
In the IEEE International Conference on Pervasive Services, The First IEEE International Symposium on

Pervasive Computing and Applications SPCA06), August 3-5, 2006, Urumchi, Xinjiang, P.R. China

© Essex University 2006 1

A Pervasive Computing Programming Approach for Non-Technical Users

Jeannette S Chin
1
, Vic Callaghan

1
, Graham Clarke

1

1
Department of Computer Science, University of Essex, United Kingdom

jschin@essex.ac.uk; vic@essex.ac.uk; graham@essex.ac.uk

Abstract

Our homes are rapidly being filled with diverse types

of products ranging from simple lighting systems to

sophisticated entertainment systems, all adding to the

functionality and convenience available to the home

user. In this paper we introduce a variant of end-user

programming in the form of a toolcalled PiP that

empowers non technical end users to be able to

“program” the functionality of their personal pervasive

computing environments to suit their particular needs.

The paper also includes a user evaluation that shows

end-users find this approach to be a useable and

enjoyable experience.

Keywords: Pervasive Computing, End-user

Programming, Programming-by-Example, Show-Me-

by-Demonstration, Deconstruction, Digital Home,

Intelligent Environment, Extreme Programming, End-

User Empowerment.

1. Introduction

Our homes are rapidly being filled with diverse types

of products ranging from simple lighting systems to

sophisticated entertainment systems, all adding to the

functionality and convenience available to the home

user. However, as impressive as current gadgets and

appliances may seem, the home user is set to experience

nothing short of a revolution in the nature and

capability of their home environment brought about by

adding embedded computers and network connections

to both existing electronic artefacts and those hitherto

passive. This development opens up the possibility for

hundreds (or more) of communicating home devices,

cooperating in communities serving the occupant; so

called “Pervasive Computing”.

In this paper we introduce a variant of an end-user

programming tool primarily targeted at home based

pervasive computing environments, which aims at

empowering the non technical end users to be able to

“program” the environment to suit their particular

needs. We employ “show-me-by-example” techniques

allowing the users to accomplish such tasks not just

without the need for them to write any code but also to

show the system how they would like their environment

to behave by simply demonstrating some examples. We

call this methodology Pervasive interactive

Programming (PiP).

2. Related Work
The area - Pervasive Computing has been receiving a

great deal of attention recently, although most of the

research and tools available currently are aimed at

developers rather than end users. For example, some

research work has focused on building infrastructure or

framework to support the dynamic changes nature of

the environment [3, 4, 5, 9, 11, 12] whilst other work

has targeted building high-level abstractions to support

tasks [6, 7, 8, 10] or providing user-friendly tools to

simplify a person’s use of the system [2, 13, 14].

The most relevant research to PiP is now described:

Humble [15] uses a jigsaw, metaphor, enabling users to

“snap” together puzzle-like graphical representations as a

way of building applications; Truong’s CAMP project

[16] places the end-users at the centre of the design

experience by using a fridge magnet metaphor, together

with a pseudo-natural language interface, that

collectively enables end-users to realize context-aware

pervasive applications in their homes; Media Cubes [1]

which offers a tangible interface for programming an

environment where each face of a cube is represented

by a set of program structures. “Programming

operations” are achieved by turning the appropriate face

of the cube towards the target device; The Alfred

project [17] utilises a macro programming approach to

enable a user to compose a program via “teaching-by-

example” using verbal or physical interactions. Whilst

these are very useful approaches, they are either not

flexible enough to support the end users’ intuitive

physical interactions or places a high cognitive load

upon the users eg. utilising methods such as macros

requires users to adhere to a strict ordering of

instructions or otherwise the system will fail.

3. Motivations

The motivation behind PiP was to create a system

that maximized user’s control and operational

transparency (engendering a sense of trust) and enabled

them to “program” their own environment, without any

detailed technical knowledge (thereby empowering user

creativity). This motivation was driven by experience

with autonomous agent based systems where users’

desired for controls were partly taken, fears on personal

privacy, information gathering and its usage were

expressed [18].

In the IEEE International Conference on Pervasive Services, The First IEEE International Symposium on

Pervasive Computing and Applications SPCA06), August 3-5, 2006, Urumchi, Xinjiang, P.R. China

© Essex University 2006 2

To date most of the research directed at this area has

focused on streamlining the use of the input languages

or metaphor-based GUI interfaces, aiming at

simplifying the use of the applications for the end users.

Currently most end-user programming tools for

ubiquitous environments are still based on the

procedural programming metaphor and require the user

to mentally manipulate constructs that would be

familiar to most programmers thereby placing a

significant cognitive load on the user. As we have been

inspired by the ease that people perform daily routine

tasks (eg. switch on the light when the room gets dark,

muting the TV sound when the telephone rings etc), we

decided to direct our approach at finding a way of

programming that was natural and mimicked familiar

everyday practices as much as possible.

4. Pervasive interactive Programming

(PiP)

PiP is primarily aimed at end users in any service-rich

pervasive environment. We assume that services are

offered from networked devices supported by underlying

protocol layers which are not described in this paper. PiP

provides a platform that utilises the physical user

environment as the programming environment thereby

enabling the user to “program” the functionality that they

require to suit their particular needs. Thus, with a

minimum effort, the end user, who has no technical

expertise, is able to produces customised effects on

groups of pervasive devices in the environment that can

usually only be achieved by conventional programming.

4.1. PiP Concepts

Definition: the term “device” used in this section refers

to any application that runs on the network which is able

to either initiate or react to commands relating to a

service (physical or information) it offers, which

typically resides in appliances, embedded-processors or

PCs.

4.1.1. Pervasive Device and Applications

 (Figure 1) is a technology-rich environment heavily

populated with network aware devices and services. It is

centred around the concept of services that provide

functions to accomplish particular tasks. The success of

these tasks is partly attributed to the ability of a device to

communicate their internal states. With a supporting

software framework, these services are discoverable, and

therefore accessible to the environment in which they

reside. Generally devices in a pervasive world would

offer at least one service but there is no restriction on the

number of services a device can offer. An example of a

supporting framework is Universal Plug and Play

(UPnP)
1
.

4.1.2. A Deconstructed Model – Virtual Device

As devices and their services in pervasive

environments are discoverable and accessible, a number

of possibilities emerge. For instance by aggregating sets

of services it becomes possible to form “virtual devices”.

This new model of “virtual devices” offers to radically

change the conventional perception of a “device” as the

functional units that make up current devices are shared.

The rationale is that a “virtual device” made up of the

functionalities of other devices could accomplish some

tasks, that individual device was not capable of. “Virtual

device” could have an impact on how developers produce

their products. More importantly, end users could

leverage this “device and service rich” pervasive world to

create their own “virtual devices” to suit their needs. We

refer to such communities or “virtual devices” as Meta

Appliances/Appliactions (MAps) and the approach as

the deconstructed appliance model.

4.1.3. MetaApplicances (MAp)

The concept of a MAp is a core concept in PiP. From a

logical perspective, a MAp has primitive properties and a

collection of Rules that determine the behaviour of the

coordinating devices and, as a consequence, the

environment, which is the end user’s personal space.

Rules are essentially a marriage of 2 different types of

actions, namely 'Antecedent' (condition) and

‘Consequent’ (action). Each action (whether it is an

'Antecedent' or a ‘Consequent’) has the property of a

“virtual device”. The 'Antecedent' of a Rule can be

described as “if” while the ‘Consequent’ of a Rule can be

described as “then”. A Rule can contain 0-n 'Antecedents'

and 1-n ‘Consequents’, and a MAp legally can contain 0-

n Rules (as Rules can be added later by the end user).

MAps are a non-terminating process and require no

specific user expertise for their formation. They are

created under the directions of end-users to provide the

sort of behaviour functionalities that they like. They can

1 UPnP network technology allows personal computer and

consumer electronics devices to advertise and offer their services to

network clients. More details UPnP forum at: http://www.upnp.org/

Figure 1. A Typical Pervasive Environment

A pervasive computing environment

Figure 1 -A pervasive computing environment

In the IEEE International Conference on Pervasive Services, The First IEEE International Symposium on

Pervasive Computing and Applications SPCA06), August 3-5, 2006, Urumchi, Xinjiang, P.R. China

© Essex University 2006 3

be represented graphically and be visible to the user who

created them, either at the time of creation or later when

they can be retrieved, shared, executed, or removed on

demand. Until a MAp is terminated, it will retain the

functionalities that the user originally created (ie. it is a

continually running process).

4.2. PiP System Architecture

PiP is designed to work in real time within a pervasive

environment (Figure 2). The communication between

PiP, the end user and the environment is via an eventing

mechanism, thus PiP has an event-based object-oriented

asynchronous architecture. Unlike macro languages, that

are commonly used in desktop computing end-user

programming paradigm, where sequence of actions is

significant, PiP assumes the logical sequence of actions is

not important.

PiP leverages UPnP™ technology as its middleware

and communication protocol, enabling simple and robust

connectivity among devices and PCs. It has modular

framework comprising six core modules, which work

together to support real-time network computation (see

figure 3),

The core modules are:
a) “Interaction Execution Engine” (IEE) – this module has a

network control point and is responsible for device discovery,

service events subscription, and performing network action

requests.

b) “Eventing Handler” (EH) – this module acts like a

middle-man, responsible for interpreting low-level network

events (eg device discovery), device service events (eg service

state changes) and high-level events that generate from

“PiPView” caused by the user interactions. Its main role is to

communicate events between interested modules.

 c) “Knowledge Engine” (KE) - this module is responsible for

assembling and instantiating a “virtual device” before storing

them in the Knowledge Bank. It is also responsible for

updating the device’s current status, as well as maintaining an

up-to-date version of the Knowledge Bank.

 d) “Real-time MAp Maintenance Engine” (RTMM) — is a

process that maintains the records of current and previously

created MAps.

 e) “Real-Time Rule Formation Engine” (RTRF) – this

module is responsible for assembling rules based on user

interactions within the “demonstration” mode
2
.

 f) “GUI” – A graphical interface called “PiPView” that the

user can use to make inspections of the environment,

compose/delete Maps/Rules etc, interact with the system and

control physical environment.

5. Show Me by Example

This section illustrates how the assembled system

actually works. In PiP, not just “PiPView” (the system

2 A “demonstration” mode begins when the user clicks “ShowMe”

button and end when user clicks “Done!” button.

pervasive repository

middleware

communicatio

pervasive devices

PiPView

wireless medium

smart sofa

Figure 2. PiP high level architecture

Figure 4. PiP on tablet view

Figure 3 -PiP Modular Architecture

In the IEEE International Conference on Pervasive Services, The First IEEE International Symposium on

Pervasive Computing and Applications SPCA06), August 3-5, 2006, Urumchi, Xinjiang, P.R. China

© Essex University 2006 4

GUI) can be regarded as a user interface, but so can

other networked devices, since users interact with them

during the demonstration process. Examples are:

networked dimmer lights, networked telephone, network

entertaining systems, network fridge etc (Figure 1).

Using these devices as user interfaces, users can interact

intuitively and naturally with the environment and the

metaphor for programming their environment is thus

very simple. The user creates a MAp (ie. the “program”

that captures the functionalities of the environment) by

showing the system the functionalities that the MAp

should have via simple familiar interaction e.g by using

a wall switch to turn on a light etc., and PiP will do the

rest for the user.

A MAp is created by the user “dragging & dropping”

device representations through PiPView. A MAp can be

given collective functionality by the user demonstrating

the required behaviour by engaging in physical activities

using the real devices, previously selected via PiPView.

In PiP, the user can choose when to inform the system

they are ready to begin to show (program) the devices

functionalities by using any of the three methods: (1)

physically interacting with the devices themselves, (2)

using a UI control panels (3) a combination of the above

two the choice being left to the user. Based on the actions

of the user, the pervasive devices generate appropriate

events and pass them to the network and PiP encodes this

information as a set of rules with two parts; an antecedent

(conditions) and consequent (resulting action) as it

“listens” and “captures” the user’s action as

demonstrated.

In PiP the user is given as much freedom as possible,

allowing antecedents and consequents to be formed in

any number and order (ie. the user is not required to

follow a rigid logical sequence of order). To execute a

MAp, the user needs only to drag the MAp graphical

representation and drop it into a “play” button located at

the top of the PiPView. To terminate a MAp the user

simply clicks on the “stop” button.

6. End Users Evaluation

An end-user evaluation was carried out in the iDorm2

(Figure 4) at the University of Essex
 3
, a two-bedroom

apartment built to be an experimental pervasive

computing environment. Five sets of pervasive devices

were created for the evaluations- (1) a bed light, (2) a

desk-light, (3) telephone, (4) a sofa and (5) an MP3

player. While the telephone and the sofa have embedded

sensors, both the two lights have on/off switches as

their interfaces. These devices were connected to a snap

[19] board. The MP3 player was implemented as a

software emulation run on PC with a mouse interface

for manual control. All devices were run on UPnP

middleware network

6.1. Evaluation Design and Procedure

The end user evaluation was designed to (1) see if

users were able use PiP in a creative manner to

construct MAps of their own design and (2) gather an

insight into their post-trial views of PiP based on six

factors: “Conceptual Understanding”, “User Control”,

“Cognitive Loading”, “Information Presentation”,

“Affective Experience” and “Future Potential”. Our aim

for the evaluations were to setup an open ended trial

giving the end users as much freedom as possible to

maximise the potential for creativity and see how the

participants preferred to use the system. This freedom

included time, methods, and tasks..

Eighteen participants (10 females and 8 males)

sampled from a diverse set of backgrounds (eg

housewives, students, secretaries, teachers etc)

participated in the evaluation. All participants had some

minimal computing experience ie. they knew how to use

a mouse. Whilst 21.3% of the participants had a very

good knowledge of programming, 57.4% of them had

none at all.

During the evaluations, PiP was set-up to run on a

winXP tablet PC (HP) that connected to the iDorm2

network via a Linksys 802.11g WIFI access point. Each

trial was preceded by a 20-minutes training session to

allow participant to familiarise themselves with the

system. The task for the evaluation was that the

participant should use PiP to program the pervasive

environment to behave in the way they wanted. No

specific type of behaviour for the environment was set

for the evaluation, rather the participants were free to

3 idorm2 at http://iieg.essex.ac.uk/idorm2/index.htm

Figure 5. A user demonstrates her actions via

physically interacts with the devices

Figure 4. The iDorm2 test bed

In the IEEE International Conference on Pervasive Services, The First IEEE International Symposium on

Pervasive Computing and Applications SPCA06), August 3-5, 2006, Urumchi, Xinjiang, P.R. China

© Essex University 2006 5

create one (or more) of their own. Participants were

encouraged to test out their newly created environment

instantly after creation. No time limit was set either and

assistance was provided where needed.

Following completion of the evaluation, a

questionnaire with a scale of responses ranging from

“Strongly Agree” through to “Strongly Disagree” was

administrated to measure the participants’ subjective

judgements of PiP. Participants rated a total of seventeen

statements covering six usability dimensions
4
. Data was

analysed using SPSS
4
.

7. Performance and Results

As our evaluations objectives were neither aimed at

measuring the system nor the participants’ performance

in terms of time, thus there was no formal timing

measurments during the trial periods. However, we

observed that after a brief training session, 83% of

participants were able to use PiP to “program” their

environment (ie. creating MAps) with little or no

assistance (although time taken to accomplish these

tasks varied from participant to participant).

Among the means used for demonstrating user’s

examples, a 11% of the participants chose to create their

programs using wholly GUI controls whilst 72% of

them did so via physical interaction with the

environment, the rest using a combination of both.

Although PiP is immune to logical order when

composing MAps, 33% of the participants (mostly

those with programming experience) found it

convenient to use logical sequence for composing

MAps whilst the remander focused on the

functionalities rather than logical sequence. .

Various tests (using SPSS software package) were

carried out to analyse the questionnaire ratings. From

the results we observed that the “Affective Experience”

dimension received the highest ratings (148 out of the

total number of 240 cases or 61.7% received a top

rating). It was discovered that the “Information

Retrieval” dimension (ie information presentation) had

4 SPSS at http://www.spss.com/

the lowest rating (“2” was recorded) whereas all other

dimensions, a “3” was the lowest recorded (Figure 6).

Table 1 shows an overall rating scale for six

dimensions evaluated. For the rating range from 1 – 5,

all six usability dimensions have a mean rating above

4.1, suggesting, in general, the participants found PiP

useful, and their experience of programming the

environment simple and enjoyable.

In addition we observed that 83.4% of all

participants found PiP intuitive to use and 94.4% of all

participants stated they felt it a rewarding experience.

95% Confidence

Interval for Mean

 N Mean

Std.

Deviation

Std.

Error
Lower

Bound

Upper

Bound Minimum Maximum

Conceptual
113 4.3186 .53894 .05070 4.2181 4.4190 3.00 5.00

UserControl
191 4.1990 .59134 .04279 4.1146 4.2834 3.00 5.00

CognitiveLoad
155 4.2710 .57332 .04605 4.1800 4.3619 3.00 5.00

InformationRetrieval
112 4.4107 .54613 .05160 4.3085 4.5130 2.00 5.00

AffectiveExperience
240 4.6083 .50596 .03266 4.5440 4.6727 3.00 5.00

FutureThoughts
83 4.1687 .76221 .08366 4.0022 4.3351 3.00 5.00

Total
894 4.3602 .59489 .01990 4.3211 4.3992 2.00 5.00

Table 1. One-Way ANOVA test on dimension vs qRating

8. Conclusion and Future Work

This paper has described our research into end-

user programming for pervasive computing and the

development of a programming paradigm called

Pervasive Interactive Programming (PiP). which

enables non-technical end-users to program the

environment functionality they require within a

pervasive computing environment. We have

implemented a small proof-of-concept version of PiP

which we evaluated on 18 users. Whilst

acknowledging that the participants are only a small

sample of the population, the initial results are

encouraging as they show that PiP served different

types of user well, allowing them to program the

environment to suit their needs. Thus, we contend that

this approach is usable by non-technical end-users to

create their own functionalities in the technology-rich

pervasive environments, such as digital homes. The

current version of PiP is not a commercial version and

so, for our future work, we hope to refine the system

further. Also, For MAps to be portable across

environments it is essential that there is a generic way

of describing the capabilities of collectives of devices

and services and for this we plan to refine our dComp

ontology [20]..

 Acknowledgement

We are pleased to acknowledge financial support

from the UK DTI Next Wave Technologies and Markets

programme and the University of Essex. We also wish to

record our thanks to our colleagues Martin Colley, Hani

Hagras and Malcolm Lear for their strong support.

Figure 6. Dimension vs qRating crosstabulation

In the IEEE International Conference on Pervasive Services, The First IEEE International Symposium on

Pervasive Computing and Applications SPCA06), August 3-5, 2006, Urumchi, Xinjiang, P.R. China

© Essex University 2006 6

References

 [1] Hague, R., et al: Towards Pervasive End-user Programming. In:

Adjunct Proceedings of UbiComp 2003 (2003) 169-170

[2] Humble, J. et al “Playing with the Bits”, User-Configuration of

Ubiquitous Domestic Environments, Proceedings of UbiComp 2003,

Springer-Verlag, Berlin Heidelberg New York (2003), pp 256-263

 [3] Tandler, P.: Software Infrastructure for Ubiquitous

Computing Environments: Supporting Synchronous

Collaboration with Heterogeneous Devices. In: Proceedings of

Ubicomp 2001: Ubiquitous Computing. Springer-Verlag,

Berlin Heidelberg New York (2001) 96-115.

[4] Grimm, R. et al “Programming for Pervasive Computing

Environment”, Proceedings of 18th ACM, Symposium on

Operating System Principles, Canada, Oct., 2001

[5] Becker, C. et al “ BASE: A Micro-broker-based

Middleware for Pervasive Computing”, Proceedings of the 1st

IEEE International Conference on Pervasive Computing and

Communications (PerCom03), Fort Worth, USA 2003.

[6] Wang Z, Garlan D. “Task-Driven Computing” Technical

Report, CMU-CS-00-154, Computer Science, Carnegie

Mellon Univ, May 2000.

[7] Masuoka, R. et al : Semantic Web and Ubiquitous

Computing - Task Computing as an Example -AIS

SIGSEMIS Bulletin 1(3) October 2004.

[8] Masuoka R et al "Task Computing - the Semantic Web

meets Pervasive Computing," 2nd Int’l Semantic Web Conf

(ISWC2003), 20-23 Oct 2003, Florida, USA

[9] Kameas, A. et al “An Architecture that Treats Everyday

Objects as Communicating Tangible Components”,

Proceedings of the 1st IEEE International Conference on

Pervasive Computing and Communications (PerCom03), Fort

Worth, USA 2003.

[10] Shahi, A. et al , Introducing Personal Operating Spaces

for Ubiquitous Computing Environments. Pervasive Mobile

Interaction Devices 2005 (PERMID 2005), hosted by 3rd

International Conference on Pervasive Computing, Munich 8-

13, May, 2005.

[11] Garlan, D. et al “ Project Aura: Toward Distraction-Free

Pervasive Computing”, IEEE Pervasive Computing

Magazine, April-June 2002.

[12] The PHEN project: http://iieg.essex.ac.uk/phen

[13] Drossos N. et al , “A Conceptual Model and the

Supporting Middleware for Composing Ubiquitous

Computing Applications”, The IEE International Workshop

on Intelligent Environments, University of Essex, Colchester,

UK, 28-29 June 2005

[14] Tsukada, K. and Yasumura, M.: Ubi-Finger: Gesture

Input Device for Mobile Use, Proceedings of APCHI 2002,

Vol. 1, pp.388-400

[15] Humble, J. et al “Playing with the Bits”, User-Configuration of

Ubiquitous Domestic Environments, Proceedings of UbiComp 2003,

Springer-Verlag, Berlin Heidelberg New York (2003), pp 256-263

[16] Truong, KN.et al “ CAMP: A Magnetic Poetry Interface

for End-User Programming of Capture Applications for the

Home”, Proceedings of Ubicomp 2004, pp 143-160.

[17] Gajos K., Fox H., Shrobe H., “End User Empowerment

in Human Centred Pervasive Computing”, Pervasive 2002,

Zurich, Switzerland, 2002.

[18] Chin J et al “Pervasive Information Systems: Issues for

the Individual and Society”, UN Second World Urban
International Conference on “The Role of Cities in an
Information Age”, September 13-17, 2004, in Barcelona,

Spain.
[19] SNAP http://snap.imsys.se/
[20]. J, Chin et al “Virtual Appliances for Pervasive Computing: A

Deconstructionist, Ontology based, programming-By-Example

Approach”, The IEE IE05, Colchester, UK, 28-29 June 2005.

