
IEE International Conference on Pervasive Services 26-29 June 2006, Lyon, France.

© IEEE & University of Essex 2006

1

?
Abstract— In this paper we present a variant of end-user

programming called PiP (Pervasive interactive Programming)
which offers non-technical end-users the possibility to configure
and customize sets of coordinating pervasive devises without the
need to employ conventional programming methods. In this
approach end-users “show” the system their required behaviour
via natural physical interaction with the environment. The
paper also describes the architectural components and presents
a user evaluation.

Keywords— Pervasive Computing, End-user Programming,
Programming-by-Example, Disaggregation, Digital Homes.

I. INTRODUCTION

The end-user programming paradigm is characterised by
techniques that allow users of application programs to create
“programs” without any technical expertise [4]. There are many
ways to achieve this , for example through use of existing
programming abstractions in which code is replaced by
graphical representations to form customised “scripting or
macro languages” that a user can use to create a desired
functionality. Smith, in the mid-seventies , introduced an
approach called Programming-by-Example, where functionality
was demonstrated directly via concrete examples by the end-
users, rather than derived indirectly from the use of
programming abstractions [7]. This was developed further by
Lieberman in the nineties [10]. Traditionally, end-user
programming was aimed solely at creating applications that ran
on single desktop computing environments.

This paper presents a variant of the end-user programming
paradigm, primarily targeting pervasive computing
environments. It employs a “show-me-by-example” approach
allowing non-technical end-users to “program” their
environment to suit their particular needs. The end-users are
neither required to write program code, nor follow a rigid
sequential list of actions in order to achieve the results. All the
end-user needs to do, is simply to show the system the
required functional behaviour by demonstrating the required
physical actions within the environment. We called this
method, Pervasive Interactive Programming (PiP); UK Patent
No: GB 0523246.7. This paper builds on earlier reported work
[1] [2] [3], presenting a prototype and evaluation.

II. MOTIVATIONS

The motivation behind PiP was to create a system that
engendered a sense of trust and empowered user creativity by
maximizing user control and operational transparency whilst
enabling users to “program” their own environment, without
the need for detailed technical knowledge.

To date the majority of the research directed at this area has
focused on streamlining the use of the input languages or
metaphor-based GUI interfaces, aimed at simplifying the use of
the applications for the users. Currently most end-user
programming tools for pervasive applications are based on the
procedural programming metaphor and require the user to
mentally manipulate constructs that would be familiar to most
programmers (albeit in a graphical or macro form) thereby
placing a significant cognitive load on the user. We have been
inspired by the ease with which people perform daily routine
tasks (eg. switching on the lights when a room gets dark,
muting the TV sound when a telephone rings etc) and so we
decided to direct our approach at finding a way of
programming that was natural and mimicked familiar practices
as much as possible, without the need for the users to follow a
set of rigid logical sequences of actions.

III. PERVASIVE INTERACTIVE PROGRAMING

Pervasive Interactive Programming (PiP) is aimed primarily at

end users in a service-rich pervasive environment. We assume
that services are offered from networked devices supported by
underlying protocol layers which are not described in this
paper. PiP provides a platform that utilises the physical user
space as the programming environment thereby providing a
natural and familiar mechanism for the user to “program” the
functionality that they require to suit their particular needs.
Thus, with a minimum effort, a non-technical end-user is able
to customise the functionality of coordinating groups of
pervasive computing devices that could usually only be
achieved by conventional programming.

A. Background Concept

1) Pervasive Device and Applications
A pervasive environment is heavily populated with network

aware devices and services. It is centred on the concept of
services that provide functions to accomplish particular tasks.
The success of these tasks is partly attributed to the ability of

An End-User Programming Paradigm for
Pervasive Computing Applications

Jeannette S Chin, Vic Callaghan, Graham Clarke, Intelligent Inhabited Environments Group, UK

IEE International Conference on Pervasive Services 26-29 June 2006, Lyon, France.

© IEEE & University of Essex 2006

2

a device to communicate their internal states (the term “device”
refers to any network application that is able to either initiate or
react to commands relating to a service). With a supporting
software framework, these services are discoverable, and
accessible to the environment in which they reside. An
example of a supporting framework is Universal Plug and Play
(UPnP)1.

2) The Deconstructed Model – Virtual Device

As devices and their services in pervasive environments are
discoverable and accessible, a number of possibilities emerge.
For instance by aggregating sets of services it becomes
possible to form “virtual devices” that offer higher level
composite services. We refer to such communities or “virtual
devices” as MetaAppliances (MAps) and the approach as the
deconstructed device model.

3) MetaApplicances (MAp)
The concept of a MAp is a core concept in PiP. From a

logical perspective, a MAp has primitive properties and a
collection of Rules that determine the behaviour of the
coordinating devices and, as a consequence, the environment,
which is the end user’s personal space. Rules are essentially a
marriage of 2 different types of actions, namely 'Antecedent'
(condition) and ‘Consequent’ (action). Each action (whether it
is an 'Antecedent' or a ‘Consequent’) has the property of a
“virtual device”. The 'Antecedent' of a Rule can be described
as “if” while the ‘Consequent’ of a Rule can be described as
“then”. A Rule can contain 0-n 'Antecedents ' and 1-n
‘Consequents’, and a MAp legally can contain 0-n Rules (as
Rules can be added later by the end user).

MAps are a non-terminating process and require no specific
user expertise for their formation. They are created under the
directions of end users to provide the sort of behaviour they
like. They can be represented graphically and be visible to the
user who created them, either at the time of creation or later
when they can be retrieved, shared, executed, or removed on
demand. Until a MAp is terminated, it will retain the
functionalities that the user originally created (ie. it is a
continually running process).

4) PiP System Architecture

PiP is designed to work in real time within a pervasive
environment. The communication between PiP, the end user
and the environment is via an eventing mechanism, thus PiP
has an event-based object-oriented asynchronous
architecture. Unlike macro languages , where sequence of
actions is significant, PiP assumes the logical sequence of
actions is not imp ortant. It employs a rule policy to maintain a
MAp process in which “a set of conditions are satisfied if the
conditions defined within the context of this set are all
satisfied”. PiP leverages UPnP™ technology as its middleware
and communication protocol, enabling simple and robust
connectivity among devices and PCs. It has modular

1 UPnP network technology allows devices to offer their services to

network clients. More details UPnP forum at: http://www.upnp.org/

framework, comprising six core modules, which work together
to support real-time network computation. The core modules
are:

a. “Interaction Execution Engine” (IEE) – this module has a
network control point and is responsible for device discovery,
service events subscription, and performing network action
requests.

b.“Eventing Handler” (EH) – this module acts like a “middle-
man”, responsible for interpreting low-level network events (eg
device discovery), device service events (eg service state
changes) and high-level events that generate from “PiPView”
caused by the user interactions. Its main role is to
communicate events between interested modules.

c. “Knowledge Engine” (KE) - this module is responsible for
assembling and instantiating a “virtual device” (ie a MAp)
before storing them in the Knowledge Bank. It is also
responsible for updating the device’s current status, as well as
maintaining an up-to-date version of the Knowledge Bank.

d.“Real-time MAp Maintenance Engine” (RTMM) — is a
process that maintains the records of current and previously
created MAps.

e. “Real-Time Rule Formation Engine” (RTRF) – this module
is responsible for assembling rules based on user interactions
within the “demonstration” mode2.

f. “GUI” – A graphical interface called “PiPView” that the
user can use to make inspections of the environment,
compose/delete Maps/Rules etc, interact with the system and
control physical environment.

B. How Does the System Work?
This section illustrates how the system actually works when

put together. In PiP, apart from the “PiPView” GUI, other
networked devices can be regarded as user interface, since
users interact with them during the demonstration process.
Examples are: networked dimmer lights, networked telephone,
network entertaining systems, network fridge etc (Figure 1).
Using these devices, users can interact intuitively and
naturally with the environment and the metaphor for
programming their environment is thus very simple. The user
creates a MAp ie. the “program” that captures the
functionalities of the environment, by showing the system the
functionalities that the MAp should have via simple familiar
interaction e.g by using a wall switch to turn on a light etc.,
and PiP will do the rest for the user.

A MAp is created by the user “dragging & dropping” device

representations through PiPView. A MAp can be given
collective functionality by the user demonstrating the required
behaviour by engaging in physical activities using the real
devices, previously selected via PiPView. In PiP, the user can
choose when to inform the system they are ready to begin to
program (show) the device functionalities by using any of the
three methods: (1) physically interacting with the devices

2 A “demonstration” mode begins when the user clicks “ShowMe”

button and end when user clicks “Done!” button.

IEE International Conference on Pervasive Services 26-29 June 2006, Lyon, France.

© IEEE & University of Essex 2006

3

themselves, (2) using a UI control panels (3) a combination of
the above two the choice being left to the user.

 Based on the actions of the user, the pervasive devices

generate appropriate events and pass them to the network and
PiP encodes this information as a set of rules with two parts;
an antecedent (conditions) and consequent (resulting action)
as it “listens” and “captures”
the user’s action as shown .

In PiP the user is given as
much freedom as possible,
allowing antecedents and
consequents to be formed in
any number and order ie. the
user is not required to follow
a rigid order. To execute a
MAp, the user needs only to drag the MAp graphical
representation and drop it into a “play” button located at the
top of the PiPView. To terminate a MAp the user simply clicks
on the “stop” button.

IV. RELATED WORK

Much attention has been paid to research in this area, the
most relevant to PiP being Media Cubes [6] which offers a
tangible interface for programming an environment where each
face of a cube is represented by a set of program structures.
“Programming operations” are achieved by turning the
appropriate face of the cube towards the target device.
Humble [9] uses a jigsaw, metaphor, enabling users to “snap”
together puzzle-like graphical representations as a way of
building applications. Truong’s CAMP project [8] places the
end-users at the centre of the design experience by using a
fridge magnet metaphor, together with a pseudo-natural
language interface that collectively enables end-users to realize
context -aware pervasive applications in their homes. The
Alfred project [5] utilises a macro programming approach to
enable a user to compose a program via “teaching-by-example”
using verbal or physical interactions. Whilst these are very
imaginative and useful approaches, for our particular vision,

they are either not flexible enough to support the end users’
intuitive physical interactions or place a high cognitive load
upon the users (eg. utilising methods such as macros requires
users to adhere to a strict ordering of instructions or otherwise
the system will fail).

V. END USER EVALUATION

An end user evaluation was carried out in the iDorm2 at the
University of Essex3, a two -bedroom apartment built to be an
experimental pervasive computing environment. Five sets of
pervasive devices were created for the evaluations- (1) a bed
light, (2) a desk-light, (3) telephone, (4) a sofa and (5) an MP3
player. All devices were run on UPnP middleware network.

A. Evaluation Design and Procedure
Our objectives for the evaluation were, broadly, to see how

easy end users found PiP for programming their environments.
In connection with this a questionnaire was designed to
explore the users attitude towards “conceptual”, “user
control”, “cognitive loading”, “information presentation”,
“affective experience” and “future potential of PiP”. In
addition, a user interview was conducted. . The evaluation
sought to provide open ended tasks giving the end users as
much creative freedom as possible as this was one key
enabling property PiP provides.

Eighteen participants (10 females and 8 males) drawn from a
diverse set of backgrounds (eg housewives, students,
secretaries, teachers etc) participated in the evaluation. All
participants had some minimal computing experience ie. they
knew how to use a mouse. Whilst 21.3% of the participants
had a very good knowledge of programming, 57.4% of them
had none at all. During the evaluations, PiP was set-up to run
on a winXP tablet PC that
connected to the iDorm2
network via a 802.11g WIFI
access point. Each trial was
preceded by a 20-minutes
training session to allow
participant to familiarise
themselves with the
system. The task for the
evaluation was that the
participant should use PiP
to program the pervasive
environment to behave in the way they wanted. No specific
type of behaviour for the environment was set for the
evaluation, rather the participants were free to create one (or
more) of their own. Clearly, with only a 5 devices available the
possibilities were somewhat limited but, for example, one user
designed a “teletainment” MAp that reacted to a ringing
telephone in a way that was dependent on whether an MP3 file
was being played, and where the user was sitting. No time limit
was set and assistance was provided where needed.

Following completion of the tasks, a questionnaire with a
scale of responses ranging from “Strongly Agree” through to

3 http://iieg.essex.ac.uk/idorm2/index.htm

Figure 2. PiP on tablet view

Pervasive
repository

middleware
communications

Pervasive
devices

PiPView

wireless medium

Figure 1. PiP meets pervasive environment

smart sofa

Figure 3. A user demonstrates
her actions via physically
interacts with the devices

IEE International Conference on Pervasive Services 26-29 June 2006, Lyon, France.

© IEEE & University of Essex 2006

4

“Strongly Disagree” was administrated to measure the
participants’ subjective judgements of PiP. Participants rated a
total of seventeen statements covering the six usability
dimensions: described above. Data was analysed using SPSS4.

VI. RESULTS

Results showed that 83% of participants were able to use PiP
to program their environment with little or no assistance,
although the time taken to accomplish these tasks varied from
participant to participants. Of the three methods available for
demonstrating examples 11% of the participants chose to
program their environment via wholly GUI controls while 72%
of them used physical interactions with the environment, the
rest (17%) used a mixture of both approaches. Although PiP
does not require logical sequence when programming MAps,
33% of the participants expressed the view that they found it
easier to think using logical sequence and decided to conduct
their trials that way. The remainder of the participants (77%)
focused on the task by creating the functionalities within the
environment rather than attending to the logical sequence. The
study also revealed that none of the participants found it
difficult to understand the basic principles of the system.

VII. CONCLUSION AND FUTURE WORK

This paper has described our research into an end-user
programming paradigm for pervasive computing applications.
We have successfully implemented a “proof of concept”
system called PiP, using an event-based modular architecture
which enables non-technical end-users to program the
environment functionality they require within a pervasive
computing environment. Whilst acknowledging that the
participants are only a small sample of the population, the
initial results are encouraging as they show that PiP served
different users well, allowing them to program the
environment to suit their needs. Thus, we contend that whilst
the user evaluation is relatively small, it has suggested that
this approach is usable by non-technical end-users to create
their own functionalities in the technology-rich pervasive
environments, such as digital homes.

For our future work we hope to conduct further work on
knowledge representation at the MAp level. For MAps to be
portable across environments it is essential that there is a
generic way of describing the capabilities of collectives of
devices and services such as based on dComp 5 ontology.

The concept of MAps raises a number of interesting
questions. For example domestic appliances can be viewed as
a special case of a MAp in which a group of coordinating
services are hard wired together by the manufacturer. The
notion of end-users being able to “wire together” and
program the functionality of their own virtual devices
challenges the nature of future appliances; will appliances of
the future continue to be pre-packaged physical bundles of
services or will a more elemental form of network device
emerge?

4 SPSS at http://www.spss.com/
5 dComp at http://iieg.essex.ac.uk/dc omp/ont/dev/2004/09/

ACKNOWLEDGMENT

This paper describes PhD research conducted by Jeannette Chin
supported by a University of Essex scholarship. It builds on earlier
work supported by the DTI Next Wave Technologies and Markets
programme as part of the Pervasive Home Environment Networking
project. In this we are pleased to express our gratitude to our
colleagues, especially Martin Colley, Hani Hagras and Malcolm Lear
for their unstinting support .

REFERENCES
[1] Chin J, Callaghan V, Clarke G “Pervasive Information Systems:

Issues for the Individual and Society”, in Book Pervasive
Information Systems published by MB Sharp, August 05

[2] J, Chin et al, Virtual Appliances for Pervasive Computing: A
Deconstructionist, Ontology based, programming-By-Example
Approach, The IEE IE05, Colchester, UK, 28-29 June 2005.

[3] Chin J, Callaghan V, End-User Programming in Pervasive
Computing Environments, The International PSC-05, Monte Carlo
Resort, Las Vegas, USA, June 27-30, 2005

[4] Cypher A, et al, “Watch What I Do: Programming by
Demonstration” The MIT Press, Cambridge, Massachusetts,
London, England 1993.

[5] Gajos K., Fox H., Shrobe H., “End User Empowerment in Human
Centred Pervasive Computing”, Pervasive 2002, Zurich, 2002.

[6] Hague, R., et al: Towards Pervasive End-user Programming. In:
Adjunct Proceedings of UbiComp 2003 (2003) 169-170

[7] Smith, D. C., “Pygmalion: A Computer Program to Model &
Stimulate Creative Thought”, Stuttgart, Birkhauser Verlag. 1977.

[8] Truong, KN.et al “ CAMP: A Magnetic Poetry Interface for End-
User Programming of Capture Applications for the Home”,
Proceedings of Ubicomp 2004, pp 143-160.

[9] Humble, J. et al “Playing with the Bits”, User-Configuration of
Ubiquitous Domestic Environments, Proceedings of UbiComp
2003, Springer-Verlag, Berlin Heidelberg New York, pp 256-263

[10] Lieberman H. Your wish is my command , Morgan Kaufmann Press,
2001

Jeannette S Chin. Jeannette is a member of the IEEE. She has a Civil
Architecture background and obtained a first class honours degree in
Internet Computing from the University of Essex in UK. Jeannette has
a strong interest in pervasive computing and the notion of any-where,
any-time, any-person computing. Her research interest s include
intelligent environments for pervasive computing, semantic information
processing, internet related technologies, privacy issues, and user
interfaces which encapsulate psychological aspects of human and
computer interaction.

Vic Callagham Vic holds a Ph.D in Computing and B.Eng in
Electronic Engineering from the University of Sheffield. He is Professor
of Computer Science at Essex University. He has contributed to around
100 paper journals, conferences and books and currently , he leads the
Inhabited Intelligent Environments Group (IIEG) and is director of the
Digital Lifestyles Centre .

Graham Clarke Graham is an honorary fellow at Essex University.
His first degree was in (building) Architecture, his MSc was in the
Applications of Computing and his PhD was in Psychoanalytic Studies
which represent a combination that reflect his commitment to the
crucial importance of users in ubiquitous computing environments. He
has been involved in intelligent building research in the Department of
Computer Science for the past ten years.

