband and
high-bandwidth mult i-mode fibre connections to the outside world. All the basic services are
electrically controlled wherever possible (eg heating, water doors etc). The basic layout of the
apartment is show in figure 5 (due to be opened in June 2005 at the international “Intelligent
Environments 05” workshop). When finished this will be one of the few such facilities in the world.

Figure 5. iDorm-2

4.0 Embedded-Agents

The principal argument in support of utilising artificial intelligence (AI) in support of the creation
(programming) and management (control) of intelligent pervasive computing based spaces is that much
of the cognitive load associated with using the technology (which is an obstacle to market penetration)
can be off-loaded fro m the user to software processes. However, this is far from easy as such
“intelligent entities” operate in a computationally complex and challenging physical environment
which is significantly different to that encountered in more traditional PC programming or AI. Some of
the computational challenges associated with creating systems of intelligent-artefacts are discussed
below.

4.1 Embedded-Intelligence

Embedded intelligence can be regarded as the inclusion, in an artefact, of some of the reasoning,
planning and learning that people possess. An intelligent artefact would normally contain only a

2 http:// www.ibutton.com/TINI/
3 http://www.imsys.se/
4 http://jstik.systronix.com/
5 http://www.mini-itx.com/

iDorm2

From Chapter 24 Springer-Verlag book; The Application of Pervasive ICT Series: Computer Communications and
Networks, Steventon, Alan; Wright, Steve (Eds.) 2006, XVIII, 438 p. 162 illus., Softcover ISBN: 1-84628-002-8.
January 2006

© Springer-Verlag,2006 5

minimal amount of “embedded-intelligence”, sufficient to do the artefact task in question. Embedded-
computers that contain such an intelligent capability are norma lly referred to as “embedded-agents”
[Callaghan 00]. Intelligent Artefacts would, in effect, contain an embedded-agent. Individually, such
an embedded-agent can harness intelligence to undertake such tasks as enhancing device functionality
(i.e. enabling the artefact to do more complex control tasks), as well as reducing configuration or
programming complexity and costs by enabling the pervasive computing system to autonomously learn
its own program rules, or alternatively assisting the lay-end user to program rules in a non-technical
way (see TOP, later in this paper).

4.2 Embedded Agents and Intelligent Spaces

There are a variety of approaches to this problem, perhaps the most relevant being those originating
from the context -aware and embedded-agent communities. In embedded-agent work the goal is to
utilise some form of artificial intelligence (AI) to relieve the cognitive loading associated with setting
up and running an iSpace system (i.e. transfer some of the cognitive processes from the person to the
computer). Typically researchers have employed approaches such as neural networks, based on
traditional machine learning theory, to control the users’ environment. However, these approaches
utilise objective functions that either aim to derive a minima l control function that satisfies the needs of
the users “average” or are aimed at optimising between a number of competing needs (e.g. energy
efficiency and user comfort). In both cases the user has little control over the system and has to accept
some degree of discomfort, or adapt to the conditions determined by the iSpace agents [Mozer 98].

A contrasting agent based paradigm is to see the “User as King” and create agents that “particularise
(rather than generalise) to a specific users needs, and respond immediately to whatever the end-user
demands (providing it doesn’t violate any safety constraints) “[Callaghan 01a]. [Callaghan 01b]

Work at Essex University (as part of the EU’s Disappearing Computer programme and the UK
Governments UK-Korean Scientific fund) has addressed this problem using behaviour based systems
(pioneered by Rodney Brooks [Brooks 91]) and soft-computing (fuzzy logic, neural networks and
genetic algorithms). This approach stems from our finding that embedded-agents used in pervasive
computing are equivalent to robots, experiencing similar problems with sensing, non-determinism,
intractability, embodiment etc [Callaghan 01a]. Our earlier work [Callaghan 01b, Hagras 00, Hagras
01] was in the field of robotics, which has allowed us to recognise the underlying similarities between
robotics and intelligent artefacts. Models in both robotics and pervasive embedded computer devices
have proved difficult to devise, mainly because of the intractability of the variables involved (and in the
case of modelling people, non-determinism). A principal advantage of behaviour based methods is that
they discard the need for an abstract model, replacing it by the world itself; a principle most aptly
summarised by Rodney Brooks as, “the world is its own best model”.

4.3 Agent Learning

Learning can be viewed as the process of gathering information from the environment and encoding it
to improve the efficiency of a system in achieving a certain goal. However the difficulty that arises
concerns finding the most appropriate learning algorithm/technique to use. Most learning algorithms
use a measure of the quality of the solution, given either by examples of the desired behavior of a
system, or by an assessment of the quality of the internal and/or external state. The learning algorithm
very much depends on the characteristics of the “problem” itself. The best choice of learning algorithm
can be made by comparing the problem characteristics against the learning algorithm characteristics.
The following describes a limited number of these characteristics:

a. Problem’s characteristics
? Dynamics: To what degree do the environment variables change during the learning?
? Complexity: Is the set of all possible solutions, search space, finite/countable?
? Uncertainty: does the information regarding the state contain noise? Are the actions

performed noisy?
? Pre-acquired knowledge: Can some knowledge about the solutions be acquired before

learning starts?
? Observability: Is the current/past states known to the learning algorithm?

From Chapter 24 Springer-Verlag book; The Application of Pervasive ICT Series: Computer Communications and
Networks, Steventon, Alan; Wright, Steve (Eds.) 2006, XVIII, 438 p. 162 illus., Softcover ISBN: 1-84628-002-8.
January 2006

© Springer-Verlag,2006 6

? Type of data: Are the data provided discrete-valued, real-valued, and complex-
structured or states and transitions?

? Feedback type: Should the learning algorithm respond as an immediate, on-demand,
delayed or no-response feedback?

? Physical limitations: What is the processing capability or memory size of the system
where the learning algorithm runs?

b. Learning algorithm’s characteristics

? Internal parameter type: what type of parameters does the algorithm contain and how
do they change?

? Input data: what kind of input data can the learning algorithm deal with and can it adapt
to noisy data?

? Solution/Goal type: can the learning algorithm produce approximations in real valued
functions?

? Dynamics: Can the solutions be changed during the environments execution or can the
learning algorithm only change the solutions off-line?

? Parameter change: what parameters change in each phase of the learning cycle: do they
change all at the same time or only a small subset?

Another important distinction in learning agents is whether the learning is done online or offline.
Online learning means that the agent performs its tasks, and can learn or adapt after each event. Online
learning is like “on-the-job” training and places severe requirement on the learning algorithm. It must
be (a) fast and (b) very stable and fault-tolerant. Other hotly debated issues are whether supervised or
unsupervised learning is best. Later we present the ISL and the AOFIS as examples of the unsupervised
agent. The general challenges faced by designers of embedded-agents for such environment were
discussed at a recent workshop on Ubiquitous Computing in Domestic Environments [Callaghan 01b].

4.4 Application Level Emergent behaviour

In pervasive computing systems, the embedded-agent host (frequently an appliance) has a network
connection allowing the agents to have a view of their neighbours , thereby facilitating coordinated
actions from groups of embedded-agents. The key difference to isolated appliances is that those
participating in groups not only have their individual functionality (as designed by the manufacturer)
but they also assume a group functionality that can be something that was not envisaged by the
manufacturers. In fact, if there are only weak constraints on association of appliances, it is possible for
the user to program unique coordinated actions (ie unique collective functionality) that was not
envisaged by the different manufacturers offering the component appliances. This enables an
application level emergent behaviour or functionality (something that whilst enabled by the system,
was not specified by the system). This naturally gives rise to questions such as the balance between
pre-specified functionality and emergent functionality, what or who is responsible for the association
between devices and the programming of the basic behaviours. Later in this paper we discuss various
approaches to this challenge. TOP provides an explicit means of directly harnessing user creativity to
generate emergent applications whilst the ISL and AOFIS involve various degrees of user interaction
using both supervised and unsupervised learning paradigms to generate emergent application level
functionality.

4.5 Machine Level Emergent Behaviour

In the behaviour based approach to AI, the equivalent to reasoning and planning in traditional AI is
produced by arranging for an agent to have a number of competing processes that are vying for control
of the agent. The “sensory context” determines the degree to which any process influences the agent.
Thus, as sensing is derived from what is effectively a non-deterministic world, the solutions from this
process are equally non-deterministic and result in what is termed “Emergent Behaviour” (behaviours
or solutions that emerged but were not explicitly programmed). Anything that affects the context can
thus have a hand in this machine level “emergent behaviour”. For example, the connections
(associations) between devices critically affect the sensed data. Thus agent driven associations, or user
driven associations, will be closely associated with emergent behaviour. Emergent behaviour is also
sometimes described as emergent solutions. The freedom to make ad-hoc association is an important

From Chapter 24 Springer-Verlag book; The Application of Pervasive ICT Series: Computer Communications and
Networks, Steventon, Alan; Wright, Steve (Eds.) 2006, XVIII, 438 p. 162 illus., Softcover ISBN: 1-84628-002-8.
January 2006

© Springer-Verlag,2006 7

factor in this process, as without them it is difficult to see how emergent functionality could be
achieved. At the University of Essex we are researching into what we term promiscuous association;
the freedom for agents to form their own associations in as open a way as possible. This approach
opens up the possibility of using forma lly specified ontologies of devices and groups of devices. It is
important to understand that being autonomous and promiscuous (open to making associations with
other artefacts) does not imply undirected or unsafe behaviour. Agents can have basic fixed rules built
into them that prevent them taking specified actions deemed unsafe.

4.6 Multi-Agents

The underlying paradigm of all Essex agents is that they are associated with actuators (they are
essentially control agents rather than information processing agents). In the underlying agent model,
multi-agent operation is supported via three modes. In the first sensory and actuator parameters are
simply made available to other agents. In the second mode agents make a “compressed” version of this
information (or their internal state) available to the wider network. In a behaviour based agent, such as
the ISL, the compressed data takes the form of which behaviours are active (and to what degree). The
general philosophy we have adopted is that data from remote agents is simply treated in the same way
as all other sensor data. As with any data, the processing agent decides for itself which information is
relevant to any particular decision. Thus, multi-agent processing is implicit to this paradigm, which
regards remote agents as simply more sensors (albeit more sophisticated sensors). We have found that
receiving high level processed information from remote agents, such as “the iDorm is occupied” is
more useful than being given the low level sensor information from the remote agent that gave rise to
this higher-level characterisation. This compressed form both relieves agent processing overheads and
reduces network loading. A third approach we have developed is the use of inter-agent communication
languages. Standardised agent communication languages (e.g. KQML and FIPA) tend to be too big to
use on embedded-computers (many tens of megabytes) and are not well matched in terms of
functionality to them. We have generated research that has looked at the problem of developing a
lightweight agent communication language and the interested reader is referred to our description of
the Distributed Intelligent Building Agent Language (DIBAL) [Cayci 00]. Finally, in the home
environment (rather than a general unconstrained pervasive environment), because the number of
connected appliances is relatively tractable (no more than a few hundred) a widely adopted approach at
a network level, is to fully connect all the appliances, relegating the issue of what appliance will
collaborate with any other to the application level. This approach has been successfully applied by the
University of Essex group [Duman 02a] [Duman 02b].

4.7 Knowledge in Rule Based Agents

One reason we have opted for fuzzy logic rather than neural networks is that the knowledge acquired
by the agent is gathered in human linguistic terms. A typical rules set from the iDorm is presented in
the figure 5. It is made up of simple, if somewhat large IF THEN ELSE rule sets. Such rules
intrinsically well structured and are based on mathematical logic sets. Meta structures can also be used.
For example, at the meta level rules sets can also be characterised according to context such as rules
sets for Mr A relating to Context B (e.g. a bedroom). Thus, from such rule sets it is possible to perform
meta functions such as deriving the closest rule-set for a new user, - Ms C - based upon rulesets from
others users in the same context.

Figure 6 – Example of Rule Representation

From Chapter 24 Springer-Verlag book; The Application of Pervasive ICT Series: Computer Communications and
Networks, Steventon, Alan; Wright, Steve (Eds.) 2006, XVIII, 438 p. 162 illus., Softcover ISBN: 1-84628-002-8.
January 2006

© Springer-Verlag,2006 8

5. Embedded-Agent Based Approaches

At the University of Essex we have developed a number of agents that can deal with the problems
discussed above. The main approaches we have developed are based on fuzzy logic. Fuzzy logic is
particularly appropriate as it can describe inexact (and analogue) parameters using human-readable
linguistic rules, offering a framework for representing imprecise and uncertain knowledge. Thus it is
well suited to develop control on the basis of inexact sensing and actuation which, when coupled to
behaviour based agent architectures can deal with the non-determinism which sometimes characterises
human behaviour. We believe this has similarities to the way people make decisions as it uses a mode
of approximate reasoning, which allows it to deal with vague and incomplete information. We have
shown that fuzzy logic can be applied well to pervasive computing environment [Hagras 02a] [Hagras
02b] [Hagras 02c] such as the iDorm [Holmes 02] [Pounds-Cornish 02] and have developed and tested
two fuzzy -based embedded-agents in the iDorm namely the Incremental Synchronous learning Agent
[Hagras 04] and the Adaptive Online Fuzzy Inference System Agent [Doctor 04] . These agents have
been run on commercial and in-house produced hardware. The following photo shows a hardware
networked agent platform produced at the University of Essex and used to manage the iDorm pervasive
computing community.

Figure 7 –Agent Prototype

5.1 The Incremental Synchronous Learning (ISL)6 Agent

In general terms the ISL embedded-agent work is broadly situated within the behaviour based
architecture work pioneered by Rodney Brooks at MIT, consisting of many simple co-operating sub-
control units. Our approach differs to other work in that we use Fuzzy Logic based sub-control units,
arrange them in a hierarchy (see following figure) and use a user driven technique to learn the fuzzy
rules online and in real-time. It is well known that it is often difficult to determine parameters for fuzzy
systems. In most fuzzy systems, the fuzzy rules were determined and tuned through trial and error by
human operators. It normally takes many iterations to determine and tune them. As the number of input
variables increases (Intelligent space agents develop large numbers of rules due to particularisation) the
number of rules increases disproportionately, which can cause difficulty in matching and choosing
between large numbers of rules. Thus the introduction of a mechanism to learn fuzzy rules was a
significant advance. In the ISL agent we implement each behaviour as a fuzzy process and then use
higher level fuzzy process to co-ordinate them. The resultant architecture takes the form of a
hierarchical tree structure (see following figure). This approach has the following technical advantages:

? It simplifies the design of the embedded-agent, reducing the number of rules to be determined
(in previous work we have given examples of rules reduction of two orders of magnitude via
the use of hierarchies).

? It uses the benefits of fuzzy logic to deal with imprecision and uncertainty.
? It provides a flexible structure where new behaviours can be added (eg comfort behaviours) or

modified easily.
? It utilises a continuous activation scheme for behaviour coordination which provides a

smoother response than switched schema

The learning process involves the creation of user behaviours. This is done interactively using
reinforcement where the controller takes actions and monitors these actions to see if they satisfy the
user or not, until a degree of satisfaction is achieved. The behaviours, resident inside the agent, take

6 A detailed account of this agent including the supporting theory and testing can be found in our published papers [Hagras 02a]
[Hagras 02b] [Hagras 02c]

From Chapter 24 Springer-Verlag book; The Application of Pervasive ICT Series: Computer Communications and
Networks, Steventon, Alan; Wright, Steve (Eds.) 2006, XVIII, 438 p. 162 illus., Softcover ISBN: 1-84628-002-8.
January 2006

© Springer-Verlag,2006 9

their input from sensors and appliances and adjust effector and appliance outputs (according to pre-
determined, but settable, levels). The complexities of learning and negotiating satisfactory values for
multiple users would depend upon having a reliable means of identifying different users.

5.1.1 Learning Architecture

It is clear that, in order for an appliance based agent to autonomously particularise its service to an
individual, some form of learning is essential [Callaghan 01b]. In the ISL: learning takes the form of
adapting the “usage” behaviour rule base, according to the users actions. To do this we utilise an
evolutionary computing mechanism based on a novel hierarchical genetic algorithm (GA) technique
which modifies the fuzzy controller rule-sets through interaction with the environment and user.

Figure 8- ISL Embedded-Agent Architecture

The hub of the GA learning architecture is what we refer to as an Associative Experience Engine
[Brit ish patent 99-10539.7]. Briefly, each behaviour is a fuzzy logic controller (FLC) that has two
parameters that can be modified; a Rule Base (RB) and its associated Membership Functions (MF). In
our learning we modify the rule-base. The architecture, as adapted for pervasive computing embedded-
agents, is given in the following figure. The behaviours receive their inputs from sensors and provide
outputs to the actuators via the co-ordinator that weights their effect. When the system fails to have the
desired response (e.g. an occupant manually changes an effector setting), the learning cycle begins.

When a learning cycle is initiated, the most active behaviour (i.e. that most responsible for the agent
behaviour) is provided to the Learning Focus from the Co-ordinator (the fuzzy engine which weights
contributions to the outputs), which uses the information to point at the rule-set to be modified (i.e.
learnt) or exchanged. Initially, the Contextual Prompter (which gets a characterisation of the situation,
an experience, from the Co-ordinator) is used to make comparison to see whether there is a suitable
behaviour rule set in the Experience Bank . If there is a suitable experience, it is used. When the past
experiences do not satisfy the occupant’s needs we use the best-fit experiences to reduce the search
space by pointing to a better starting point, which is the experience with the largest fitness. We then
fire an Adaptive Genetic Mechanism (AGM) using adaptive learning parameters to speed the search for
new solutions. The AGM is constrained to produce new solutions in a certain range defined by the
Contextual Prompter to avoid the AGM searching options where solutions are unlikely to be found. By

B

= FLCs

Fixed
Behaviours

Default use

Dynamic
Behaviours

appliance use n

appliance use 2

appliance use 1

MF BR

MF BR

MF BR

Learning
Focus
Engine

Contextual
Prompter

AGM for rules or MF
generation

Experienc

e Bank

Associative Experience
Learning Engine (UK
patent No 99-10539.7)

From other appliances

To other
appliances

sequence

sensors

MF BR

Last Experience
Temporal Buffer

Co-ordinator

Rule
Assassin

Rule
Constructo

r

time

Effector

output (n-bit
wide word)

Inputs
(n-bit
wide
word)

Fuzzy hierarchy

M
= Behaviour Rules

= Membership Function

Solution
Evaluator

From Chapter 24 Springer-Verlag book; The Application of Pervasive ICT Series: Computer Communications and
Networks, Steventon, Alan; Wright, Steve (Eds.) 2006, XVIII, 438 p. 162 illus., Softcover ISBN: 1-84628-002-8.
January 2006

© Springer-Verlag,2006 10

using these mechanisms we narrow the AGM search space massively, thus improving its efficiency.
After generating new solutions the system tests the new solution and gives it fitness through the
Solution Evaluator. The AGM provides new options via operators such as crossover and mutation until
a satisfactory solution is achieved.

The system then remains with this set of active rules (an experience) until the user’s behaviour
indicates a change of preference (e.g. has developed a new habit), signalled by a manual change to one
of the effectors when the learning process described above is repeated. In the case of a new occupant
in the room the Contextual Prompter gets and activates the most suitable rule base from the Experience
Bank or if this proves unsuitable the system re -starts the learning cycle above. The Solution Evaluator
assigns each stored rule base in the Experience Bank a fitness value. When the Experience Bank is full,
we have to delete some experiences. To assist with this the Rule Assassin determines which rules are
removed according to their importance (as set by the Solution Evaluator). The Last Experience
Temporal Buffer feeds back to the inputs a compressed form of the n-1 state, thereby providing a
mechanism to deal with temporal sequences.

5.2 Adaptive Online Fuzzy Inference System (AOFIS) Agent

Like the ISL agent, AOFIS is based on fuzzy logic. We utilise an unsupervised data-driven one-pass
approach for extracting fuzzy rules and membership functions from data to learn a fuzzy logic
controller (FLC) that will model the user’s behaviours when using iDorm based devices. It differs from
the ISL in that it not only learns controller rules, but it also learns membership functions (a significant
advance on the ISL which has fixed membership functions). The data is collected by monitoring the
user’s use of the iDorm over a period of time. The learnt FLC provides an inference mechanism that
produces output control responses based on the current state of the inputs. The AOFIS adaptive FLC
will therefore control a pervasive computing community, such as the iDorm, on behalf of the user and
will also allow the rules to be adapted online as the user’s behaviour changes over time. This approach
aims to realise the vision of Ambient Intelligence and support the aims of pervasive computing in the
following ways:

? The agent is responsive to the particular needs and preferences of the user.
? The user is always in control and can override the agent at any time.
? The agent learns and controls its environment in a non-intrusive way (although the user may

be aware of the high-tech interface, he is unaware of the agent’s presence).
? The agent uses a simple one pass learning mechanism for learning the user’s behaviours, and

thus it is not computationally expensive.
? The agent’s learnt behaviours can be adapted online as a result of changes in the user’s

behaviour.
? Learning is life-long in that agent behaviours can be adapted and extended over a long period

of time as a result of changes in the pervasive computing environment.

 AOFIS involves five phases: Monitoring the user’s interactions and capturing input/output data
associated with their actions; extraction of the fuzzy membership functions from the data; extraction of
the fuzzy rules from the recorded data; the agent control and the life long learning and adaptation
mechanism. The last two phases are control loops that once initiated receive inputs as either: monitored
sensor changes that produce appropriate output control responses based on the set of learnt rules; or
user action requests that cause the learnt rules to be adapted before an appropriate output control
response is produced. The following diagram illustrates these five phases.

Figure 9 - Phases of AOFIS

From Chapter 24 Springer-Verlag book; The Application of Pervasive ICT Series: Computer Communications and
Networks, Steventon, Alan; Wright, Steve (Eds.) 2006, XVIII, 438 p. 162 illus., Softcover ISBN: 1-84628-002-8.
January 2006

© Springer-Verlag,2006 11

The agent initially monitors the user’s actions in the environment. Whenever the user changes actuator
settings, the agent records a ‘snapshot’ of the current inputs (sensor states) and the outputs (actuator
states with the new values of whichever actuators were adjusted by the user). These ‘snapshots’ are
accumulated over a period of time so that the agent observes as much of the user’s interactions within
the environment as possible. AOFIS learns a descriptive model of the user’s behaviours from the data
accumulated by the agent. In our experiments in the iDorm we used 7 sensors for our inputs and 10
actuators for our outputs with a user spending up to 3 days in the iDorm. The fuzzy rules which are
extracted represent local models that map a set of inputs to the set of outputs without the need for
formulating any mathematical model. Individual rules can therefore be adapted online influencing only
specific parts of the descriptive model learnt by the agent.
It is necessary to be able to categorise the accumulated user input/output data into a set of fuzzy
membership functions which quantify the raw crisp values of the sensors and actuators into linguistic
labels. AOFIS is based on learning the particularised behaviours of the user and therefore requires
these membership functions be defined from the user’s input/output data recorded by the agent. A
Double Clustering approach combining Fuzzy -C-Means (FCM) and hierarchical clustering, is used for
extracting fuzzy membership functions from the user data. This is simple and effective approach where
the objective is to build models at a certain level of information granularity that can be quantified in
terms of fuzzy sets.
Once the agent has extracted the membership functions and the set of rules from the user input/output
data, it has then learnt the FLC that captures the human behaviour. The agent FLC can start controlling
the pervasive computing community on behalf of the user. The agent starts to monitor the state of the
pervasive community and affect actuators based on its learnt FLC that approximate the particularised
preferences of the user. The following diagra m illustrates the FLC which consists of a fuzzifier, rule
base, fuzzy inference engine and defuzzifier.

Figure 10 - AOFIS FLC.

 In conformity with the non-intrusive aspect of intelligence [Doctor 04] whenever the user is not
happy with the behaviour of the pervasive computing device or community, he can always override the
agent’s control responses by simply altering the manual control of the system. When this occurs the
agent will adapt its rules online or add new rules based on the new user preferences. This process
incorporates what we term ‘learning inertia’ where the agent delays adapting its learnt rules until the
user preference for changing a particular set of actuator values has reoccurred a number of times. This
prevents the agent adapting its rules in response to ‘one off’ user actions that don’t reflect a marked
change in the user’s habitual behaviour (this “learning inertia” parameter is user settable). As rules are
adapted it is sensible to preserve old rules so they can be recalled by the agent in the future if they are
more appropriate than the current rules. Whenever the user overrides the agent’s control outputs and
overrides any of the controlled output devices, a snapshot of the state of the environment is recorded
and passed to the rule adaptation routine. The AOFIS agent supports the notion of life long learning in
that it adapts its rules as the state of the pervasive community and the user preferences vary over a
significantly long period of time. Due to the flexibility of AOFIS, the initially learnt FLC can be easily
extended to both adapt existing rules, as well as adding new rules. The fuzzy nature of the rules permits
them to capture a wide range values for each input and output parameter. This allows the rules to
continue to operate even if there is a gradual change in the environment. If however there is a
significant change in the environment or the user’s activity is no longer captured by the existing rules
then the agent will automatically create new rules that satisfy the current conditions. The agent will
therefore unobtrusively and incrementally extend its behaviours which can then be adapted to satisfy a
pervasive device and community user.

From Chapter 24 Springer-Verlag book; The Application of Pervasive ICT Series: Computer Communications and
Networks, Steventon, Alan; Wright, Steve (Eds.) 2006, XVIII, 438 p. 162 illus., Softcover ISBN: 1-84628-002-8.
January 2006

© Springer-Verlag,2006 12

5.3 Benchmarking and Comparative Performance

We have also implemented other soft computing agents namely Genetic Programming (GP), the
Adaptive-Neuro Fuzzy Inference System (ANFIS) and the Multi-Layer Perceptron Neural Network.
 The dataset obtained from the iDorm during the AOFIS monitoring phase comprised of 408
instances and was randomised into six samples. Each sample was then split into a training and test set
consisting of 272 and 136 instances respectively. The performance error for each technique was
obtained on the test instances as the Root Mean Squared Error which was also scaled to account for the
different ranges of the output parameters.

Figure 11 -User Gathering Experimental data in the iDorm

 The GP used a population of 200 individuals evolving them over 200 generations. The GP evolved
both the rules and the fuzzy sets. Each individual was represented as a tree composed of ‘and’ and ‘or’
operators as the internal nodes and triangular and trapezoidal membership functions as terminal nodes.
The parameters of the membership functions were also evolved in parallel with the structure. The
search started with a randomly generated set of rules and parameters, which were then optimised by
means of genetic operators. The GP based approach for optimising an FLC was tested with different
numbers of fuzzy sets. In ANFIS subtractive clustering was used to generate an initial TSK-type fuzzy
inference system. Back propagation was used to learn the premise parameters while least square
estimation was used to determine the consequent parameters.

 Table 2 - Average Scaled RMSE Table 3 - Average Scaled STD

An iteration of the learning procedure consisted of two parts where the first part propagated the input
patterns and estimated optimal consequent parameters through an iterative least squares procedure. The
second part used back propagation to modify the antecedent membership functions.
We tested ANFIS with a range of different cluster radii values. The Multi-Layer Perceptron (MLP)
back-propagation Neural Network was tested with different numbers of hidden nodes in a single hidden
layer. We tested the AOFIS with different number of fuzzy sets and the membership function overlap
threshold was set to 0.5 as this gave both a sufficient degree of overlap while allowing the system to
distinguish between the ranges covered by each fuzzy set. Tables 1 and 2 illustrate the scaled Root
Mean Squared Error (RMSE) and scaled Standard Deviation (STD) for each technique averaged over
the six randomised samples, and corresponding to the values of the variable parameter tested for each
approach. The results above show that the optimum number of fuzzy sets for AOFIS was 7 and on
average AOFIS produced 186 rules. The GP in comparison gave a marginally lower error for 7 fuzzy
sets. Both ANFIS and the MLP on average gave a higher error than AOFIS. The ANFIS only learns a
Multi-Input Single Output (MISO) FLC and had to be run repeatedly for each output parameter. The
FLC produced was therefore only representative of an MISO system. Another restriction with ANFIS
were that it generates TSK FLCs, where the consequent parameters are represented as either linear or

From Chapter 24 Springer-Verlag book; The Application of Pervasive ICT Series: Computer Communications and
Networks, Steventon, Alan; Wright, Steve (Eds.) 2006, XVIII, 438 p. 162 illus., Softcover ISBN: 1-84628-002-8.
January 2006

© Springer-Verlag,2006 13

constant values, rather than linguistic variables as is the case with Mamdani FLCs. These linguistic
variables are very important to understanding the human behaviour. It should be noted that the AOFIS
generates Multi-Input, Multi-Output (MIMO) Mamdani FLCs representing rules in a more descriptive
human-readable which is advantageous for pervasive computing communities or other ambient
intelligent systems, as they deal with people whose behaviours are more easily described in such
linguistic terms. The iterative nature of the GP makes it highly computationally intensive and this also
applies to both ANFIS and the MLP which are also iterative based approaches. AOFIS is far less
computationally intensive due to the one-pass procedure it employs, and is therefore more favourable
for an embedded agent Both ANFIS and the GP based approach cannot easily be adapted online as this
would require their internal structures to be re-learnt if either new rules were to be added or existing
rules were adapted. So the AOFIS method is unique in that it can learn a good model of the user’s
behaviour which can then be adapted online in a life long mode, in a non intrusive manner, unlike other
methods which need to repeat a time consuming learning cycles to adapt the user’s behaviour. Hence,
in summary, the AOFIS agent proved to be the best for online learning and adaptation, moreover it is
was computationally less intensive and better suited to online learning than the other approaches
compared. Finally, at the outset of our work it wasn’t clear how long, if at all) it would take for such
learning in this type of environment to reach a steady state. Our initial results see Figure 12) indicate
this is possible within a day although we would need to conduct experiences over much longer periods
to catch other cycles , such as annual climate related variations.

Figure 12 - Typical Learning Rate of FLC based Agent

6.0 An End-User Programming Based Approach

6.1 Discussion

Whilst autonomous agents may appeal to many people, their acceptance is not universal. Some lay-
people distrust autonomous agents and prefer to exercise direct control over what is being learnt, when
it is being learnt and to whom (or what) the information is communicated. These concerns are
particularly acute when such technology is in the private space of our homes. Often, end-users are
given very little, if any, choice in setting-up system to their likings, but rather, they are required to
“surrender their rights” and “put-up-with” whatever is provided [Chin 04].

Moreover, there are other reasons advanced in support of a more human driven involvement, such as
exploiting the creative talents of people by providing them with the means to become “designers of
their own “pervasive computing spaces”, whilst at the same time, shielding them from unnecessary
technical details. To explore this aspect of our inhabited intelligent environment work we have recently
opened up a complementary strand of research which we refer to as Task Oriented Programming (TOP)
based a combination of Programming-By-Example (PBE) (sometimes referred to as Programming-By-
Demonstration - PBD), pioneered by Smith in the mid -seventies [Smith 77], Learning-From-the User
(LFU), the paradigm Essex University has been developing for many years and ontologies (the latter
mainly drawn from research work on the semantic web) [Berners-Lee].
It is based on a vision to put the user at the centre of the system programming experience by
exchanging implicit autonomous learning for explicit user driven teaching.. In this approach a user
defines a community of coordinating pervasive devices and then “programs” it by physically operating
the system to mimic the required behaviour ie “programming-by-example” [Chin 05].

From Chapter 24 Springer-Verlag book; The Application of Pervasive ICT Series: Computer Communications and
Networks, Steventon, Alan; Wright, Steve (Eds.) 2006, XVIII, 438 p. 162 illus., Softcover ISBN: 1-84628-002-8.
January 2006

© Springer-Verlag,2006 14

6.2 Programming-By-Example

Programming-by-example (PBE) was introduced by Smith in the mid-seventies, where the algorithms
for the system functionalities were not described abstractly but rather demonstrated in concrete
examples [Smith77]. Henry Lieberman later described PBE is “a software agent that records the
interactions between the user and a conventional direct-manipulation interface and writes a program
that corresponds to the user’s actions”, where “the agent can then generalise the program so that it can
work in other simulations similar to, but not necessarily exactly the same as, the example on which it is
taught” [Lieberman01]. Thus, PBE reduces the gap between the user interactions and the delivered
program functionality by merging the two tasks. The main area of PBE work has focused on graphical
user interfaces running on PCs. For instance PBE has been applied to computer application
development [Myers90], [Halbert93]; Computer-Aided Design (CAD) system [PBDCAD]; children’s
programs [Stagecast], [AgentSheets] [ToonTalk].and World Wide Web related technologies
[Sugiura98], [Bauer 00], [McDaniel01], [Lieberman99], [Blackwell01]. The underlying principles in
PBE are generic and transportable to the pervasive computing world. In addition to the underlying
scientific principle PBE shares the same motivation of empowering lay-end-users to utilise what would
otherwise be prohibitively complex technology. However, to-date PBE has not been applied to
programming tangible physical objects, nor any other aspect of pervasive computing. Thus TOP is the
first application of PBE to this area.

6.3 Task-Oriented-Programming (TOP)

TOP was proposed and developed by Chin in 2003 as a means to address the issues of privacy and
creativity in iSpaces [Chin04b]. In the TOP approach, the system is explicitly put into a learning mode
and taught (by demonstration) how to behave by the lay end-user. For example the TV or sitting room
light could be made to react to an incoming call on the telephone. Thus the telephone, TV and light
coordinate their actions to form a new meta (virtual) appliance. The vision goes beyond linking only
conventional appliances. For instance if a network capability is added to an appliance, it becomes
possible to allow its functional units to be shared with others. Thus in this notion, the audio amplifier in
a TV could be made use of by the HiFi system, or vice versa. Consequently, “virtual appliances” could
be created by establishing logical connections between the sub-functions of appliances, creating
replicas of traditional appliances, or inventing altogether new appliances. This decomposition of
traditional appliances into their atomic functionalities (either physically or logically) and later allowing
users to re-compose “virtual appliances” (nuclear functions) by simply reconnecting these basic atomic
functionalities together is the paradigm we called: “the decomposed appliance” model. The key to
creating “virtual appliances” from decomposed functions is that of making connections between sub-
functions so that a closed set of interconnected functions becomes a global set of functions (ie, it
becomes a “community”, or a collective of coordinating devices with a meta functionality. To facilitate
this it is necessary to have some standard way of describing the functionality of the devices and
connections; thus, for TOP, we have devised an ontology, dComp (see next section). Clearly, this
concept of “community” is not limited to decomposed appliances, but relates to any set of coordinated
pervasive entities, whatever their functional or physical level (eg it could also relate to nano-scale or
even macro-scale building-to-building environments). In general, a richer the pool of sub-functions will
lead to greater combinations or permutations for the user to create new virtual appliances.

As TOP has the notion of working with communities the system supports setting up communities (if
they don’t already exist). Then, by selecting any community that the user wishes to program, a set of
coordinated actions are taught to the system by simply using the home networked devices in a role-play
mode, supported by some on-screen activities An action causes an appliance to generate an associated
event, and this event is then used to generate appropriate rules (based on a “snapshot” of the
environment state). To be more general, coordinating actions (ie. tasks) are performed by a community
(ie. one or more devices). A device can be involved in more than one community (ie. performing one or
more actions). The designers (user) interface with TOP is via an editor called “TOPeditor”. This editor
provides a means for: (1) setting up / amending communities and (2) holding teaching sessions so that
tasks can also be taught (via the editor) as well as via physical usage of networked devices.

The TOP architecture, shown in Figure 6, has two distinct modules; a “Top Editor” (to program the
systems) and a “TOP Engine” (to execute the user generated rules). The TOP Editor has two main
components. The first component, a “TOP community set-up assistant”, allows the user to set up
groups (communities) of devices that can communicate and coordinate their actions to produce some

From Chapter 24 Springer-Verlag book; The Application of Pervasive ICT Series: Computer Communications and
Networks, Steventon, Alan; Wright, Steve (Eds.) 2006, XVIII, 438 p. 162 illus., Softcover ISBN: 1-84628-002-8.
January 2006

© Springer-Verlag,2006 15

desired meta function (or virtual appliance). The second component, the TOP Engine is a process that
runs inside each and every networked device and executes the taught rules It has three main
components; a “TOP event handler” that monitors connected devices, forming a rules based on a users
interaction with the networked devices (interactions generating “events” managed by an underlying
UPnP middleware). User interactions can be direct (eg activating a control) or indirect activating a
telephone by dialling in from another phone). The second component, a “Rule Manager”, manages the
addition and removal of rules from memory. This includes removing dormant rules to make space for
newer rules, and checking for duplication or conflicts. The third module, “the Local Rule cache” acts as
a temporary rule buffer whilst rules are being built by the user (ie while the user is still designing and
experimenting with creating community functionality). To facilitate the information to be used within
and beyond the community, data needs to be standardised so that it can be unders tood by all other
parties in the network. For this aspect of work, the semantics in the TOP dComp ontology supports
information interoperability between applications, providing a common machine “understanding”
knowledge framework.

Figure 13 - The TOP Architecture

6.4 The dComp Ontology

TOP leverages Ontology semantics as the core vocabulary for its information space, generating
ontology-based rule sets when a user demonstrates her/his desired tasks to the system in a “teaching”
session. As explained in the previous section, these rule-sets are then interpreted and executed by a
back-end execution engine; the “TOP Engine”. (TOPengine). As Ontology allows information to be
conceptually specified in an explicit way by providing definitions associated with names of entities in a
universe of discourse (eg. classes, relations, functions, or other objects)that are both a machine and
human useable format. Thus, in more practical terms, ontology describes things such as what a device
names mean, and provide formal axioms that constrain the form and interpretation of these terms. Most
ontology tools support descriptions of behaviour based on rules, hence an ontology based approach is
well suited the challenges TOP faces.

We have chosen to base dComp around the OWL language as it is more expressive than RDF or RDF-
S (ie provides additional formal semantic vocabularies allowing us to embed more information into our
ontology) and. is widely used (especially for the semantic Web) with numerous supporting tools such
as Jena [HP Jena] and inference engines such as RACER [Haarslev and Moller 01], F-OWL [Zou 04],
Construct [Network Inference]. In order to realise our vision, a set of explicitly well-defined
vocabularies (ie. an ontology) is needed to model, not just the basic concept of decomposed devices but
also, the communities they form, the services they provide, the rules and policies they follow, the
resultant actions that they take, and of course the people who inhabit the environment along with their
individual preferences; dComp provides these properties. Wherever possible we have sought to build
on existing work. The SOUPA ontology (from Ubicomp) is aimed at pervasive computing but lacks

Out/in
events

Network
protocol

Information
space -

PHENTalk

Ontologies

 Community
description

Event
description
 Rules
description

TOP Engine
(module) on
Device

TOP event
handler

Rule Manager

Editor GUI

TOP
Editor

TOP community
set -up assistant

TOP session
assistant

Hardware

Device driver software

Network

Rule Sets Local
Rule in
cache

User’s
action

From Chapter 24 Springer-Verlag book; The Application of Pervasive ICT Series: Computer Communications and
Networks, Steventon, Alan; Wright, Steve (Eds.) 2006, XVIII, 438 p. 162 illus., Softcover ISBN: 1-84628-002-8.
January 2006

© Springer-Verlag,2006 16

support for key TOP mechanisms such as community, decomposed functions and coordinating actions
(to produce higher level meta functionality) [Soupa]. In addition, the current SOUPA standard has
only limited support for the concept of pervasive home UPnP-based devices (with TOP depends on).
However, SOUPA has a well defined method of supporting notions of Action, Person, Policy and Time
which dComp has adopted. Thus most of the innovation in dComp relates to the ontology of
decomposition and community; hence the name “Decomposed Community Programming” (dComp).

The following is a summarised walk-through of the full dComp specification which is described more
fully online2 and in other papers [Chin 04b]. To avoid any confusion in terminology, henceforth we
refer the dComp Ontology as “the ontology” whereas the documents that describe a certain concept of
entities (e.g. device, services, community etc) that exist in the dComp environment are referred to as
“ontology documents”. Ontology also describes a set properties and relationships that are associated
with these concepts, along with the restrictions they may have. The current version (v.1.1)of the
dComp ontology consists of 10 classes (see figure 14).

Figure 14. dComp ontology (v.1.1)

6.4.1 The Device Class

The main class called “DCOMPDevice” provides a generic description of any devices. Currently
DCOMPDevice has 10 sub-classes including both nuclear (traditional appliances) and atomic
(decomposed) devices and remains the subject of ongoing development. The roles of most sub-classes
are obvious from their names. Those which might not be obvious include “DeviceInfo” which is for
individuals that share some UPnP descriptions, “DeviceInfo” for devices sharing some UPnP
descriptions, “Characteristic” for different mobility characteristics, Relationships are defined by using
the OWL object property5 and are: (1) hasDeviceInfo (2) hasHardwareProperty (3) hasDCOMPService
(4) hasCharacteristic. The main elements of a typical DCOMPDevice expression is shown in figure
15.:

6.4.2 Hardware Class
The abstract class, DCOMPHardware, generalises all hardware that exists in a DCOMPDevice and, in
the current version,, has 8 sub-classes along with associated properties: CPU, Memory, DisplayOutput,
DisplayInput, AudioOutput, AudioInput, Amplifier and Tuner. In order for the DCOMPDevices to
work together, every DCOMPDevice on the dComp network offers services. These services are
modelled by a class called “DCOMPService” which currently contains three sub-classes, namely
TOPService, LightsAndFittingsService and EntertainmentService. Each contains sub-services, for
example, the EntertainmentService class includes AudioService, VideoService, FileRepositoryService,
SetTopBoxService and FollowMeService. The LightsAndFittingsService and EntertainmentService are
mutually distinct (ie in mathematical terms, they do not belong to a same set). These characteristics are

2 dComp ontology can be retrieved from : http://iieg.essex.ac.uk/dcomp/ont/dev/2004/05/
5 object property denotes relations between instances of two classes. See owl:ObjectProperty
6 SymmetricProperty denotes: If a property, P, is tagged as symmetric then for any x and y: P(x,y) iff P(y,x)

DCOMPDevice
Class
DCOMP Device
MobileDevice
StaticDevice
NomadicDevice
Light
Switch
Telephone
Alarm
Blind
Heater
FileRepository
DisplayDevice
AudioDevice
SetTopBox
Characteristic
DeviceInfo

DCOMPService
Class
DCOMP Service
LightsNFittingsService
LightService
SwitchService
TelephoneService
AlarmService
TemperatureService
EntertainmentService
AudioService
VideoService
FollowMeService
SetTopBoxService
StateVariable
TOPService

DCOMPHardware
Class
Hardware
CPU
Memory
DisplayOutput
DisplayScreenProperty
AudioOutput
AudioOutputProperty
Tuner
Amplifier

DCOMPCommunity
Class
SoloCommunity
NotJointCommunity
PersistentCommunity
TransitoryCommunity
CommunityDevice

Rule Class
Rule
UnchangableRule
PersistentRule
NonPersistentRule
Preceding
Device

Policy Class
Policy
Mode

DCOMPperson
Class

Preference
Class
Preference
SituationalCondition
CommunityPreference

Time Class

Action Class
Action
PermittedAction
ForbiddenAction
Recipient
TargetAction

From Chapter 24 Springer-Verlag book; The Application of Pervasive ICT Series: Computer Communications and
Networks, Steventon, Alan; Wright, Steve (Eds.) 2006, XVIII, 438 p. 162 illus., Softcover ISBN: 1-84628-002-8.
January 2006

© Springer-Verlag,2006 17

modelled by declaring the classes to be disjointWith7 each other. Every service in the dComp
environment is identified by a property called “serviceID” and a class called “StateVariable” (to
represent UPnP values). The StateVariable class has three properties, namely: “name”, “value” and
“evented”. The relationship between a DCOMPService and the StateVariable is linked by an object
property called “hasStateVariable”. The relationship between a DCOMPDevice and DCOMPService is
coupled by an object property called: hasDCOMPService.

 Figure 15 - Typical Display Device Expression Figure 16 - Typical TV community definition

6.4.2 Community Class

As dComp needs to support the notion of community (a collective), there is a class called
DCOMPCommunity. In the current implementation we model three types of communities namely: (1)
SoloCommunity (for those devices not yet part of a community) (2) PersistentCommunity (for
communities with a degree of permanency) (3) TransitoryCommunity (for communities with a short
lifetime). A DCOMPDevice can join one or more communities (a community must have at least one
device). Relationship between a DCOMPDevice and a DCOMPCommunity, is desrbed using an object
TransitiveProperty8 called “inTheCommunityOf”. A class called “CommunityDevice” is introduced to
represent all the devices in a community. These devices are identified by their deviceUUID
identification. The relationship between a Community and CommunityDevice is linked by another
object TransitiveProperty called “hasCommunityDevice”. Communities in dComp are formed by a user;
thus, each community has an owner. The properties of Communities are: community ID,
communityName, communityDescription and timestamp. The relationship between a community and its
owner is linked by an object type property, called “hasOwner”. An example of the main elements in a
dComp TV community is given in figure 16.

6.4.3 Rules Class
Rules are needed in TOP for coordinating community actions and are supported by a class called
“Rules” which models three types of rules: (1) UnchangeableRules (rules that can not be changed), (2)
PersistentRules (rules that infrequently change) and (3) NonPersistentRules (rules that frequently
change). These rules are mutually distinct and are declared to be complementOf9 each other. Rules
have properties: ruleID and ruleDescription and an object property called “hasRuleOwner” to link to
the owner. (Note: the rule and community owners may be different people). A class called “Preceding”
is used to represent a set of triggers that cause the coordinating actions to be executed. The devices in
the Preceding class are identified by their deviceUUID, and the service they offer. Finally an object
property called “hasAction” binds the relationship between Rules and Actions. The main elements of a
Rule Definition is given in figure 17.

7disjointWith asserts that the class extensions of the two class descriptions involved have no individuals in common.
8 TransitiveProperty denotes if a device X is in the community of C and the community C is a member of Community P then the
device X is also a member of community P
9 complementOf denotes all individuals from the domain of discourse that do not belong to a certain class

<com:TransitoryCommunity rdf:ID="JCTV">
 <com:communityID>Tran-JCTV</com:communityID>
 <com:communityName>JC TV</com:communityName>
 <com:communityDescription>The first JC testing
TV</com:communityDescription>
 <com:timeStamp rdf:datatype="&xsd;dateTime">2004-09-
06T19:43:08+01:00</com:timeStamp>
 <com:hasOwner>
 <person:Person rdf:about="#JC"/>
</com:hasOwner>
<com:hasCommunityDevice>
 <com:CommunityDevice rdf:about="#JCMonitor CRT17"/>
</com:hasCommunityDevice>
<com:hasCommunityDevice>
<com:CommunityDevice rdf:about="#JC AudioMMS223"/>
</com:hasCommunityDevice>
<com:hasCommunityDevice>
 <com:CommunityDevice rdf:about="#JC :NetGem442"/>
</com:hasCommunityDevice>
</com:TransitoryCommunity>

<device:AudioDevice rdf:ID="TestDevice12">
<device:hasDeviceInfo>
<device:DeviceInfo>
<device:friendlyName>TestDevice12</device:friendlyName>
<device:DeviceUUID>0</device:DeviceUUID>
<device:DeviceType>urn:schemas-upnp-
org:TestDevice12:1</device:DeviceType>
<device:DeviceModelURL>http://TestDevice12URL/</device:Devi
ceModelURL>
<device:DeviceModelNumber
rdf:datatype="&xsd;double">0.0</device:DeviceModelNumber>
</device:DeviceInfo>
</device:hasDeviceInfo>
<hw:componentOf>
<hw:RAM rdf:about="#JCTestMemory2"/>
</hw:componentOf>
<serv:hasDCOMPService>
<!-- can have more than 1 service -->
<serv:AudioService rdf:about="#JCAudioService01"/>
</serv:hasDCOMPService>
<!-- 2nd service -->
<serv:hasDCOMPService>
<serv:AudioService rdf:about="#JCAudioService02"/>
</serv:hasDCOMPService>
<!-- 3rd service -->
<serv:hasDCOMPService>
<serv:AudioService rdf:about="#JCAudioService03"/>
</serv:hasDCOMPService>

From Chapter 24 Springer-Verlag book; The Application of Pervasive ICT Series: Computer Communications and
Networks, Steventon, Alan; Wright, Steve (Eds.) 2006, XVIII, 438 p. 162 illus., Softcover ISBN: 1-84628-002-8.
January 2006

© Springer-Verlag,2006 18

 Figure 17 - Main elements of Rule Definition Figure 18 - Main elements of a Situated Condition.

Figure 19 - Main elements of an Action (muting the TV)

6.4.3 Action, Person, Policy and Time Class

Wherever possible we have sought to build on existing ontology work. SOUPA provides a suitable
DCOMPperson, Policy and Time ontology and thus these have been adopted in dComp 7. The Action
ontology document has , to some extent, been influenced by the SOUPA Action ontology. The class
“Action” represents the set of actions defined by the rules. As with SOUPA, we have two types of
actions, namely: PermittedAction and ForbiddenAction class. The Action class in dComp is the union
of these two action classes; every coordinating action has its target devices. A class called “Recipient”
models target devices, which represents a set of target devices where actions take place. The members
of Recipient are identified by their deviceUUID and the serviceID. Actions for the recipient are called
“TargetAction” which has two properties namely actionName (the name of the action) and targetValue
(the value for the action to be taken). A typical statement “when the phone rings, mute the TV” could be
expressed as in Figure 19.

6.4.4 Preference Class

As the name implies, DCOMPPreference describes the preferences a person has within any given set
of options. In dComp, preferences are referred as “situated preferences”, which is similar to
Vastenburg’s “situated profile” concept where he uses situation as a framework for user profile so that
the values of the profile are relative to situations [Vastenburg 04]. The “Preference” class represents a
set of situated preferences of a person for his community. This Preference class has a subclass called
“CommunityPreference” and an associated property called “communityID”. To model “person A
prefers X, depending on the situation conditions of Y”, another class called “SituatedConditions” is
defined which represents the set of situated conditions that the person’s preferences depended on.
Although a person is allowed to define his own “SituatedConditions”, dComp explicitly defines a list

7 For further information refer to their site at: http://pervasive.semanticweb.org/soupa-2004-06.html

<NonPersistentRules rdf:ID="Rule1">
 <rule:ruleID rdf:datatype="&xsd;int">00001</rule:ruleID>
 <rule:ruleDescription>Test Rule 1</rule:ruleDescription>
 <com:communityID>Tran-JCTV</com:communityID>
 <rule:hasRuleOwner>
 <person:Person rdf:about="#JC"/>
 </rule:hasRuleOwner>
<rule:hasPreceding>
 <!-- can have more than 1 device -->
 <rule:Device>
 <dComp:DeviceUUID>uuid:Telephone01</dComp:DeviceUUID>
 <serv:hasDCOMPService>
 <!-- a device can provide more than 1 service -->
 <serv:TelephoneService>
 <serv:serviceID>Telephone</serv:serviceID>
 <serv:hasStateVariable>
 <!-- a service can have more than 1 value of state variable-->
 <serv:name>state variable 1</serv:name>
 <serv:value>RINGING</serv:value>
 </serv:hasStateVariable>
 </serv:TelephoneService>
 </serv:hasDCOMPService>
 </rule:Device>
</rule:hasPreceding>
<rule:hasAction>
 <act:PermittedAction rdf:about="#TestAction"/>
</rule:hasAction>
</NonPersistentRules>

<act:PermittedAction rdf:ID="TestAction">
 <act:actionName>Test action</act:actionName>
 <act:hasRecipient>
device:DeviceUUID>UUID:PHLAudioMMS223</device:DeviceUUID>
 <serv:serviceID>AudioMMS223</serv:serviceID>
 </act:hasRecipient>
 <act:hasTargetAction>
 <act:actionName>Mute</act:actionName>
 <act:ta rgetValue>Mute</act:targetValue>
 </act:hasTargetAction>
</act:PermittedAction>

<owl:Class rdf:ID="SituationalCondition">
 <rdfs:label>SituationalCondition</rdfs:label>
 </owl:Class>
 <SituationalCondition rdf:ID="DuringTheWorkdays"/>
 <Situational Condition rdf:ID="DuringTheWeekends"/>
 <SituationalCondition rdf:ID="WhileOutOfTown"/>
 <SituationalCondition rdf:ID="WorkingFromHome"/>
 <SituationalCondition rdf:ID="FriendsVisiting"/>
 <SituationalCondition rdf:ID="FamilyVisiting"/>
 <SituationalCondition rdf:ID="OnHoliday"/>
 <SituationalCondition rdf:ID="WhenComeHomeFromWork"/>
 <SituationalCondition rdf:ID="WhenComeHomeFromSchool"/>
 <SituationalCondition rdf:ID="WhenAtMyOffice"/>
 <SituationalCondition rdf:ID="WhenDining"/>
 <SituationalCondition rdf:ID="WhenHavingLunch"/>
 <SituationalCondition rdf:ID="WhenHavingBreakfast"/>
 <SituationalCondition rdf:ID="WhenEating"/>
 <SituationalCondition rdf:ID="WhenPlayingComputerGames"/>
 <SituationalCondition rdf:ID="WhenWatchingTV"/>
 <SituationalCondition rdf:ID="AtNight"/>
 <SituationalCondition rdf:ID="InTheMorning"/>
 <SituationalCondition rdf:ID="AtLunchTime"/>
 <SituationalCondition rdf:ID="AtTeaTime"/>
 <SituationalCondition rdf:ID="Alone"/>
 <SituationalCondition rdf:ID="WhenAlarmGoesOff"/>
 <SituationalCondition rdf:ID="WhenSmokeAlarmGoesOff"/>

From Chapter 24 Springer-Verlag book; The Application of Pervasive ICT Series: Computer Communications and
Networks, Steventon, Alan; Wright, Steve (Eds.) 2006, XVIII, 438 p. 162 illus., Softcover ISBN: 1-84628-002-8.
January 2006

© Springer-Verlag,2006 19

All-in-One vs Decomposed Device
Descriptions

0
200
400
600
800

1 7 13 19 25 31 37 43 49

number of runs

m
s

All-inOne 3
devices

Decomposed 3
devices

All-inOne 32
devices

Decomposed
32 devices

of pre-set situated conditions so that it forms a default template that a person can use. The Preference
class has a close relationship to the Person class. To bind this relationship, an object property called
“hasPreference” is used, which links the domain of Person to the range of Preference. The relationship
between the Preference class and SituationConditions class is linked by another object property called:
“hasCondition”. The main elements of a Situated Condition are given in figure 18.

6.5 dComp Performance

 To assess the performance of dComp we compared two sets of device descriptions; the first description
was structured in typical xml-based “all-in -one” format, while the second was decomposed into smaller
segments (i.e. broken up into hardware and service information), each segment being “linked” back to
the device. Both descriptions were written in OWL. For each set, we used 2 different quantities of
devices in the test (3 and 32). A common query with five conditions was used for the test, with each test
being run fifty times. The test was conducted using a WindowsXP, 2.08 GHz, 512 RAM machine. Four
sets of tests were completed: (1) 3 device descriptions in “all-in-one” format (2) 3 device descriptions in
“decomposed” format (3) 32 device descriptions in “all-in-one” format and (4) 32 device descriptions in
“decomposed” format.

Figure 20. A typical dComp performance test

A representative example of our tests is provided in figure 20. As can be seen we found that the

decomposed device description out-performed the compact devices description for smaller domains
with fewer devices. On average, queries took half the time that “all-in-one” format descriptions took.
Although we had been concerned that decomposed descriptions might not fair as well for larger
domains, because of increased link following, we found that this was not the case, as the system
performed as well as the “all-in -one” descriptions, whilst bringing the advantages of decomposition
described earlier. This we attribute to additional link-processing being counterbalanced by the
processing benefits of smaller, better focused descriptions. For larger domains we found that the
performance of decomposed versus the compact descriptions remained roughly the same. Both TOP
and dComp represent new directions in our research and t hold great promise for solving the problems
of providing user creativity and privacy.

7.0 Summary

Both the ISL and AOFIS provide life-long learning and adaptation for pervasive devices and
communities. Both techniques were evaluated by arranging for users to live and use the iDorm for
periods of up to five days. Both techniques performed well in handling human behaviour (with all the
uncertainties involved), and in dealing with complex sensors, actuators and control. The agents
operated in a non-intrusive implicit manner allowing the user to continue operating the pervasive
computing device or community in a normal way while the agents learn controllers that satisfy the
users required behaviour.

In contrast the TOP approach deliberately seeks to involve the user in the learning phase, providing
explicit control of what and when the agent learns. In support of TOP we devised the ontology dComp
which directly supports the concept of community, and collectives of decomposed devices, together
with coordinating actions to create meta-group functionalities. We were motivated to produce such an
ontology to serve our longer terms research goals which aim to explore the development of end-user

From Chapter 24 Springer-Verlag book; The Application of Pervasive ICT Series: Computer Communications and
Networks, Steventon, Alan; Wright, Steve (Eds.) 2006, XVIII, 438 p. 162 illus., Softcover ISBN: 1-84628-002-8.
January 2006

© Springer-Verlag,2006 20

tools to allow lay-people to “program” groups of coordinated pervasive computing devices, so as to
become designers of their own environments. In dComp, the notion of decomposition extends to
device descriptions which are decomposed to map to separate sub-capabilities, each linked to other
related descriptions. Thus, decomposed device descriptions do not necessary have to reside in the same
place, a consequence of dComp’s roots being in the semantic web ontology, which firewall the
physical location of data servers, facilitating information retrieval via a hyperlink. dComp device
descriptions can be shared or reasoned about by other applications on the network, while queries can be
directed to a specific service rather than the whole device.

Contrasting these two approaches will allow us to evaluate the arguments for and against increased
agent autonomy and determine when and where each is appropriate. In all the approaches, the
underlying science is based on methods that are practical to implement in embedded-computers.

7.1 Future Directions

Our work is taking a number of directions. First we are continuing to try to develop and experiment
with new types of autonomous intelligent embedded-agents. For example we have projects underway
looking at new Type-2 Fuzzy logic based agents and new types of neuro-Fuzzy agents. We are also
mindful of the role that mood and emotions play in making decisions and have begun a project that is
seeking to enrich the decision space of agents by adding sensed data on emotions. We have also
embarked on two projects concerned with investigating developing agents at a nano-scale; one project
is looking at nano agents in fluids, the other as part of smart surfaces. Our end-user programming work
(TOP and ontologies) is at an early stage but the initial results as report in this paper are encouraging.
We anticipate future systems will require a mix of both autonomous-agent approaches (perhaps
dominating low levels) and end-user programming methods (perhaps dominating higher levels). We
hope our work will go some way to resolving where and when either method is most appropriate,
perhaps exploring the notion of the end user determining the levels of autonomy that the communities
of devices use. Finally, to gather more realistic and meaningful results for all our research into
pervasive environments, we need better data and so, with SRIF support , we have embarked on the
construction of a new purpose built test-bed for pervasive computing and iSpace work called the
iDorm-2. The iDorm-2 is a full size domestic flat built from scratch to facilitate experimentation with
pervasive computing technology. Apart from being equipped with the latest pervasive computing
appliances, and having been constructed to facilitate easy experimentation, the major advantage of the
iDorm-2 is that we will be able to get much longer periods of experimentation as people will be able to
stay in the environment for weeks and months. Thus we look forward to being able to report more
interesting and useful results when this facility comes on line in January 05.

Acknowledgements:
We are pleased to acknowledge support from the EU’s Disappearing Computer programme, The UK-Korean
Scientific Fund and the DTI’s Next Wave Technology and Markets programme whose support has enabled this
work. We should also like to express our gratitude all our partners whose support over the years has brought us to
this stage of our work; namely Kieran Delaney & Stephen Bellis (NMRC); Irene Mavrommati, Achilles Kameas ,
Nick Drossos, Dimitris Riggas and Margarita Dekoli (CTI); Roy Kalawsky & Scott Armitage (University of
Loughborough); and Phil Bull, Rowan Limb and Alex Loffler (BT). We are particularly grateful to Phil Bull and
Rowan Limb for their encouragement and support in writing this paper.

References (Printed)
[Bauer 00] Mathias Bauer, Dietmar Dengler, Gabriele Paul, Markus Meyer, “Programming by example:
programming by demonstration for information agents”, Communications of the ACM, Volume 43, Issue 3
(March 2000), pp.98 – 103
[Blackwell 01] Alan F. Blackwell, Rob Hague, Designing a Program Language for Home Automation, in
G.Kadoda (Ed). Proc PP1G 2001 pp85-103.
[Brooks 91] Brooks R, “Intelligence Without Representation”, Artificial Intelligence 47, pp139-159, 1991
[Callaghan 00] Callaghan V, Clarke, G, Pounds-Cornish A "Buildings As Intelligent Autonomous Systems: A
Model for Integrating Personal and Building Agents", The 6th International Conference on Intelligent
Autonomous Systems (IAS-6), Venice, Italy; July 25 - 27, 2000
[Callaghan 01a] Callaghan V, Clarke, G., Colley, M., Hagras, H. “A Soft-Computing DAI Architecture for
Intelligent Buildings”, Journal of Studies in Fuzziness and Soft Computing on Soft Computing Agents, Physica-
Verlag-Springer, June, 2001
[Callaghan 01b] V. Callaghan, M. Colley, G. Clarke, H. Hagras, “Embedded Intelligence: Research Issues for
Ubiquitous Computing,” Proceedings of the Ubiquitous Computing in Domestic Environments conference,
Nottingham, Sep, 2001.

From Chapter 24 Springer-Verlag book; The Application of Pervasive ICT Series: Computer Communications and
Networks, Steventon, Alan; Wright, Steve (Eds.) 2006, XVIII, 438 p. 162 illus., Softcover ISBN: 1-84628-002-8.
January 2006

© Springer-Verlag,2006 21

[Cayci 00] Cayci F, Callaghan V, Clarke G, "DIBAL - A Distributed Intelligent Building Agent Language", The
6th International Conference on Information Systems Analysis and Synthesis (ISAS 2000), Orlando, July 2000
[Chin 03] Chin JSY, Callaghan V, “Embedded-Internet Devices: A Means Of Realizing The Pervasive Computing
Vision”, IADIS International Conference, Algarve, Portugal, 5-8 November 2003
[Chin 04] Chin JSY, Callaghan V, Clarke G, Hagras H, Colley M, “Pervasive Computing and Urban
Development: Issues for the Individual and Society” UN Second World Urban International Conference on “The
Role of Cities in an Information Age”, September 13-17, 2004, in Barcelona, Spain.
[Chin 05] Chin JSY , Callaghan VL, Hagras H, Colley M, Clarke G, “An Ontology Based Approach to
Representation and Decomposition In Pervasive Home Computing Environments”, submitted to Pervasive 05
[Clarke 00] Clarke G, Callaghan V, Pounds-Cornish A “Intelligent Habitats and The Future: The Interaction of
People, Agents and Environmental Artefacts”, 4S/EASST Conference on Technoscience, Citizenship and Culture
in the 21st Century , Vienna, 26-28th September 2000
[Colley 01] Colley, M., Clarke, G., Hagras, H, Callaghan V, “Intelligent Inhabited Environments: Co-operative
Robotics & Buildings” 32nd International Symposium on Robotics (ISR 2001), Seoul, Korea April 19-21, 2001.
[Doctor 01] F. Doctor, H. Hagras, V. Callaghan, “An Intelligent Fuzzy Agent Approach for Realising Ambient
Intelligence in Intelligent Inhabited Environments”, Submitted to the IEEE transactions on Systems, Man and
Cybernetics, Part A: Systems and Humans.
[Doctor 04b] Doctor F, Hagras H, and Callaghan V. "A Type-2 Fuzzy Embedded Agent for Ubiquitous
Computing Environments", In the Proceedings of the IEEE International Conference on Fuzzy Systems, Budapest,
Hungary, July 2004..
[Doctor 04c] Doctor F, Hagras H, and Callaghan V. “An Adaptive Fuzzy Learning Mechanism for Intelligent
Agents in Ubiquitous Computing Environments,” In the proceedings of the 2004 World Automation Congress,
Seville, Spain, June 2004..
[Doctor 05] Doctor F, Hagras, H. A. K., Callaghan, V., “"A Fuzzy Embedded Agent Based Approach for
Realising Ambient Intelligence in Intelligent Inhabited Environments" to appear in the IEEE Transactions on
Systems, Man and Cybernetics, Part A: Systems and Humans, January 2005
[Duman 02a] Duman, H., Hagras, H. A. K., and Callaghan, V., 'A Soft-Computing based Approach to Intelligent
Association in Agent-Based Ambient-Intelligence Environment', 4th International Conference on Recent Advances
in Soft Computing, Nottingham, United Kingdom (2002)
[Duman 02b] Duman, H., Hagras, H. A. K., Callaghan, V., Clarke, G. S., and Colley, M. J., 'Intelligent
Association in Agent-Based Ubiquitous Computing Environments', Proceedings of the 2002 International
Conference on Control, Automation and System (ICCAS'02), Muju, Korea, October 16-19th 2002
[Hagras 00] Hagras H, Callaghan V, Colley M, Clarke G "A Hierarchical Fuzzy Genetic Agent Architecture for
Intelligent Buildings Sensing and Control", RASC 2000 - International Conference on Recent Advances in Soft
Computing June 29 & 30 2000, Leicester, UK
[Hagras 01] Hagras H, Callaghan V, Colley M, Clarke G, "A Hierarchical Fuzzy Genetic Multi-Agent
Architecture for Intelligent Buildings Learning, Adaptation and Control", International Journal of Information
Sciences, August 2001
[Hagras 02a] Hagras, H. A. K., Callaghan, V., Clarke, G. S., Colley, M. J., Pounds-Cornish, A., Holmes, A., and
Duman, H., 'Incremental Synchronous Learning for Embedded-Agents Operating in Ubiquitous Computing
Environments' in Soft Computing Agents: A New Perspective for Dynamic Information Systems (IOS Press,
2002),
[Hagras 02b] Hagras, H. A. K., Colley, M. J., Callaghan, V., Clarke, G. S., and Duman, H., 'A Fuzzy Incremental
Synchronous Learning Technique for Embedded Agents Learning and Control in Intelligent Inhabited
Environments', Proceedings of the 2002 IEEE International Conference on Fuzzy systems, Hawaii pp. 139-145
[Hagras 02c] Hagras, H. A. K., Callaghan, V., Colley, M. J., Clarke, G. S., and Duman, H., 'Online Learning and
Adaptation for Intelligent Embedded Agents Operating in Domestic Environments' in Dario Maravall and Da Ruan
Changjiu Zhou (ed.), Fusion of Soft Computing and Hard Computing for Autonomous Robotic Systems (Physica-
Verlag, 2002
[Hagras 04] Hagras, H. A. K., Callaghan, V., Colley, M. J., Clarke, G. S., and Duman, H., “A Fuzzy Logic Based
Embedded Agent Approach to Ambient Intelligence in Ubiquitous Computing Environments, IEEE Intelligent
Systems Journal, 2004
[Halbert 93] Halbert D.C. “SmallStar: Programming by Demonstration in the Desktop Metaphor”, Watch What I
DO, MIT Press. 1993
[Haarslev 01] V.Haarslev and R. Moller, Description of the RACER system and its application, In proceedings
International Workshop on Description Logics (DL-2001), 2001.
[Holmes 02] Holmes, A., Duman, H. and Pounds-Cornish, A., "The iDORM: Gateway to Heterogeneous
Networking Environments", International ITEA Workshop on Virtual Home Environments, 20-21st February
2002. Paderborn, Germany
[Lieberman 99] Lieberman H., Bonnie A. Nardi and David J. Wright, “Training Agents to Recognize Text by
Example”, Proceedings of the third annual conference on Autonomous Agents, Seattle, Washington, United States,
1999, pp 116 - 122
[Lieberman 01] Lieberman H, “Your wish is my command”, Program by Example, Morgan Kaufmann press,
2001.
[McDaniel 01] McDaniel R., “Demonstrating the hidden features that make an application work”, Your wish is
my command: programming by example, Morgan Kaufmann Publishers Inc. San Francisco, CA, USA , 2001, pp
163 - 174

From Chapter 24 Springer-Verlag book; The Application of Pervasive ICT Series: Computer Communications and
Networks, Steventon, Alan; Wright, Steve (Eds.) 2006, XVIII, 438 p. 162 illus., Softcover ISBN: 1-84628-002-8.
January 2006

© Springer-Verlag,2006 22

[Myers 90] Myers B.A., “Creating user interfaces using programming by example, visual programming, and
constraints”, ACM Transactions on Programming Languages and Systems (TOPLAS), Volume 12 , Issue 2
(April 1990), pp 143 - 177
[Pounds-Cornish 02] Pounds-Cornish A, Holmes A, "The iDorm - a Practical Deployment of Grid Technology"
2nd IEEE International Symposium on Cluster Computing and the Grid (CCGrid2002), May 21-24 2002, Berlin,
Germany
[Smith 77] Smith, D. C., “Pygmalion: A Computer Program to Model and Stimulate Creative Thought”, Basel,
Stuttgart, Birkhauser Verlag. 1977.
[Sugiura 98] Sugiura A,Koseki Y. “ Internet scrapbook: automating Web browsing tasks by demonstration”
Proceedings of the 11th annual ACM symposium on User interface software and technology, San Francisco,
California, United States, 1998, pp.9-18.
[UK Patent 99] Genetic-Fuzzy Controller, UK No 99 10539.7, 7th May 1999
[Vastenburg 04] Vastenburg M, “SitMod: a tool for modelling and communicating situations”, Second
International Conference, PERVASIVE 2004, Vienna Austria, April 21-23, 2004, ISBN: 3-540-21835-1
[Zou 04] Young Zou, Harry Chen, and Tim Finin, F-OWL: an Inference Engine for Semantic Web, Proceedings of
the Third NASA-Goddard/IEEE Workshop on Formal Approaches to Agent-Based Systems, 26 April 2004

References (web)
[AgentSheets] http://agentsheets.com/products/index.html
[Berners-Lee] http://www.w3.org/DesignIssues/Semantic.html
[HP Jena] http://jena.sourceforge.net/
[Network Inference] http://www.networkinference.com/Products/Construct.html
[PBDCAD] Bring Programming by Demonstration to CAD Users http://www.lisi.ensma.fr/ihm/index-en.html
[SOUPA] http://pervasive.semanticweb.org/soupa-2004-06.html
[Stagecast] Stagecast Creator ttp://www.stagecast.com/creator.html
[ToonTalk] http://www.toontalk.com/

About this book:

Intelligent Spaces
The Application of Pervasive ICT
Series: Computer Communications and Networks
Steventon, Alan; Wright, Steve (Eds.)
2006, XVIII, 438 p. 162 illus., Softcover
ISBN: 1-84628-002-8

This book sets out a vis ion of ‘intelligent spaces’ and describes the progress that has been made
towards realisation. The context for Intelligent Spaces (or iSpaces) is the world where ICT
(Information and Communication Technology) and sensor systems disappear as they become
embedded into physical objects and the spaces in which we live, work and play. The ultimate vision is
that this embedded technology provides us with intelligent and contextually relevant support,
augmenting our lives and experience of the physical world in a benign and non-intrusive manner.

The ultimate vision is challenging, there are technical barriers, especially in the integration of complex
systems and in the creation of intelligent software, as well as social and economic barriers.

This book explores what is technically possible and what users will need for the future. Academic and
industrial researchers in Computer Science, IT and Communications, as well as practitioners will find
this key reading as it delivers practical and implementable current research.

