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Abstract

In this paper, we present a novel approach for realising the vision of ambient intelligence in Ubiquitous 

Computing Environments (UCEs). This approach is based on embedding intelligent agents in UCEs. These 

agents are based on type-2 fuzzy systems which are able to handle the different sources uncertainty and 

imprecision in UCEs to give a good response. We have developed a novel system for learning and adapting the 

type-2 fuzzy agents so that they can realise the vision of ambient intelligence by providing a seamless, 

unobtrusive, adaptive and responsive intelligence in the environment that supports the activities of the user. The 

user’s behaviours and preferences for controlling the UCE are learnt online in a non intrusive and life long 

learning mode so as to control the UCE on the user’s behalf. We have performed unique experiments in which 

the type-2 intelligent agent has learnt and adapted online to the user’s behaviour during a stay of five days in the 

intelligent Dormitory (iDorm) which is a real UCE test bed. We will show how our type-2 agents will realise the 

vision of ambient intelligence and deal with the uncertainty and imprecision present in UCEs to give a very good 

response that outperforms the type-1 fuzzy agents while generating a smaller number of rules. 

 

1. Introduction 

Ubiquitous computing, also referred to as pervasive computing, is a paradigm in which computing technology 

becomes virtually invisible as a result of being embedded into our everyday environment. Ubiquitous Computing 

Environments (UCEs) contain networked embedded computer artefacts that can interact with the users living or 

working within them. The challenge however is how to manage and configure the computer-based artefacts and 

systems present in these ubiquitous environments in a seamless and non-intrusive way; without the user being 

cognitively overloaded by having to manually configure these devices to achieve a desired functionality. The 

vision of Ambient Intelligence was introduced to address this challenge [5, 17]. In this vision people are 
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empowered through a digital environment that is “aware” of their presence and context, and is sensitive, adaptive 

and responsive to their needs [6].  

    Ambient intelligence improves the quality of life by creating the desired environmental conditions and 

functionality via intelligent, personalised interconnected systems and services. Ambient intelligence 

environments are characterised by their ubiquity, transparency and intelligence [6]. Ubiquitous because the user 

is surrounded by a multitude of inter-connected embedded systems; transparent because the computing 

equipment appears invisible to the user as it is seamlessly integrated into the background; intelligent because the 

system can recognise the people that live in these environments and is able to program itself to meet their needs 

by learning from their behaviour [6].  

    There have been several research projects concerned with designing systems for realising ambient intelligence. 

Context aware systems with ubiquitous sensing capabilities are the focus of the Aware Home work at Georgia 

Tech [1]. MIT’s Oxygen project [7] creates pervasive human-centred computing through creating intelligent 

spaces in which embedded devices provide large amounts of computation and interfaces to cameras and 

microphones; allowing users to communicate through speech, vision and gesture recognition. In addition, 

networks with dynamic changing configurations are used, supporting handheld devices providing mobile access 

points within the environment. The Intelligent Room [3] is a related project that has applied similar concepts 

found in Oxygen to a room environment making it responsive to the occupant by adding intelligent sensors to the 

user interfaces. Philips Research first initiative on ambient intelligence has taken the form of World Wide 

Information Communication and Entertainment (WWICE) [4] a prototype system supporting personalised 

functions in a networked home environment. Its main features include interoperability, speech access and the 

ability to pass personal information around the environment with the user. These projects represent a large body 

of current research effort; however they are mostly concerned with time independent context, sensing and user 

interactions rather than temporal history, learning and adaptation which are central to our requirements for 

agents supporting the vision of ambient intelligence [6].  

    One approach to achieve the vision of ambient intelligence is to embed intelligent agents in the user 

environments so that they can control them according to the needs and preferences of the user [9]. Embedded 

intelligence is the inclusion of some capacity for reasoning, planning and learning in an artefact. Embedded-

computers that contain this kind of intelligent capacity are normally referred to as “embedded-agents” [2]. Each 

embedded agent is an autonomous entity, and it is common for such embedded-agents (as intrinsic parts of 
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intelligent artefacts”) to have network connections allowing them to communicate and cooperate with other 

embedded agents, as part of a multi embedded agent system [2]. 

    The dynamics of a UCE means that any embedded agent control system will have to deal with the huge 

amount of uncertainties which exist in a UCE. The sources for these uncertainties can be as follows: 

• Uncertainties in the agent’s controller inputs as the sensors measurements are noisy, imprecise and are 

affected by the environmental conditions such as variations in light level due to cloud cover or 

temperature change due to the effects of wind changing currents, ..etc.  

• Uncertainties in the agent’s controller outputs due to the change of actuators characteristics with the 

changing environmental conditions. For example there would be a difference between low light level on 

a bright sunny afternoon in late summer and low light level on a dim overcast afternoon in mid winter.  

• Uncertainties due to change of environmental factors (such as the external light level, temperature, time 

of day (morning, evening...etc)) over a considerable long period of time due to seasonal variations.  

• The main cause of uncertainty is humans occupying these environments as their behaviours and moods 

are dynamic, unpredictable and non-deterministic and change with time and season. There is also the 

fact that different words mean different things to different people and a term such as ‘warm’ in 

reference to temperature could mean one range of values to one person though possibly a very different 

range of values to someone else and this can vary by the variation of season.  

    The Fuzzy Logic Controller (FLC) has been credited with being an adequate methodology for designing 

robust controllers that are able to deliver a satisfactory performance when contending with the uncertainty and 

imprecision attributed to the real world. A FLC is a model free approach which converts linguistic control 

information into mathematical control information and can represent a non-linear mapping of inputs to outputs. 

FLCs also provide transparent and flexible representations which can be easily adapted due to the ability of 

fuzzy rules to approximate independent local models for mapping a set of inputs to a set of outputs. FLCs exhibit 

robustness with regard to noise and variation of system parameters. This is due to their ability in dealing with 

vague and incomplete information, however most FLC applications use the traditional type-1 FLCs. 

    Type-1 FLCs have the common problem that they cannot handle or accommodate for the uncertainties as they 

use precise type-1 fuzzy sets. Type-1 fuzzy sets handles the uncertainties associated with the inputs and outputs 

by using precise and crisp membership functions that the user believes capture the uncertainties [14]. Once the 

type-1 membership functions have been chosen, all the uncertainty disappears, because type-1 membership 

functions are totally precise [15].  
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    A type-2 fuzzy set is characterized by a fuzzy membership function, i.e. the membership value (or 

membership grade) for each element of this set is a fuzzy set in [0,1], unlike a type-1 fuzzy set where the 

membership grade is a crisp number in [0,1] [14]. The membership functions of type-2 fuzzy sets are three 

dimensional and include a footprint of uncertainty, it is the new third-dimension of type-2 fuzzy sets and the 

Footprint Of Uncertainty (FOU) that provide additional degrees of freedom that can make it possible to directly 

model and handle uncertainties [14, 15].  Therefore FLCs that use type-2 fuzzy sets to represent the inputs and 

outputs of the FLC can handle the uncertainties facing our embedded agents in UCEs to produce a good 

performance. Moreover, using type-2 fuzzy sets to represent the FLC inputs and outputs will result in the 

reduction of the FLC rule base when compared to using type-1 fuzzy sets. This is because type-2 fuzzy sets rely 

on uncertainty represented in the footprint of uncertainty to cover the same range as type-1 fuzzy sets with much 

smaller number of labels [14].  

    In this paper, we present a novel system for learning and adapting type-2 fuzzy controllers for agents that can 

be embedded in UCEs. The intelligent learning mechanism learns the particularised needs of the user and adjusts 

the agent controller based on a wide range of parameters in a non-intrusive and invisible way. It is also able to 

adapt online to changing conditions and user preferences in a life-long learning mode. We will demonstrate that 

our type-2 fuzzy controller is able to handle the effects of uncertainties that become inherent as environmental 

conditions and user behaviours change over a long period of time. Our technique is a one pass method which is 

not computationally intensive and is therefore suitable for embedded computers which have limited computing 

abilities. We will present unique experiments in which the type-2 agent has learnt and adapted to the user 

behaviour during a total stay of five days in the intelligent Dormitory (iDorm) which is a real UCE test bed.  

    In Section 2, we will describe the iDorm which is our test bed for UCE.  In Section 3, type-2 fuzzy sets are 

introduced. Our learning and adaptation technique for the type-2 agent is described in section 4. In Section 5, we 

present our experiments and results. Finally conclusions and future work are presented in Section 6. 

 

2. The iDorm 

The intelligent Dormitory (iDorm) which is shown in Figure (1) is a real UCE test bed comprising of a large 

number of embedded sensors, actuators, processors and heterogeneous networks in a student bedroom 

environment. The iDorm is a multi-user space which contains areas of different activities such as sleeping, 

working and entertaining [9]. It includes the normal mix of furniture, found in a typical student study/bedroom 

environment, including a bed, work desk and a wardrobe. The iDorm is fitted with a liberal placement of sensors 
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and actuators. The sensors and actuators in the room are concealed (e.g. buried in walls) with the intention that 

the user should be completely unaware of the intelligent infrastructure of the room which is required by the 

ambient intelligence vision [6].  

 

Figure (1): The iDorm 

    The iDorm is based around three networks, Lonworks, 1-wire (TINI) and IP which provide a diverse 

infrastructure allowing the development of network independent solutions [9]. A common interface to the iDorm 

and its devices is implemented through Universal Plug & Play (UP&P) which is an event-based communication 

middleware for allowing devices to be plug & play enabling automatic discovery and configuration. A gateway 

server is used to run the UP&P software devices that interface the hardware devices on their respective networks. 

The agent implementing our learning and adaptation mechanism was built on top of the low level UP&P control 

architecture enabling it to communicate with the UP&P devices in the iDorm and thus allowing it to monitor and 

control these devices. Figure (2) shows the logical network infrastructure of the iDorm. 
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Figure (2) The iDorm logical network infrastructure. 

There is a standard multi-media PC that combines a flat screen monitor and a multi-media video projector which 

can be used for both working and entertainment which is shown in Figure (3).  

   

Figure (3) Video Projector and Multi-Media PC in the iDorm. 

    Any networked computer that can run a standard Java process can access and control the iDorm directly, thus 

this PC (Figure 4-a) can also act as an interface to control the devices in the room. Equally the interface to the 

devices could be operated from physically portable computational artefacts that can monitor and control the 

iDorm wirelessly such as a handheld PDA supporting Bluetooth wireless networking or a mobile phone shown 

in Figure (4-b) and (4-c) respectively. So it is possible to adjust the environment from anywhere inside and in the 

vicinity of the room which forms a type of “remote control” interface that would be particularly suitable to 

elderly and disabled users. There is also an internet Fridge in the iDorm shown in Figure (4-d) that incorporates 

an intelligent user friendly server with touch screen capability, which can also be used to control the devices in 

the room.  

 
          (a)                                     (b)                                              (c)                             (d) 

Figure (4): a) PC based interface.  b) Portable iPAQ interface.  c) Mobile phone interface.  d) iFridge interface. 

    Our agent learning mechanism and interface currently operates from the standard multi-media PC in the 

iDorm. It is possible however for our agent to be embedded into any part of the environment. In terms of 
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software the cross platform versatility of the Java programming language which the agent was written with, 

could allow it to be embedded onto internet devices. By embedding agents into such devices and integrating 

wireless communications (including wireless based interfaces, such as PDAs), will lead to the kind of pervasive 

transparent infrastructure that is characteristic of an ambient intelligent system.  

 

3. Type-2 Fuzzy Sets 

The task of designing an intelligent agent to effectively fulfil the needs of the user in UCE is akin to finding a 

solution to a highly challenging control problem. The environment within which the agent must operate can be 

viewed as a very complex control system, in which the user controlling it forms an essential part. The 

environment facing the human controller is so complicated that any mathematical model, if it exists, is strongly 

non-linear. In addition, the human controller, in their own right, is largely non-deterministic and a highly 

individual part of this system. The task here is to design an intelligent control system to realise the ambient 

intelligence vision [6] and control the environment on behalf of the human user [18].  

    Type-2 fuzzy sets are able to model the numerical and linguistic uncertainties faced by our agent controller to 

enable it to better model the user’s behaviours while handling the changing dynamics of the environment and the 

user activity, which is an essential requirement for an ambient intelligent system. 

    Type-2 fuzzy sets are able to model the numerical and linguistic uncertainties because the membership 

functions are themselves fuzzy [15]. One can imagine blurring the type-1 membership function depicted in 

Figure (5-a) by shifting the points on the triangle either to the left or to the right and not necessarily by equal 

amounts as in Figure (5-b). Therefore at a specific value of x, say x’, there is no longer a single value for the 

membership function (u’); instead, the membership function takes on values wherever the vertical line intersects 

the blurred area shared in grey. Those values need not all be weighted the same; hence, we can assign an 

amplitude distribution to all of those points. Doing this for all , we create a three-dimensional 

membership function which is a type-2 membership function that characterises a type-2 fuzzy set.  
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                            (a)                                                       (b)                                                         (c) 

Figure (5): a) Type-1 membership function. b) type-2 membership function. c) Triangular secondary 

membership function plotted in thick line; interval secondary membership function plotted in dashed line. 

    Formally A type-2 fuzzy set  is characterised by a type-2 membership function   [15] where 

and , i.e.,  

                                                                  (1) 

in which .  can also be expressed as follows [15]: 

                                                                                      (2) 

Where denotes union over all admissible x and u [15].    

At each value of x say x = x’, the 2-D plane whose axes are u and is called a vertical slice of 

 [15]. A secondary membership function is a vertical slice of . It is  for 

and  [15], i.e. 

                                                         (3) 

in which . Due to , the prime notation on is dropped and we refer to 

as a secondary membership function [15]. According to Mendel [14] the name that we use to describe 

the entire type-2 membership function is associated with the name of the secondary membership functions; so, 

for example if the secondary membership function is triangular (as shown in Figure (5-c)) then we refer 

to (x,u) as a triangular type-2 membership function. 

    Based on the concept of secondary sets, type-2 fuzzy sets can be written as the union of all secondary sets as 

follows [15]. 

                                                        (4) 

The domain of secondary membership functions is called primary membership of x [15], and in Equation 

(4) is the primary membership function of x, where  for [15].  
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    The inherent uncertainties in a type-2 membership function are encapsulated within the bounded regions 

termed Footprint of Uncertainty (FOU) [15], which is shown as a the grey region in Figure (5-b). Formally the 

uncertainty in the primary membership function of consists of the bounded region defined as the FOU [15] 

which is the union of all primary memberships [15], i.e., 

                                                                                                                                      (5) 

The FOU therefore determines the extent of the uncertainties present in  [15].  

    Our learning and adaptation technique uses an interval type-2 FLC (using interval type-2 fuzzy sets to 

represent the inputs and outputs) as opposed to a general type-2 FLC. The fuzzy sets are represented using 

interval type-2 membership functions in which the secondary membership grades are equal to unity [12]. A type-

2 interval membership function is represented by its left and right end-points, these two end points are associated 

with two type-1 membership functions referred to as upper and lower membership functions which are also the 

upper and lower bounds for the footprint of uncertainty FOU of the type-2 set [14]. Figure (5-c) illustrates the 

interval secondary membership function (plotted with the dashed line) at x’. The end points of the secondary 

membership function further reflect the upper and lower bounds of the FOU in the type-2 set shown in Figure (5-

b). Formally the upper and lower membership function of a fuzzy set associated with the upper and lower 

bounds is denoted by and  respectively. According to Mendel [14] we can 

re-express Equation (4) as follows to represent the type-2 fuzzy set  in terms of upper and lower membership 

functions as follows: 

                          (6) 

The secondary membership can therefore be expressed in terms of upper and lower membership 

functions as shown below [14]: 

                                                                                                                 (7) 

In the case of interval type-2 fuzzy sets when the secondary membership function are interval sets where 

, the interval type-2 fuzzy set can be written as follows [14]: 
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                                                                                                     (8) 

An Interval type-2 FLC is computationally far less intensive than a general type-2 FLC, and is thus better suited 

for embedded computational artefacts. 

    From the above discussion, we see that type-2 FLCs using type-2 fuzzy sets have many advantages when 

compared to type-1 FLCs. For example, as type-2 fuzzy sets are able to handle the numerical and linguistic 

uncertainties faced by the agent operating in a UCE, then FLCs that are based on type-2 fuzzy sets will have the 

potential to produce a better performance than the type-1 FLCs. In addition, type-2 fuzzy sets enable us to handle 

the uncertainty associated with trying to determine the exact membership functions for the fuzzy sets associated 

with the inputs and outputs of the FLC [12]. The FOU handles the rich variety of choices that can be made for a 

type-1 membership function, i.e. by using type-2 fuzzy sets instead of type-1 fuzzy sets, the issue of which type-

1 membership function to choose diminishes in importance [16]. Using type-2 fuzzy sets to represents the FLC 

inputs and outputs will also result in the reduction of the FLC rule base when compared to using type-1 fuzzy 

sets. This is because type-2 fuzzy sets rely on uncertainty represented in the footprint of uncertainty to cover the 

same range as type-1 fuzzy sets with a much smaller number of labels. As the number of inputs to the FLC 

increase the potential rule reduction as a consequence of fewer labels becomes significantly greater [14]. In terms 

of the FLC, uncertainty can also fire rules which are not available in type-1 FLC [14]. In type-2 FLC each input 

and output will be represented by a large number of type-1 fuzzy sets which are embedded within the FOU’s of 

the type-2 fuzzy sets. The use of such a large number of type-1 fuzzy sets to describe the input and output 

variables allows for greater accuracy in capturing the subtle behaviours of the user in the environment.  

 

4. The Learning and Adaptation Techniques for the Type-2 Agent 

The agents learn and adapt to the user behaviours in UCEs using our type-2 Adaptive Online Fuzzy Inference 

System (AOFIS) technique which is an unsupervised data-driven one-pass approach for extracting fuzzy rules 

and membership functions from data, to learn an interval type-2 FLC that will model the user’s behaviours. The 

data is collected by monitoring the user in the environment over a period of time. The learnt type-2 FLC 

provides an inference mechanism that will produce output control based on the current state of the inputs. Our 

adaptive type-2 FLC will therefore control the environment on behalf of the user and will also allow the rules to 

be adapted online as the user’s behaviour drifts over time.  
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    Our type-2 AOFIS technique aims to realise the vision of ambient intelligence by having the following 

characteristics: 

• The agent is responsive to the particular needs and preferences of the user. 

• The user is forever in control and can override the agent’s responses at any time. 

• The agent learns the user behaviour and controls the environment on the user behalf in a non-intrusive 

way (although the user may be aware of the high-tech interface, he is unaware of the agent’s presence).  

• The agent’s learnt behaviours can be adapted online as a result of changes in the occupant’s behaviour. 

• Learning is life-long in that agent behaviours can be adapted and extended over a long period of time as 

a result of changes in environmental conditions and user activity. 

• The agent uses a simple one pass learning mechanism for learning the user’s behaviours, and is 

therefore not computationally expensive. 

These features satisfy many of the requirements for the ambient intelligence vision defined by the Information 

Society Technologies Advisory Group (ISTAG) to the European Commission [6]. 

    AOFIS comprises of five phases as follows (as illustrated in Figure (6)). 

 

Figure (6): Flow Diagram Showing Five Phases of AOFIS 

4.1 Capturing Input Output Data 

The agent initially monitors the user’s actions in the environment. Whenever the user changes actuator settings, 

the agent records a ‘snapshot’ of the current inputs (sensor states) and the current outputs (actuator states with 

the new altered values of whichever actuators were adjusted by the user). These ‘snapshots’ are accumulated 

over a period of time (three days in case of our experiments) so that the agent observes as much of the user’s 

interactions within the environment as possible. AOFIS learns a descriptive model of the user’s behaviours from 

the data accumulated by the agent. Therefore given a set of multi-input multi-output data pairs: 
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                                                                                                                            (9) 

where N is the number of data instances,  and . AOFIS extracts rules which describe how 

the k output variables  are influenced by the n input variables  based 

on the sampled data. In our experiments in the iDorm we used 7 sensors for our inputs and 10 actuators for our 

outputs. The fuzzy rules which are extracted represent local models that map a set of inputs to the set of outputs 

without the need for formulating any mathematical model. Individual rules can therefore be adapted online 

influencing only specific parts of the descriptive model learnt by the agent. 

4.2 Fuzzy Membership Function Extraction 

It is necessary to be able to categorise the accumulated user input/output data into a set of fuzzy membership 

functions which quantify the raw crisp values of the sensors and actuators into linguistic labels such as normal, 

cold or hot. AOFIS is based on learning the particularised behaviours of the user and therefore requires these 

membership functions be defined from the user’s input/output data recorded by the agent. In our previous work, 

[5] we have developed a technique for generating type-1 membership functions from data that was based on 

using a Double Clustering approach combining Fuzzy-C-Means (FCM) and agglomerative hierarchical 

clustering [5]. We used this technique to generate type-1 membership functions and then added the FOU’s for 

the fuzzy sets to generate the interval type-2 membership functions as illustrated in figure (7-a) and (7-b). 

 

                                             (a)                                                                                   (b) 

Figure (7): a) Type-1 fuzzy set with no uncertainties. b) type-1 set with added FOU to form type-2 fuzzy set. 

Gaussian interval type-2 membership functions with uncertain standard deviations are used to describe the type-

2 fuzzy sets , (where  and V represents the number of type-2 fuzzy sets for a variable j ) the 

mathematical definition of which is 
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                                                               (10) 

where  is the value of the centre (average) and are the values of the spreads for each gaussian interval 

type-2 membership function  z, for the j-th input/output variable. 

     We therefore obtain a set of V interval type-2 fuzzy membership functions defined for each input and output 

parameter of the user data that was sampled. These membership functions are distributed over the range of 

values of each parameter. The membership functions at the boundaries are modified such that they are extended 

indefinitely beyond their respective centres with an upper and lower membership value of 1. A semantic 

meaning can be associated with each of the resulting fuzzy sets. Specifically depending on the value of index  z, 

a meaningful symbolic label can be given to . 

4.3 Fuzzy Rule Extraction 

The defined set of interval type-2 membership functions are combined with the existing user input/output data to 

extract the rules defining the user’s behaviours. The fuzzy rule extraction approach used by the type-2 AOFIS is 

based on an Enhanced version of the Mendel Wang (MW) method [5, 18] developed by L.X. Wang and by 

Mendel [14]. This is a one pass technique for extracting fuzzy rules from the sampled data. The fuzzy sets for the 

antecedents and consequents of the rules divides the input and output space into fuzzy regions.   

    The type-2 AOFIS extracts multi-input multi-output rules which describe the relationship between y=(y1,..,yk) 

and  x=(x1,…,xn)
T
, and take the following form: 

                              IF is  … and  is THEN  is  … and   is                     (11) 

, where M is the number of rules and l is the index of the rules. There are V interval type-2 fuzzy 

sets  defined for each input  where . There are V interval type-2 fuzzy sets 

 defined for each output  where . AOFIS now extracts rules in the form of 

Equation (11) from the data.  

    To simplify the following notation, the method for rules with a single output is shown, as the approach is quite 

easily expanded to rules with multiple outputs. In the following steps we will show the different steps involved 

in rule extraction: 
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Step 1: For a fixed input-output pair  in the dataset, (t=1,…N), compute the upper and lower 

membership values and for each fuzzy set q=1,…V, and for each input variable s 

Find q* {1,…V } such that  

                                                                                                            (12)  

for all q=1,..V, where is the centre of gravity of the interval membership of at  as 

follows [14]: 

                                                                               (13) 

Let the following rule be called the rule generated by  

                                                IF is .. and  is THEN  is centred at                                (14) 

For each input variable  there are V type-2 fuzzy sets , q= 1,..V to characterise it; so that the maximum 

number of possible rules that can be generated is V
n
. However given the dataset only those rules among the V

n
 

possibilities whose dominant region contains at least one data point will be generated. In step 1 one rule is 

generated for each input–output data pair, where for each input the fuzzy set that achieves the maximum 

membership value at the data point is selected as the one in the IF part of the rule, as explained in Equations (12), 

(13) and (14).  

    This however is not the final rule which will be calculated in the next step. The weight of the rule is computed 

as 

                                                                                                                          (15) 

The weight of a rule  is a measure of the strength of the points  belonging to the fuzzy region covered 

by the rule.  

Step 2: Step 1 is repeated for all the t data points from 1 to N to obtain N data generated rules in the form of 

Equation (14). Due to the fact that the number of data points is quite large, many rules are generated in step 1, 

that all share the same IF part and are conflicting, i.e. rules with the same antecedent membership functions and 

different consequent values. In this step rules with the same IF part are combined into a single rule. The N rules 
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are therefore divided into groups, with rules in each group sharing the same IF part. If we assume that there are 

M such groups. Let group l have  rules in the following form: 

                                              IF is … and  is THEN  is centred at                                       (16) 

Where  and  is the index for the data points in group l. The weighted average of all the rules in 

the conflict group is then computed as 

                                                                                                                         (17) 

We now combine these  rules into a single rule of the following form: 

                                             IF is and … and  is THEN  is                                        (18)  

Where the output fuzzy set  is chosen based on the following. Among the V output interval type-2 fuzzy sets 

 find the such that 

                                                                                                                    (19) 

for is chosen as , where  is the centre of gravity of the interval membership 

of at  as in Equation (13).                     

    As mentioned above AOFIS deals with input-output data pairs with multiple outputs. Step 1 is independent of 

the number of outputs for each rule. Step 2 is simply expanded to allow rules to have multiple outputs where the 

calculations in Equations (17), (18) and (19) are repeated for each output value. 

4.4 Agent Controller 

Once the agent has extracted the membership functions and the set of rules from the user input/output data, it has 

then learnt the type-2 FLC that captures the human behaviour. The agent FLC can start controlling the 

environment on behalf of the human according to his desires. The agent starts to monitor the state of the 

environment and affect actuators based on its learnt type-2 FLC that approximate the particularised preferences 

of the user. This operation is performed in a non-intrusive way to realise the ambient intelligence vision [6]. 

Figure (8) shows a block diagram of the interval type-2 FLC which consists of a fuzzifier, rule base, fuzzy 

inference engine, centre of sets type-reducer and defuzzifier, more information about this real time type-2 FLC 

can be found in [8]. 
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    The type-2 FLC works in the following way, the crisp inputs comprising the sensory state of the environment 

are first fuzzified into the input interval type-2 fuzzy sets (we will use singleton fuzzification) which then 

activates the inference engine and the rule base to produce output type-2 fuzzy sets. The type-2 fuzzy outputs of 

the inference engine are then processed by the type-reducer which combines the output sets and then performs a 

centroid calculation which leads to type-1 fuzzy sets called the type-reduced sets [14]. The defuzzifier can then 

defuzzify the type-reduced type-1 fuzzy outputs to produce crisp outputs to be fed to the actuators.  

 

Figure (8): Block diagram of a type-2 FLC 

    In the inference engine the firing interval for each rule based on the input and antecedent operations is 

calculated as follows [14]: 

                                                                                                   (20) 

where  

                                                                                                                         (21) 

and 

                                                                                                                         (22) 

where refers to the rule in the rule base and n is the number of inputs. 

    Type-reduction was proposed by Karnik and Mendel [10, 11, 13], it is called type-reduction because this 

operation takes us from the type-2 output sets of the inference engine to a type-1 set that is termed the type-

reduced set [13]. These type-reduced sets are then defuzzified to obtain crisp outputs of the actuator values.  

As we are dealing with interval sets, the type-reduced set for the output will also be an interval set [14] 

and has the following structure: 
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                                                                                                                                  (23) 

As in [13] we use the centre of sets type reduction, as it has reasonable computational complexity that lies 

between computationally expensive centroid type-reduction and the simple height and modified height type-

reduction which have a problem when only one rule fires [14]. The computation of centre of sets type-reduction 

will allow for real time operation if the rule base is not large.  The type reduced set using the centre of sets type-

reduction can be expressed as follows:  

        …. ….          (24) 

Where  for the output is an interval set determined by its left most point and its right most 

point , M is the number of rules.  corresponds to the centroid of the type-2 interval consequent set  of 

the rule for the  output;  is a type-1 interval set determined by its left most point  and its right most 

point  [13].   denotes the firing strength (degree of firing) of the rule which is an interval type-1 set 

determined by its left most and right most point [13] where is calculated using Equation (21) and 

is calculated using Equation (22). 

    The calculation of the type-reduced sets is divided into two stages. In the first stage the centroids of type-2 

interval consequent sets of the rule are calculated using the iterative procedure developed by [14]. This is 

conducted ahead of time and before starting the control cycle of the agent’s FLC. The second stage consists of 

calculating the type-reduced sets using the iterative procedure developed by [13, 14]. The type-reduced sets are 

then defuzzified to produce the crisp output for the actuators; this occurs at each control cycle. The iterative 

procedure for type-reduction is proven [13, 19] to converge in no more than M iterations to find  and M 

iterations to find where M is the number of rules. As mentioned earlier the potential for the rule base to 

become uncontrollably large is reduced by that fact that given the dataset only those rules among the V
n
 

possibilities whose dominant region contains at least one data point will be generated. In our system we have 

also set a memory limit that saves only the most used rules to avoid an increase in the number of rules beyond a 

certain limit that will hinder the real time performance of our system.  As we require less type-2 fuzzy sets for 
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accurately representing the input parameters, this also means that the potential number of rules is considerably 

reduced.  

    From the type-reduced stage we produce for each output a type-reduced set . Each type-reduced set 

is an interval type-1 set determined by its left most point  and right most point . We defuzzify the interval 

set by using the average of  and hence the defuzzified crisp output for each output c is [19]. 

 

                                                                                                                                    (25) 

4.5 Online Adaptation and Life Long Learning 

In the previous steps we have shown how our agent can learn a type-2 FLC that approximates the user’s 

behaviour. However, the user may need to make adjustments to tune the system or their behaviour might change 

as the user requirements change over time. So our agent needs to adapt to the user’s behavioural changes in a 

non intrusive manner and in a short time interval.  

    In realising the non-intrusive aspect of ambient intelligence [6] whenever the user is not happy with the 

agent’s actions, he can always override the agent’s control responses by simply altering the manual control of the 

system. When this occurs the agent will adapt its rules online or add new rules based on the new user preferences.  

    Whenever the user overrides the agent’s control responses and actuates any of the controlled output devices, a 

snapshot of the state of the environment is recorded and passed to the rule adaptation routine. Each input 

parameter in the input vector x is compared to each of the antecedent sets  of a given rule in the rule base to 

determine its upper and lower membership values. The weight of the rule is then calculated to determine if the 

degree of firing of the rule in Equation (15) , meaning that the rule fired, and would therefore have 

contributed to the overall control response generated by the agent’s FLC. The consequent fuzzy sets that give the 

highest membership to the user defined actuator values are selected to replace the consequent sets of all fired 

rules in the rule base. The consequent fuzzy sets are found as in Equation (4) by calculating centre of gravity of 

the interval membership. 

                                                                                                                                   (26) 

for  The is chosen as . Where c=1,2..,k. The fired rules are therefore adapted to better 

reflect the user’s updated actuator preferences given the current state of the environment.  
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    If none of the existing rules fired, new rules are added based on forming rules from the input fuzzy sets. For 

each input parameter  the fuzzy sets that give a membership value where  are identified. 

    This leads to a grid of identified fuzzy set(s) for each input parameter. From this grid new rules are 

constructed based on each unique combination of consecutive input fuzzy sets. The consequent fuzzy sets for 

each of the new rules are determined using Equation (26). This allows new rules to be gradually added to the rule 

base. The agent will also add new rules when the currently monitored environmental state is undefined by the 

existing rules in the rule base; i.e. none of the existing rules fired. In this case the agent will create new rules 

where the antecedent sets reflect the current input states of the environment and the consequent fuzzy sets are 

based on the current state of the actuators.  

    The agent adopts life long learning where it adapts its rules as the state of the environment and the preferences 

of the user change over a significantly long period of time.  

 

5. Experimental Results 

We have performed unique experiments in which a user lived in the iDorm (shown in figure (9)) for a total 

period of five days. During the initial monitoring phase which lasted for three consecutive days in late summer 

early autumn (early September), the agent recorded the user interactions with the environment. The user 

performed the normal variety of behaviours and activities one would associate with a study bedroom 

environment; and the agent recorded the user interactions in an unobtrusive and non-intrusive way to realise the 

vision of ambient intelligence [6].  Seven input sensors were monitored which are: internal light level, external 

light level, internal temperature, external temperature, chair pressure, bed pressure and time measured as a 

continuous input on an hourly scale. Ten output actuators were controlled consisting of the four variable 

intensity spot lights, the desk and bed side lamps, window blinds, the heater and the two PC based applications 

comprising of a word processing program and a media playing program. The outputs thus covered the spectrum 

of physical devices and computer based applications found in a typical study bedroom environment. As we 

mentioned previously the user was able to interface with the devices in the room via the multi-media PC on 

which our intelligent agent was embedded. In a similar way the agent could have been embedded on any other 

wireless or networked computational artefact in the room allowing a remote intelligent embedded interface to the 

iDorm environment. 
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Figure (9): User in the iDorm 

5.1 Offline Experiments 

The data from the iDorm that was captured during the monitoring phase was used to compare the offline 

performance of the type-1 AOFIS with three other soft-computing based techniques which are Genetic 

Programming (GP), the Adaptive-Neuro Fuzzy Inference System (ANFIS) and the Multi-Layer Perceptron 

Neural Network [5]. The dataset comprised of 408 instances and was randomised into six samples. Each sample 

was then split into a training and test set consisting of 272 and 136 instances respectively. The offline 

performance error for each technique was obtained on the test instances as the Root Mean Squared Error which 

was also scaled to account for the different ranges of the output parameters. From our previous work it was 

found that for the type-1 AOFIS, the optimum number of type-1 fuzzy sets for AOFIS is 7 [5]. The type-1 

AOFIS had outperformed the ANFIS and the MLP and gave a comparable result to the GP. The iterative nature 

of the compared approaches made them more computationally intensive than the one pass type-1 AOFIS 

technique which makes it better suited for embedded agents with limited computational resources. The other 

approaches cannot easily be adapted online as this would necessitate their internal structures to be re-learnt every 

time either new rules were added or existing rules were adapted. So our method is unique in that it can learn a 

good model of the user’s behaviour which can then be adapted online in a life long learning mode in a non 

intrusive manner.  

 

                    (a) 
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                    (b) 

Figure (10): a) Type-1 Fuzzy Sets. b) Derived type-2 Fuzzy Sets, for Internal Light Level. 

   

    We then proceeded to determine if our type-2 AOFIS would produce an improved performance over the type-

1 AOFIS using the same data samples. The training instances in each data sample were used to generate the 

type-2 agent parameters. 7 type-1 sets were used to represent the input and output parameters of the type-1 agent 

as this was shown to be the optimum number of sets from our previous experiments. Five interval type-2 sets 

were derived from the 7 type-1 sets for each parameter to form an interval type-2 FLC. The interval type-2 fuzzy 

sets covered the same ranges as the type-1 fuzzy sets such that the type-1 sets were approximately embedded 

within the type-2 sets. Figure (10-a) and (10-b) shows for the input parameter internal light level the 7 type-1 

fuzzy sets used for the type-1 agent FLC and the 5 type-2 fuzzy sets used for the type-2 agent FLC,. 

     The results obtained showed that the type-2 agent produced an average scaled error of 0.1255 and a scaled 

standard deviation of 0.1138. In comparison the type-1 agent produced an average scaled error of 0.1324 and a 

scaled standard deviation of 0.1257. So the type-2 agent had produced a smaller error (i.e. captured better the 

human behaviour) than the type-1 agent. The type-2 agent generated 121 rules from the 272 training instances 

compared with the type-1 FLC that produced 153 rules.   

5.2 Online Experiments 

The online performance of the agent was evaluated on how well the type-2 AOFIS could model the user’s 

behaviour from their observed activity that had been recorded over the initial three days of monitoring in early 

September. The performance of the learnt type-2 FLC could then be gauged online in its ability to control the 

environment and satisfy the preferences of the user when the environmental conditions were significantly 

different such that differences between the original user dataset and the current conditions would be considerably 

higher. In this way we could determine if the type-2 agent adapted better (handled better the uncertainties) to the 

new environmental conditions than a traditional type-1 agent. The dataset accumulated during the monitoring 
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phase was used to learn the type-1 and type-2 FLC’s. Both agents were then each separately run online for two 

days in mid winter (mid December) during which they monitored the environment and user’s activities, and 

produced the appropriate control responses based on their learnt FLC’s. During this time each agent’s FLC 

controlled the environment in a non-intrusive and invisible way while the user continued to carry out the 

assortment of behaviours and activities they were performing during the initial monitoring phase. The user could 

now however override and adapt the agent’s learnt control responses, if it was necessary to modify and tune 

them further.  

    One of the characteristics of our agent is that the user is always in control and he can override the agent at any 

time and his instructions are executed immediately, to achieve the responsive property implied in the ambient 

intelligence vision [6] unless safety is compromised. Thus whenever changes to controls were made by the user, 

the agent received the request, generated new rules or adjusted previously learnt rules and allowed the action 

through. The agent would autonomously continue to monitor the environment and generate new rules when the 

state of the environment was not captured by its existing rule base.  

    The online performance of the agents could be measured by monitoring how well they adjusted the iDorm 

environment to the user’s preferences such that the user intervention was reduced over time.  

     Figure (11) plots the number of online rule adaptations against time measured in minutes that occurred over 

the course of the two days for both the type-1 and type-2 FLC’s. From Figure (11) we can see that the type-2 

agent required significantly less user interaction than the type-1 agent. This is because the type-2 agent had 

modelled better the user behaviour as it can handle the linguistic and numerical uncertainties facing embedded 

agents in UCEs. Both plots show the user intervention was initially high but then stabilised by the end of the first 

day. The type-2 agent initially learnt 121 rules from the user dataset. Over the subsequent two days 92 new rules 

were created by the agent. In comparison the type-1 FLC initially learnt 153 rules and the agent created 341 new 

rules over the two days. Both agents were therefore able to learn and adapt in a non intrusive way to the user’s 

preferences over the duration of the two days. The type-2 FLC however was able to adapt better to the new 

environmental conditions with less user interaction and a fewer number generated of rules. Figure (12) shows an 

example of the type of rules that our agents produced. 
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Figure (11): Number of Online Rule Adaptations 

 

Figure (12): Typical Rule Produced by AOFIS 

    From the experiments we can deduce that the agent has tried to realise the vision of ambient intelligence as it 

was intelligent and it learnt the user particularised behaviour and adapted it online to any changes in a life long 

learning mode in a non intrusive way. The agent was also responsive to the user commands. In addition, the 

intelligent environment in the iDorm was transparent and ubiquitous in that the pervasive interconnected 

embedded systems were seamlessly integrated into it. The user was therefore unaware of the invisible 

intelligently responsive infrastructure of the environment. 

 

6. Conclusion 

In this paper we presented a novel system for learning and adapting type-2 fuzzy controllers for agents that can 

be embedded in UCEs. This we hope will be a step towards the realisation of the vision of ambient intelligence. 
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These agents are based on type-2 fuzzy systems which are able to handle the different sources uncertainty and 

imprecision in UCEs to give a good response. 

    Our agent learnt a type-2 FLC that modelled the user’s particularised behaviour and it was adaptive as it 

allowed the learnt behaviours to be modified and extended online and in a life-long learning mode as the user’s 

activity and environmental conditions changed over time. We have demonstrated that our type-2 fuzzy controller 

is able to reduce the effects of uncertainties that arise as environmental conditions and user behaviours change 

over a long period of time. 

    The intelligent learning and adaptation occurred in a non intrusive manner while the user carried out his 

normal activities in the environment and the agent was always responsive to the user’s commands. The iDorm 

environment was transparent and ubiquitous and the pervasive infrastructure of the interconnected embedded 

systems was seamlessly integrated into it. The user was therefore surrounded by an invisible though intelligently 

responsive intelligent ambience. Our technique was a simple one-pass method and thus it is not computationally 

expensive and could be incorporated in many embedded devices within pervasive environments.  

    We carried out unique experiments in which a user stayed in the iDorm for a period totalling five days. The 

offline and online performance of the type-2 agent using our type-2 AOFIS showed that its type-2 FLC 

outperformed a type-1 FLC at both learning the behaviours of a user and adapting and tuning its rules online to 

meet the user’s preferences when the environmental conditions had significantly altered. The type-2 FLC also 

used less number of rules than the type-1 FLC. We were therefore able model and minimise the effects of 

uncertainties to produce a better over all performance of the system. 

    In our future work we propose to design an automated process for generating type-2 fuzzy sets directly from 

user data.  
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