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Abstract---In this paper we describe a novel life long learning approach for intelligent agents that are
embedded in intelligent environments. The agents aim to realise the vision of Ambient Intelligence in
Intelligent Inhabited Environments (IIE) by providing ‘ubiquitous computing intelligence in the
environment supporting the activities of the user. An unsupervised, data-driven, fuzzy, technique is
proposed for extracting fuzzy membership functions and rules that represent the user’s particularised
behaviours in the environment. The user’s learnt behaviours can then be adapted online in a life long
mode to satisfy the different user and system objectives. We have performed unique experiments in
which the intelligent agent has learnt and adapted to the user’s behaviour, during a stay of five
consecutive days in the intelligent Dormitory (iDorm) which is a real ubiquitous computing
environment test bed. Both offline and online experimental results are presented comparing the
performance of our technique with other approaches. The results show that our proposed system has
outperformed the other systems while operating online in a life long mode to realise the ambient

intelligence vision.

Index terms--- Fuzzy Systems, Learning, Ambient Intelligence, Intelligent Inhabited
Environments, Agents, Ubiquitous computing environments.

1. Introduction

The envisaged widespread proliferation of networked embedded computer products into

people’s everyday lives is driving research into how such technology could be deployed
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without incurring prohibitive cognitive loading on the users to create ubiquitous computing
environments [13]. Ubiquitous computing, alternatively referred to as pervasive computing, is
a paradigm in which computing technology becomes virtually invisible by being embedded in
our environments.

As embedded computers get smaller and become integrated into non-computing artefacts,
they effectively can physically disappear. With the addition of communication capability to
these artefacts and the use of pervasive networking, such artefacts can be associated together
and remotely accessed in both familiar and novel arrangements to make highly personalised
systems. The challenge however is how to manage, program or direct such systems, a task that
could quickly become prohibitive and an obstacle to the achievement of the pervasive
computing. The vision of ambient intelligence can help to address this challenge [9, 19].

Ambient Intelligence is a new information paradigm where people are empowered through a
digital environment that is “aware” of their presence and context, and is sensitive, adaptive and
responsive to their needs [9]. Ambient intelligence improves the quality of life through creating
desired environmental conditions and functionality via intelligent, personalised interconnected
systems and services [9]. An environment with ambient intelligence can be characterised by its
ubiquity, transparency and intelligence [9]. It is ubiquitous because the user is surrounded by a
multitude of inter-connected embedded systems which form a pervasive infrastructure. Its
transparency is due to the invisible nature of the computing based artefacts being seamlessly
integrated into the surrounding environment. Its intelligence spawns from the fact that the
technology is able to recognise the users and program itself to their needs by learning from
their behaviour. In addition, environments constructed in such a way would be adaptive to
changing conditions and user preferences.

As was suggested above for the vision of ambient intelligence to be realised people have to
be able to use and configure the computer-based artefacts and systems present in their

ubiquitous environments in a seamless, unobtrusive and non-intrusive way; without being
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cognitively overloaded by having to program each device and workout how to connect them
together to achieve the desired functionality [9]. One approach to achieve this vision of
ambient intelligence is to embed intelligent agents in the user environments so that they can
control them according to the needs and preferences of the user. Embedded intelligence is the
inclusion of some capacity for reasoning, planning and learning in an artefact. Embedded-
computers that contain this kind of intelligent capacity are normally referred to as “embedded-
agents” [6]. Each embedded agent is an autonomous entity, and as was mentioned earlier, in a
pervasive computing environment it is common for such embedded-agents (as intrinsic parts of
intelligent artefacts”) to have network connections allowing them to communicate and
cooperate with other embedded agents, as part of a multi embedded agent system [6].

In this paper, we will present a novel fuzzy learning and adaptation technique for agents that
can be embedded in ubiquitous computing environments. This we hope will be a step towards
the realisation of the vision of ambient intelligence [9]. Each agent is connected to sensors and
effectors comprising a ubiquitous computing environment. The intelligent learning mechanism
used would learn and predict the needs of the user and automatically adjust the agent controller
based on a wide set of parameters [5] in a non-intrusive and invisible way, satisfying one of the
main requirements for ambient intelligent systems [9]. Due to the fact that these agents need to
be located on small embedded computers with limited processor and memory capacities, our
learning and adaptation system is a one pass method which does not require heavy computation.

Most automation systems that have minimal intelligence utilise mechanisms that generalise
actions across a population e.g. set temperature or loudness that is an averaged compromise of
the needs of a group of individuals. However in achieving the vision of ambient intelligence,
we argue that any type of intelligence applied to personal artefacts and spaces needs to
particularise to the individual [6]. Furthermore it is essential that any agent serving a person,
should always and immediately carry out any requested actions, i.e. people are always in

control, subject to overriding safety considerations, to achieve the responsive property implied
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in the ambient intelligence vision [9]. So our intelligent agent will seek to provide an online,
life-long, personalised learning of anticipatory adaptive control supporting the vision of
ambient intelligence in Intelligent Inhabited Environments (IIE).

We have performed unique experiments in which our intelligent agent has learnt and adapted
to the behaviour of a user who spend five consecutive days in the Essex intelligent Dormitory
(iDorm) which is a real ubiquitous computing environment test bed.

The rest of this paper is organised as follows: In Section (2), we will introduce Intelligent
Inhabited Environments. In section (3) we describe our test bed for ubiquitous environments;
the iDorm. In section (4) a detailed description of the proposed life-long learning technique is
presented. Section (5) presents results on offline comparison of the proposed technique with
three other soft-computing approaches, and results obtained from the online performance of the
agent in the iDorm. Section (6) provides some concluding remarks and future research

directions.

2. Intelligent Inhabited Environments

Intelligent Inhabited Environments (IIE) are enclosed living spaces (such as a car, shopping
mall, home or even our own body) equipped with embedded intelligent technology that would
allow the environment to respond “thoughtfully” to the users’ needs. These environments could
consist of a multitude of possibly disconnected active spaces supporting ambient intelligence
and providing ubiquitous access to system resources according to the current situation of the
user. These intelligent environments will personalise themselves in responses to our presence
and behaviour. Precursors to such environments can be found now in Intelligent Buildings (IBs)
[6]. The heterogeneity, dynamism and context-awareness in a building make it useful for
exploring the design challenges concerned with ubiquitous systems. One view of an IB is a
computer-based system, gathering information from a variety of sensors (and other computers),

and using intelligent mechanisms to determine the appropriate control actions of various
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devices [6, 11, 10]. In controlling such systems one is faced with several challenges as there
are a large number of information sources within such environments which these systems must
monitor and use to learn and adapt to the needs of the user. In addition, the sensors themselves
may be imprecise due to noise or the quality of the sensor, and the system must be able to
compensate for these inaccuracies. Moreover, there is a lack of adequate models for many of
the processes present in such systems. Also, these systems have to contend with the dynamic
non-deterministic aspects of human behaviour.

Currently there have been several research projects concerned with applying intelligent
agents to IIE. In Sweden Davidsson [4] utilised multi-agent principles to control building
services. In Colorado Mozer [18] used a soft computing approach based on neural networks
which was focused on the intelligent control of lighting within a building. Work at MIT in the
HAL project [8] concentrated on making a room responsive to the occupant by adding
intelligent sensors to the user interfaces. Context Aware systems are the focus of the Aware
Home work at Georgia Tech [1]. These projects represent a large body of current research
effort; however they are mostly concerned with time independent context rather than temporal
history, learning or adaptation which is central to our requirements for agents supporting the
vision of ambient intelligence [9]. There are other high profile intelligent environments
projects such as the Microsoft Smart House, BT’s Tele-care and Cisco’s Internet Home [20].
However most of these industrial projects including home automation technologies, like
Lonworks and X10 are geared toward using networks and remote access with some
autonomous control. In general, this is mostly simple automaton with sparse use of Artificial
Intelligence (AI) and little emphasis on learning and adaptation to the user’s behaviour. In our
previous work we developed an Incremental Synchronous Learning technique for an embedded
agent [12]; however, it learnt only the user rules and not all the parameters of the embedded

agent controller.
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As mentioned earlier, we will use the Essex intelligent Dormitory (iDorm) as a test-bed for IIE
and ubiquitous computing environments and thus we describe this environment in the

following section.

3. The Essex intelligent Dormitory (iDorm)

The iDorm shown in Fig 1 is test bed for ubiquitous and pervasive computing environments. It
looks like any other room and it comprises of a large number of embedded sensors, actuators,

processors and a heterogeneous network [13].

Fig. 1. The iDorm.

The iDorm is multi-user space containing areas for different activities such as sleeping,
working and entertaining. It contains the normal mix of furniture, found in a typical student
study/bedroom environment, including a bed, work desk and a wardrobe. There is a standard
multi-media PC that combines a flat screen monitor and a multi-media video projector which
can be used for both working and entertainment as shown in Fig 2. Any networked computer
that can run a standard Java process can access and control the iDorm directly, thus this PC can
also act as an interface to control the devices in the room as shown in Fig 3a. Equally the
interface to the devices could be operated from physically portable computational artefacts that
can monitor and control the iDorm wirelessly. The handheld PDA (Compaq iPAQ) shown in
Fig 3b contains a standard Java process that can access and control the iDorm directly. Because

the iPAQ supports Bluetooth wireless networking, it was possible to adjust the environment
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from anywhere inside and nearby outside the room, this forms a type of “remote control”

interface that would be particularly suitable to elderly and disabled users.

Fig. 2. Video Projector and Multi-Media PC in the iDorm.

It is also possible to interact with the iDorm through mobile phones as shown in Fig 3c using
a WAP interface which is a simple extension of a web interface. There is also an internet
Fridge in the iDorm provided by LG consumer electronics that incorporates an intelligent user
friendly server with touch screen capability, which can also be used to control the devices in
the room, see Fig 3d.

Our agent learning mechanism and interface currently operates from the standard multi-
media PC in the iDorm. It is possible however for our agent to be embedded into any part of
the environment. In terms of software the cross platform versatility of the Java programming
language which the agent was written with, could allow it to be embedded onto internet devices.
By embedding agents into such devices and integrating wireless communications (including
wireless based interfaces, such as PDAs), this will lead to the kind of pervasive transparent
infrastructure characteristic of an ambient intelligent system.

The iDorm is fitted with a liberal placement of sensors which include the following: internal
light level sensor, external light level sensor, internal temperature sensor, external temperature
sensor, humidity sensor, chair Pressure sensor, bed pressure sensor, occupancy sensor,

telephone status sensor.
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Fig. 3. a) PC based interface. b) Portable iPAQ interface. c) Mobile phone interface. d)

iFridge interface.

The effectors one can control in the room consist of the following: heater, cooler fan, four
dimmable spot lights, window blinds, desk lamp, bedside lamp, PC based Word processing
application, PC based Media playing application.

The sensors and actuators in the room are concealed (e.g. buried in walls) with the intention
that the user should be completely unaware of the intelligent infrastructure of the room which
is required by the ambient intelligence vision [9].

The iDorm is based around three networks, Lonworks, 1-wire (TINI) and IP which provide a
diverse infrastructure allowing the development of network independent solutions. Lontalk is
Echelon’s proprietary network protocol and forms a standard for building automation networks.
There are many commercially available sensors and actuators for this system. The physical
network installed in the iDorm is the Lonworks TP/FP10 network running Lontalk protocol.
The gateway to the IP network is provided by Echelon’s iLON 1000. This allows the states and
values of sensors and actuators to be read or altered via Echelon’s proprietary LNS server. The
majority of the sensors and effectors inside the iDorm are connected via a Lonworks network.
The 1-Wire network, developed by Dallas semiconductor was designed for simple devices to
be connected over short distances. It offers a wide range of commercial devices including small

temperature sensors, weather stations, ID buttons and switches. The 1-Wire network is
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connected to a host of Tiny Internet Interface boards (TINI board), which run an embedded
web server serving the status of the networked devices using a Java servlet. The servlet collects
data from the devices on the network and responds to HTTP requests. The IP network forms a

backbone to interconnect all networks and other devices like the multi-media PC.
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Fig. 4. The iDorm logical network infrastructure.

A common interface to the iDorm and its devices is implemented through Universal Plug &
Play (UP&P) which is an event-based communication middleware for allowing devices to be
plug & play enabling automatic discovery and configuration. A gateway server is used to run
the UP&P software devices that interface the hardware devices on their respective networks.
The agent implementing our learning and adaptation mechanism was built on top of the low
level UP&P control architecture enabling it to communicate with the UP&P devices in the
iDorm and thus allowing it to monitor and control these devices. Fig 4 shows the logical

network infrastructure of the iDorm.
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4. Proposed Architecture

The task of designing an intelligent agent to effectively fulfil the needs of the user in IIE is akin
to finding a solution to a highly challenging control problem. The environment within which
the agent must operate can be viewed as a very complex control system, in which the user
controlling it forms an essential part. The environment facing the human controller is so
complicated that any mathematical model, if it exists, is strongly non-linear. In addition, the
human controller, in their own right, is largely non-deterministic and a highly individual part of
this system. The task here is to design an intelligent control system to realise the ambient
intelligence vision [9] and control the environment on behalf of the human user [21].

Fuzzy logic offers a framework for representing the imprecise and uncertain knowledge of
the real world. It has similarities with the way people make decisions as it uses a model of
approximate reasoning that allows it to deal with vague and incomplete information. Fuzzy
controllers also exhibit robustness with regard to noise and variations of the system parameters.
Fuzzy Logic Controllers (FLCs) are widely used in engineering and control application. A FLC
is a model free approach which converts linguistic control information into mathematical
control information and can represent a non-linear mapping of inputs to outputs. FLCs also
provide transparent and flexible representations which can be easily adapted due to the ability
of fuzzy rules to approximate independent local models for mapping a set of inputs to a set of
outputs.

Our proposed technique is an unsupervised data-driven one-pass approach for extracting
fuzzy rules and membership functions from data to learn a fuzzy controller that will model the
user’s behaviours. The data is collected by monitoring the user in the environment over a
period of time. The learnt FLC provides an inference mechanism that will produce output
control responses based on the current state of the inputs. Our adaptive FLC will therefore

control the environment on behalf of the user and will also allow the rules to be adapted online
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as the user’s behaviour drifts over time. Our proposed approach aims to realise the vision of
Ambient Intelligence in the following ways:
e The agent is responsive to the particular needs and preferences of the user.
e The user is always in control and can override the agent at any time.
e The agent learns and controls its environment in a non-intrusive way (although the user
may be aware of the high-tech interface, he is unaware of the agent’s presence).
e The agent uses a simple one pass learning mechanism for learning the user’s behaviours,
and thus it is not computationally expensive.
e The agent’s learnt behaviours can be adapted online as a result of changes in the
occupant’s behaviour.
e Learning is life-long in that agent behaviours can be adapted and extended over a long
period of time as a result of changes in the environment.
These features fulfil many of the requirements for the ambient intelligence vision defined by
the Information Society Technologies Advisory Group (ISTAG) to the European Commission
[9]. For the reminder of this paper the proposed approach will be referred to as an Adaptive
Online Fuzzy Inference System (AOFIS).

AOFIS comprises of five phases: Monitoring the user’s interactions and capturing
input/output data associated with their actions, extraction of the fuzzy membership functions
from the data, extraction of the fuzzy rules from the recorded data, the agent control and the
life long learning and adaptation mechanism. The last two phases are control loops that once
initiated receive inputs as either: monitored sensor changes that produce appropriate output
control responses based on the set of learnt rules; or user action requests that cause the learnt
rules to be adapted before an appropriate output control response is produced. Fig 5 illustrates a

flow chart of these five phases.

11
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Fig. 5. Flow diagram showing five phases of AOFIS.

4.1 Capturing input/output data
The agent initially monitors the user’s actions in the environment. Whenever the user changes
actuator settings, the agent records a ‘snapshot’ of the current inputs (sensor states) and the
outputs (actuator states with the new altered values of whichever actuators were adjusted by the
user). These ‘snapshots’ are accumulated over a period of time (three days the in case of our
experiments) so that the agent observes as much of the user’s interactions within the
environment as possible. AOFIS learns a descriptive model of the user’s behaviours from the
data accumulated by the agent. Therefore given a set of multi-input multi-output data pairs:
x5y, 1=12,.,N (1)
where N is the number of data instances, x” € R" and y"’ € R*. AOFIS extracts rules which

describe how the k output variables y =(y,,...,y,) are influenced by the n input variables

X= (xl,...,xn)T € R" based on the sampled data. In our experiments in the iDorm we used 7

sensors for our inputs and 10 actuators for our outputs. The fuzzy rules which are extracted
represent local models that map a set of inputs to the set of outputs without the need for
formulating any mathematical model. Individual rules can therefore be adapted online

influencing only specific parts of the descriptive model learnt by the agent.

12
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4.2 Fuzzy membership function extraction

It is necessary to be able to categorise the accumulated user input/output data into a set of
fuzzy membership functions which quantify the raw crisp values of the sensors and actuators
into linguistic labels such as normal, cold or hot. AOFIS is based on learning the particularised
behaviours of the user and therefore requires these membership functions be defined from the
user’s input/output data recorded by the agent. A Double Clustering approach [7] combining
Fuzzy-C-Means (FCM) and hierarchical clustering, is used for extracting fuzzy membership
functions from the user data. This is simple and effective approach to fuzzy information
granulation [22, 16] where the objective is to build models at a certain level of information

granulation that can be quantified in terms of fuzzy sets.

4.2.1 The FCM algorithm

The FCM [3] is a fuzzy partitioning prototype-based clustering algorithm. It takes a dataset of
instances represented by r attributes that have been arbitrarily classified on a pre-determined
number of clusters reflecting a p partitioning of the dataset. The algorithm then calculates the
centres for each cluster from the arbitrarily classified instances. Using these centres, the
distances of each instance from each cluster centre is calculated and used to assign each
instance with a degree of membership to each cluster. In this way the partitioning of the dataset
becomes fuzzified. The algorithm aims to iteratively adapt the partitioning of the dataset so as
to minimise a dissimilarity function of a weighted sum of squared errors between data points
and cluster centres in the feature space. FCM uses features in the r-dimensional Euclidean
space to determine the geometric closeness of data points by grouping them into clusters and
then determining the distance between those clusters [3]. FCM allows operations on fuzzy data
in which a data point may have a degree of fuzzy membership to more than one cluster at any
given time. In our case the number of dimensions r was 17 corresponding to number of input

and output parameters (7 input sensors and 10 output actuators) that were used in the iDorm.

13
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4.2.2 Double clustering

The Double clustering technique uses a combination of FCM and Hierarchical clustering for
extracting a predefined number of membership functions for the input and output parameters
from the sampled user data. An initial clustering of the dataset is performed using the FCM

algorithm that defines a set of p clustered regions over the sampled data. Hence there are p
centres ¢,,Cy,...,C, C R’ defined for these clustered regions. The number of clusters p is
predefined and in our case was set to 90. Each centre is an r-dimensional vector
¢, =(c;,C;y,...-c;, ) and there are therefore p one-dimensional centroid values for each input

and output parameter of the user data. The centroid values for each separate input and output
dimension are then iteratively clustered again to form a new set of centres which represent the

rough centres of the membership functions that will be extracted for each input and output
parameter. Specifically let ¢; be the j-th component of the i-th cluster centre. For each
dimension j=12,..,r, we perform clustering on the set of one-dimensional centroid
values C; = {cij|i:1,2,..., p}. The approach used for this secondary clustering is an
agglomerative hierarchical clustering approach [14]. Here the elements in C; are sequentially

clustered together reducing the number of elements at each step by merging together the two
most similar consecutive elements. This is repeated until the number of elements corresponds
to the number of membership functions we want to extract for each input and output parameter.
The similarity between two elements is measured based on the closeness between their values.
The number of membership functions to be defined for each input and output parameter is

predefined in advance.

4.2.3 Agglomerative hierarchical clustering approach
The agglomerative hierarchical clustering algorithm used in AOFIS can be formally described

as follows: Let K i (j=12,...,r) represents the required number of centres and the

14
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corresponding number of membership functions to be derived from each set C i (j=12,..,r),
where K; is fixed for each input and output dimension r. The elements of C; are initially sorted

such that i, <i, > ¢, ; < ¢, ;. Hence the initial set of elements in C; is defined as:

O ._{ 0 0 o l._
pr = {pr, DTy 5oy DT, }.— {c,j,czj,...,cpj} (2)
. . . -1
For v=12,.,p-K; find the two nearest consecutive elements in pr(‘ ', denoted by
(v=1) (v=1)
pre”and pr”
Define the new set of elements as P”(V) = {Pﬁ(”,prz(”,-..,pr,ﬁff,},
_ . ok
pri Vi<
™) (v-1) (v—l)) .
pr.=3\pr.” A pe )2 i=i 3)
(v-1) = oK
Pliy st >1

. (P’Kj) .
Untll: pr o p"i ’prz wwer,_
Therefore at each step of the algorithm the two nearest consecutive elements are merged into
a single cluster where the new centre of the cluster is the average of the two merged elements.

After the hierarchical clustering is completed on each set C; (j =1,...,r), we have derived K

new centres for each input and output dimension of the dataset. We represent the set of these
K, .

centres by pr:= pr(p D= {pr], Db ,..Pk j} which correspond to the rough centres for the fuzzy

membership functions that AOFIS will extract for each input and output parameter.

4.2.4 Quantification of fuzzy membership functions
The K; cluster centres defined on each dimension j=12,...,r are then converted to fuzzy

membership functions, which involves the quantification of the centres in terms of
interpretable fuzzy sets [7]. As mentioned the value of K; defines the number of fuzzy

membership functions which are to be extracted for each input and output parameter. Gaussian

15
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membership functions are used to describe the fuzzy sets Aj , (where z=12,..,.K j) the

mathematical definition of which is

N2
B 1 x—w]
H s (X) =exp —5[ o ] (4)

where the value of the centre w’ and the spread o Z] for each gaussian membership function z,
for the j-th input/output parameter is derived as follows
The sampled data is defined as a hyper-interval X := xl[m M j] where m;and M ; are the
j=

minimum and maximum values respectively, of the j-th input/output dimension of the sampled

dataset. The set of cuts Tj is defined as Tj = ({, l‘lj,---,f,j;]_ }, where:
2mj - l‘lj, d=0
t]:=1(pr,+pr,)/2, 0<d <K, (5)
M~ d=K,

The centre w; and spread o of each membership function A/ for all z =1.2,...,K ,is derived

from the set T ; as follows:

wi = (e, +17)/2 (6)
ol =@t -1/ )/2J-2In¢ (7)

where ¢ is the maximum overlap between two adjacent fuzzy sets.

We therefore obtain the centres and spreads for a set of K; fuzzy membership functions
defined for each input and output parameter of the user data that was sampled. These
membership functions are distributed over the range of values of each parameter. The
membership functions at the boundaries are modified such that they are extended indefinitely

beyond their respective centres with a membership value of 1. A semantic meaning can be

16
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associated with each of the resulting fuzzy sets. Specifically depending on the value of index z,

a meaningful symbolic label can be given to A’ .

4.3 Fuzzy Rule Extraction

The defined set of membership functions are combined with the existing user input/output data
to extract the rules defining the user’s behaviours. The fuzzy rule extraction approach used by
AOFIS is based on an Enhanced version of the Mendel Wang (MW) method [21] developed by
L.X. Wang. This is a one pass technique for extracting fuzzy rules from the sampled data. The
fuzzy sets for the antecedents and consequents of the rules divides the input and output space
into fuzzy regions.

AOFIS extracts multi-input multi-output rules which describe the relationship between
y=(y...y,) and x = (xl,...,xn)T , and take the following form:

IF x;is A" and ... and x, is A", THEN vy, is B{" and ... and y, is B\" ®)

[ =12,..,M, where M is the number of rules and / is the index of the rules. There are V fuzzy

sets A?,q =1,...,V, defined for each input x, . There are W fuzzy sets BCh,h =1,...,W, defined

for each output y_. AOFIS now extracts rules in the form of Equation (8) from the data.

4.3.1 Process of extracting fuzzy rules from data

To simplify the following notation, the method for rules with a single output is shown, as the
approach is quite easily expanded to rules with multiple outputs. In the following steps we will
show the different steps involved in rule extraction:

Step 1: For a fixed input-output pair (x”; y) in the dataset (1) (¢ =1,2,..., N ), compute the

membership values 4, (X‘EI)) for each membership function ¢ =1.,...,V , and for each input

variable s (s =1,...,n), find q* €{l,...,V}, such that

17
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o)z, (6 ©)

forall g=1,..,V .

Let the following rule be called the rule generated by (x; y*):

IF x{is Alq and ... and x, is A,il , THEN y is centred at y"" (10)
For each input variable x, there are V fuzzy sets A?,q =1,...,V, to characterise it; so that the

maximum number of possible rules that can be generated is V". However given the dataset only
those rules among the V" possibilities whose dominant region contains at least one data point
will be generated. In step 1 one rule is generated for each input —output data pair, where for
each input the fuzzy set that achieves the maximum membership value at the data point is
selected as the one in the IF part of the rule, as explained in Equations (9),(10).

This however is not the final rule which will be calculated in the next step. The weight of the

rule is computed as

W =11, (. 0) -
s=1

The weight of a rule w" is a measure of the strength of the points x”’ belonging to the fuzzy

region covered by the rule.

Step 2: Step 1 is repeated for all the ¢ data points from 1 to N to obtain N data generated rules
in the form of Equation (10). Due to the fact that the number of data points is quite large, many
rules are generated in step 1, that all share the same IF part and are conflicting, i.e. rules with
the same antecedent membership functions and different consequent values. In this step rules
with the same IF part are combined into a single rule.

The N rules are therefore divided into groups, with rules in each group sharing the same IF

part. If we assume that there is M such groups. Let group / have N, rules in the following form:
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l

(¢") (4") !
IF x,is A1 and ... and x, 1is An » THEN 'y is centred at y(’”) (12)

Where u =1,...N, and | is the index for the data points in group /. The weighted average of all

the rules in the conflict group is then computed as

l N, y<zi)w<ri>
av( ) — u=1
Nl (13)
w

u=1

We now combine these N, rules into a single rule of the following form:

l (D
IF x,is Al( )and... and x, is An s THEN vy is B(l) (14)

Where the output fuzzy set B' is chosen based on the following. Among the W output fuzzy

sets B',...,B" find the B" such that
e (@) 2 g1, (@) (15)

for h=1,2,....W, Bis chosen as B"".

As mentioned above AOFIS deals with input-output data pairs with multiple outputs. Step 1
is independent of the number of outputs for each rule. Step 2 is simply expanded to allow rules
to have multiple outputs where the calculations in Equations (13) and (15) are repeated for

each output value.

4.4 Agent controller

Once the agent has extracted the membership functions and the set of rules from the user
input/output data, it has then learnt the FLC that captures the human behaviour. The agent FLC
can start controlling the environment on behalf of the human according to his desires. The
agent starts to monitor the state of the environment and affect actuators based on its learnt FLC
that approximate the particularised preferences of the user. Fig 6 shows a block diagram of the

FLC which consists of a fuzzifier, rule base, fuzzy inference engine and defuzzifier.
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Fig. 6. Block Diagram of the FLC.
In our agent we will use singleton fuzzification, max-product composition, product
implication, and height defuzzification [17]. This formula that maps a crisp input vector x into

a crisp output y = f(x) can be written as follows [17]:

Zil Y11, i ()
ZZlHLIﬂFil (x,-) (16)

Where M is the total number of rules in the rule base, y' is the point having the maximum

y(x) = f(x)=

membership in the 1" rule output fuzzy set B' ’HL tpi(x;) is the product of the membership

functions of each rule’s inputs and # is the number of inputs.

Equation (16) encapsulates the process of following the signal x through the fuzzifier, where
it is converted to the input fuzzy sets and then into the inference block where it is converted to
the output fuzzy sets and finally into the defuzzifier where it is converted to a crisp output
y= f(x) . For multiple outputs the Equation in (16) is repeated for each output parameter.

The fuzzy sets used for the antecedent and consequent parameters are gaussian membership
functions which can be calculated as in Equation (4) and have been learnt in subsection (4.2)

and can be written as follows :
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X; = m

(x.) = expd— | Z TR
Ho (X, S 17

i

where i =1,..,nand [ =1,...,M , m is the centre of the fuzzy set and o, is the spread of this

fuzzy set.
4.5. Online adaptation and life long learning

In the previous subsections we have shown how our agent can learn an FL.C that approximates
the user’s behaviour. However, the user may need to make adjustments to tune the system or
their behaviour might change as the user requirements change over time. So our agent needs to
adapt to the user’s behavioural changes in a non intrusive manner and in a short time interval.

In realising the non-intrusive aspect of ambient intelligence [9] whenever the user is not
happy with the agent’s actions, he can always override the agent’s control responses by simply
altering the manual control of the system. When this occurs the agent will adapt its rules online
or add new rules based on the new user preferences. This process could also incorporate what
we term as ‘learning inertia’ where the agent would delay adapting its learnt rules until the user
preference for changing a particular set of actuator values has reoccurred several times. This
would prevent the agent adapting its rules in response to ‘one off’ user actions that don’t reflect
a marked change in the user’s habitual behaviour. As the rules are adapted it would be
necessary to preserve the old rules so they can be recalled by the agent in the future.

Whenever the user overrides the agent’s control responses and actuates any of the controlled
output devices, a snapshot of the state of the environment is recorded and passed to the rule

adaptation routine. Each input parameter in the input vector X is compared to each of the
antecedent sets Af,” of a given rule in the rule base to determine its membership value. The
weight of the rule is then calculated to determine if the product of the input membership

function (degree of firing of the rule) in Equation (11) w”’ > 0, meaning that the rule fired, and

would therefore have contributed to the overall control response generated by the agent’s FLC.
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The consequent membership functions that give the highest membership values to the user
defined actuator values are selected to replace the consequent sets of all fired rules in the rule

base.

Hoe (32 4,(,) (18)

h*
forh =1,2,...,W. The B_is chosen as BC . Where ¢c=1,2.. k.

The fired rules are therefore adapted to better reflect the user’s updated actuator preferences
given the current state of the environment.
If none of the existing rules fired, new rules are added based on forming rules from the input

fuzzy sets. For each input parameter x_ the fuzzy sets that give a membership value where

'HA‘-’ (xif)) >0 are identified. This leads to a grid of identified fuzzy set(s) for each input

parameter. From this grid new rules are constructed based on each unique combination of
consecutive input fuzzy sets. The consequent fuzzy sets for each of the new rules are
determined using Equation (18). This allows new rules to be gradually added to the rule base.
The agent will also add new rules when the currently monitored environmental state is
undefined by the existing rules in the rule base; i.e. none of the existing rules fired. In this case
the agent will create new rules where the antecedent sets reflect the current input states of the
environment and the consequent fuzzy sets are based on the current state of the actuators.

The agent adopts life long learning where it adapts its rules as the state of the environment
and the preferences of the user change over a significantly long period of time. Due to the
flexibility of AOFIS the initially learnt FLC can be easily extended to change both existing
rules as well as add new rules. The fuzzy nature of the rules permits them to capture a wide
range values for each input and output parameter. This allows the rules to continue to operate
even if there is a gradual change in the environment. If however there is a significant change in

the environment or the user’s activity which is no longer captured by the existing rules, then as
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mentioned previously the agent will automatically create new rules that satisfy the current
conditions. The agent will therefore unobtrusively and incrementally extend its behaviours

which can then be adapted to satisfy the user.

5. Experimental Results

We have performed unique experiments in which a user (shown in Fig 7) lived in the iDorm
for a period of five consecutive days. During the monitoring phase which lasted for three
consecutive days the agent recorded the user interactions with the environment. On each day
the user’s activity in the room was recorded. Seven input sensors were monitored which are:
internal light level, external light level, internal temperature, external temperature, chair
pressure, bed pressure and time measured as a continuous input on an hourly scale. Ten output
actuators were controlled consisting of the four variable intensity spot lights, the desk and bed
side lamps, window blinds, the heater and the two PC based applications comprising of a word
processing program and a media playing program. The outputs thus covered the spectrum of
physical devices and computer based applications found in a typical study bedroom

environment.

Fig. 7. User in the iDorm.

The data from the iDorm that was captured during the monitoring phase was used to
compare the offline performance of our approach with three other soft-computing based

techniques which are Genetic Programming (GP), the Adaptive-Neuro Fuzzy Inference System
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(ANFIS) [15] and the Multi-Layer Perceptron Neural Network.

The dataset obtained from the iDorm during the monitoring phase comprised of 408
instances and was randomised into six samples. Each sample was then split into a training and
test set consisting of 272 and 136 instances respectively. The performance error for each
technique was obtained on the test instances as the Root Mean Squared Error which was also
scaled to account for the different ranges of the output parameters.

The GP used a population of 200 individuals evolving them over 200 generations. The GP
evolved both the rules and the fuzzy sets. Each individual was represented as a tree composed
of ‘and’ and ‘or’ operators as the internal nodes and triangular and trapezoidal membership
functions as terminal nodes. The parameters of the membership functions were also evolved in
parallel with the structure. The search started with a randomly generated set of rules and
parameters, which were then optimised by means of genetic operators. The GP based approach
for optimising an FLC was tested with different numbers of fuzzy sets.

In ANFIS subtractive clustering is used to generate an initial TSK-type fuzzy inference
system. Back propagation is used to learn the premise parameters while least square estimation
is used to determine the consequent parameters. An iteration of the learning procedure consists
of two parts where the first part propagates the input patterns and estimates optimal consequent
parameters through an iterative least squares procedure. The second part uses back propagation
to modify the antecedent membership functions [2]. We tested ANFIS with a range of different
cluster radii values.

The Multi-Layer Perceptron (MLP) back-propagation Neural Network was tested with
different numbers of hidden nodes in a single hidden layer.

We tested our AOFIS with different number of fuzzy sets and the membership function
overlap threshold was set to 0.5 as this gave both a sufficient degree of overlap while allowing
the system to distinguish between the ranges covered by each fuzzy set. This value was also

used for evaluating the double clustering approach presented in [7]. Tables 1 and 2 illustrate
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the scaled Root Mean Squared Error (RMSE) and scaled Standard Deviation (STD) for each
technique averaged over the six randomised samples, and corresponding to the values of the
variable parameter tested for each approach.

Table I

Average Scaled RMSE For AOFIS, GA, ANFIS & MLP

Average Scaled Root Mean Squared Error (SRMSE) for six randomised sample of
the dataset
AOFIS GA ANFIS MLP
Num of SRMSE Num of SRMSE Cluster SRMSE Num of SRMSE
fuzzy fuzzy Radii hidden
sets sets nodes
Z 0.2148 Z 0.1235 0.3 1.3269 | 2 0.2129
3 0.1476 3 0.1156 0.4 0.9229 | 4 0.1718
4 0.1461 4 0.1189 0.5 0.2582 | 6 0.1732
5 0.1364 5 0.1106 0.6 0.1661 | 8 0.1571
6 0.1352 6 0.1210 0.7 0.1669 | 10 0.1555
7 0.1261 7 0.1193 0.8 0.1418 | 20 0.1621
8 0.1326 8 0.1173 0.9 0.1213 | 30 0.1705
9 0.1472 9 0.1202 1.0 0.1157 | 40 0.1667
10 0.1537 10 0.1235 1.1 0.1201 | 50 0.1768
11 0.1696 11 0.1110 1.2 0.1168 | 60 0.1711
12 0.1999 12 0.1201 1.3 0.1131 | 70 0.1712
13 0.2246 13 0.1169 1.4 0.1131 | 80 0.1770
14 0.2337 14 0.1120 1.5 0.1118 | 90 0.1767
15 0.2460 15 0.1089 1.6 0.1130 | 100 0.1924
16 0.2459 16 0.1225 1.7 0.1115 | 200 0.2027
17 0.2732 17 0.1146 1.8 0.1137 | 300 0.2258
18 0.2747 18 0.1188 1.9 0.,1182 | 400 0.2365
19 0.2771 19 0.1159 2.0 0.1189 | 500 0.2424
20 0.2839 20 0.1143
Table II
Average Scaled STD For AOFIS, GA, ANFIS & MLP
Average scaled standard deviation (SSTD) for six randomised sample of the
dataset
AOQFIS GA ANFIS MLP
Num of SSTD Num of SSTD Cluster SS5TD Num of | SSTD
fuzzy fuzzy Radii hidden
sets sets nodes
z 0.1896 2z 0.1128 0.3 1.2839 | 2 0.1499
3 0.1350 3 0.1063 0.4 0.9001 | 4 0.1299
4 0.1354 4 0.1094 0.5 0.2440 | 6 0.1277
S5 0.1277 5 0.1026 0.6 0.1522 | 8 0.1193
6 0.1280 6 0.1121 0.7 0.1518 | 10 0.1160
7 0.1200 7 0.1107 0.8 0.1257 | 20 0.1198
8 0.1266 8 0.1085 0.9 0.1038 | 30 0.1229
9 0.1409 9 0.1117 1.0 0.0972 | 40 0.1234
10 0.1472 10 0.1145 1.1 0.1007 | 50 0.1245
11 0.1626 11 0.1026 1.2 0.0961 | 60 0.1234
12 0.1912 12 0.1115 1.3 0.0920 | 70 0.1222
13 0.2133 13 0.1084 1.4 0.0924 | 80 0.1283
14 0.2218 14 0.1031 1.5 0.0906 | 90 0.1272
15 0.2323 15 0.1007 1.6 0.0911 | 100 0.1333
16 0.2318 16 0.1128 1.7 0.0891 | 200 0.1366
17 0.2557 17 0.1063 1.8 0.0909 | 300 0.1503
18 0.2568 18 0.1090 1.9 0.0951 | 400 0.1674
19 0.2588 19 0.1075 2.0 0.0937 | 500 0.1676
20 0.2646 20 0.1051

The results above show that the optimum number of fuzzy sets for AOFIS is 7 and on

average AOFIS generated 186 rules. The GP in comparison gives a marginally lower error for
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7 fuzzy sets. Both ANFIS and the MLP on average give a higher error than AOFIS. The
ANFIS only learns a Multi-Input Single Output (MISO) FLC and had to be run repeatedly for
each output parameter. The FLC produced is therefore only representative of a MISO system.
Another restriction with ANFIS is that it generates TSK FLCs [2] where the consequent
parameters are represented as either linear or constant values, rather than linguistic variables as
is the case with Mamdani FLCs [17], these linguistic variables are very important to
understanding the human behaviour. Our AOFIS generates Multi-Input, Multi-Output (MIMO)
Mamdani FLCs that represent the rules in a more descriptive human readable form required for

an ambient intelligent system.

The iterative nature of the GP makes it highly computationally intensive and this also
applies to both ANFIS and the MLP which are also iterative based approaches. AOFIS is far
less computationally intensive due to the one-pass procedure it employs, and is therefore more
favourable for an embedded agent. Both ANFIS and the GP based approach cannot easily be
adapted online as this would require their internal structures to be re-learnt if either new rules
were to be added or existing rules were adapted. So our method is unique in that it can learn a
good model of the user’s behaviour which can then be adapted online in a life long mode in a
non intrusive manner, unlike other methods which need to repeat a time consuming learning
cycle to adapt the user’s behaviour.

The online performance of the agent was evaluated on how well AOFIS could capture the
monitored state of the environment and the user’s behaviours in the iDorm, over a period of
time. The data from the user’s interactions in the iDorm acquired over the initial period of three
days was used by AOFIS to learn an initial FLC. A fuzzy membership function overlap
threshold of 0.5 was used and the number of fuzzy sets representing the input and output

parameters was set to 7 as this was found to be the optimum number from the offline
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experiments as shown in Table 1,2. Fig 8 show the membership functions which AOFIS

produced for one of the input parameters, namely the external light level.

Membership funciion phots S l

WALOW WLOW Lo MEDIUM HIGH YHIGH WWHIGH

. E\. Ila | 78 ; /’ﬂ\\ .-"ﬁ
N / \ / \ PN }J \H

External light level

Fig. 8. Membership functions for external light level.

The agent was then run online for a further two days during which it monitored the
environment and user’s activities, and it produced the appropriate control responses based on
its learnt rules. During this time the user was allowed to override and adapt the agent’s learnt
control responses, if it was necessary to modify and tune them further. As mentioned
previously, one of the characteristics of the agent is that the user is always in control and he
can override the agent at any time and his instructions are executed immediately, to achieve the
responsive property implied in the ambient intelligence vision unless safety is compromised.
Thus whenever changes to controls were made by the user, the agent received the request,
generated new rules or adjusted previously learnt rules and allowed the action through. The
agent would autonomously continue to monitor the environment and generate new rules when
the state of the environment was not captured by its existing rule base.

The performance of the agent could be gauged on the number of occasions when the user

had to override the agent’s control responses and adapt the rules over time, as this can reflect
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how satisfied the user is with the agent control actions. The success of the agent could be
measured by monitoring how well it adjusted the environment to the user’s preferences such
that the user intervention was reduced over time. Fig 9 shows a graph plotting the number of

online rule adaptations against time measured in minutes.

250 T T T T T T T

150

100 |

Humber of rule adaptations

0 - 4

|'_| | Il | L | I 1
& 200 400 L] 200 1000 1200 1400 1600 1800
Tima In minutes

Fig. 9. Number of online rule adaptations.

The agent initially learnt 186 rules and that over the course of the two days 120 new rules
were added. Fig 9 shows the number of user induced rule adaptations that occurred over the
course of the two days. This can be seen to stabilise by early afternoon on the second day. One
of the concerns of using our one pass approach was its potential to generate too many rules.
However given the theoretical maximum number of rules that the agent could generate, the
total of 306 rules produced after the online execution of the agent was well below this number.
The agent was able to learn in a non intrusive way most of the user’s preferences for various
weather and environmental conditions over the duration of the two days, including specific
behaviours associated with user activity such as lying on the bed and listening to music or
sitting at the desk to word process a document. An example of the types of rules that the agent

produced are shown in Fig 10.
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From the experiments we can deduce that the agent has tried to realise the vision of ambient
intelligence as it was intelligent and it learnt the user particularised behaviour and adapted it
online to any changes in a life long learning mode in a non intrusive way. The agent was also
responsive to the user commands. In addition, the intelligent environment in the iDorm was
transparent and ubiquitous in that the pervasive interconnected embedded systems were
seamlessly integrated into it. The user was therefore unaware of the invisible intelligently

responsive infrastructure of the environment.

InternalLightLevel is VWLOW AND ExternalLightLevel is WWLOW AND
InternalTemperature /s VWHIGH AMND ExternalTemperature is MEDIUM AND
ChairPressure is OFF AND BedPressure /s ON AND Hour is Evening THEN
ACTION_Lightl_walue is VHIGH AND ACTION_Light2_walue is HIGH AND
ACTION_Light3_wvalue is LOW AND ACTION_Lightd_value is VVLOW AND
ACTION_Blind_state is CLOSED AND ACTION_BedLight_state /s ON AND
ACTION_DeskLight_state is OFF AND ACTION_Heater_state /s OFF AND
ACTION_MSWord_state is STOPPED AND ACTION_MSMediaPlayer_state is

RUMNIMNG

Fig. 10. Typical rule produced by AOFIS.

6. Conclusion

In this paper we presented a novel fuzzy learning and adaptation technique for agents that can
be embedded in ubiquitous computing environments. This we hope will be a step towards the
realisation of the vision of ambient intelligence.

Our agent learnt a FLC that modelled the user’s particularised behaviour and it was adaptive
as it allowed the learnt behaviours to be modified and extended online and in a life-long
learning mode as the user’s activity and environmental conditions changed over time. The
intelligent learning and adaptation occurred in a non intrusive manner while the user carried
out his normal activities in the environment. The agent was always responsive to the user’s

commands. The iDorm environment was also transparent and ubiquitous in that the pervasive

29



IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems
and Humans, Vol.35, No.1, pp.55-65, January 2005.

infrastructure of the interconnected embedded systems was seamlessly integrated into it. The
user was therefore surrounded by an invisible though intelligently responsive ambience.

Our technique was a simple one-pass method and thus it is not computationally expensive
and could be incorporated in many embedded devices within intelligent environments.

We carried out unique experiments in which a user stayed in the iDorm for five consecutive
days. The proposed AOFIS technique was compared with other soft-computing based
approaches; namely a GP, ANFIS and an MLP; using data acquired from the iDorm. The
results showed that the optimum performance of AOFIS produced on average a lower error
than both ANFIS and the MLP, and was computationally less intensive and better suited to
online learning than the other approaches compared. The online operation of the agent showed
that AOFIS was effective at both learning the behaviours of a user and adapting and tuning its
rules online to meet the user’s preferences, without incurring any kind of cognitive loading on
the user.

In our future work we intend to perform more experiments with multiple users and multiple
occupancy and we also intend to extend the current system which is based on a type-1 FLC

into a type-2 FLC [17].
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