
In the IEE International Workshop, Intelligent Environments 2005 (IE05), Colchester, UK, 28-29th June 05

© Essex University & IEE June 2005 1

SUPPORTING MOBILE SESSIONS ACROSS PERVASIVE SMART SPACE ENVIRONMENTS

A Shahi M Gardner V Callaghan

University of Essex, UK University of Essex, UK University of Essex, UK

ABSTRACT

Pervasive computing is at an exciting stage of its
evolution, with an increasing number of devices of
various shapes and sizes appearing in our everyday
surroundings. In such an environment, the need to
utilise application sessions within and across device rich
spaces becomes apparent. This paper introduces the
concept of mobile sessions for smart space
environments, by outlining a candidate framework,
OTIS (object transfer in smart -spaces), that specifically
addresses session transfer in smart space environments,
such as intelligent buildings. Having done this we
compare OTIS to the AURA and GAIA infrastructures,
which most closely relate to our work. Finally we
summarise the main findings of our research and outline
our plans for taking this work forward.

1. INTRODUCTION

Pervasive computing causes us to examine ways in
which existing computing infrastructures combine with
everyday physical and environmental spaces, by
understanding the dynamics of device rich
environments, how devices are networked to correspond
to the boundaries of physical space and how users
generally interact within and across these spaces:
commonly referred to as ’smart space environments’.
Generally, users and mobile devices interact with a
smart space by autonomously joining the space,
performing some form of interaction with any space
specific services, and leaving a space in a seamless
manner. Interaction and use of a smart space may differ
depending on its type. For example, smart spaces may
be private, social or public; such as a private room in an
intelligent building or a public meeting place.

Smart spaces of the future will allow users to seamlessly
access and use services across the myriad of devices
provided by each space. Achieving this level of
seamlessness requires true interoperability across
heterogeneous devices, networks and applications.
Much of this work is being lead by standards bodies,
which recommend their own standards for addressing
interoperable systems needed in smart space
environments; including various types of networking
technology, device and service middle-ware, and
methods for assigning semantic meaning to network

resources. All these technologies are well known for
forming an integral part of any ubiquitous computing
environment, with the challenge being to combine these
to offer new types of behaviour; characterised by being
considerably more powerful and seamless than services
today.

We envision one such service being to take existing
applications, associated with a user or space, mobilising
these applications into transferable sessions, and then
allowing these to be transferred between devices in a
space. Our findings come from earlier industrial work in
making web browsing sessions mobile across multi-
device environments, and the resulting approaches
acquired, together with lessons learned, in making an
application move its active state to another device. This
has then been combined with the concept of smart
spaces for pervasive computing environments, to
provide an overall framework for discussion, OTIS,
which we hope will generate interest in both the
intelligent building and wider pervasive computing
research community.

Firstly, we acquaint the reader with the underlying
concept by studying three distinct scenarios. We then
identify techniques in moving application state and
present OTIS, our sample framework for session
transfer in smart space environments. Finally, we
compare OTIS with two similar systems: AURA and
GAIA, before outlining future work.

2. SCENARIOS

A few scenarios should help to narrow down the
concept of session transfer in smart space environments:

Scenario 2.1 . Jane is in the living room working from
home. She has a range of applications displayed on her
living room screen, such as a VoIP phone, and a word
processor application. Moments later, Jane’s house-
mates enter the living room. Since Jane is busy working
and talking to her work colleagues, she transfers her
desktop session from the living room screen to her study
screen, and resumes her work in the study.

Scenario 2.2 . Next morning, Jane needs to attend a
conference in Tokyo. After arriving at her hotel room, a
symbol on Jane’s phone starts to flash in an unobtrusive
manner. Jane now knows she’s within a ’smart space’.

In the IEE International Workshop, Intelligent Environments 2005 (IE05), Colchester, UK, 28-29th June 05

© Essex University & IEE June 2005 2

Using her phone, Jane selects the smart space menu,
which has now become ’active’ by the phone implicitly
merging itself into the hotel space. After an
authentication procedure between Jane’s smart phone
and the smart space, Jane is presented with a menu list
of services available to her. One of these services is
’Home Desktop’. Jane selects this menu, which then
causes her home desktop to appear on a terminal screen
in the room. She uses an instant messaging application
to tell her boyfriend that she has arrived safe and sound.

Scenario 2.3 . After arriving at the conference, Jane
walks into the conference theatre. Immediately, Jane’s
smart phone is added to the conference space, with Jane
being alerted by the phone displaying a space symbol.
Jane uses her phone to browse the space, and finds a
conference proceedings section. Whilst being seated,
Jane requests the conference proceedings. The
conference space then requests a prioritised list of
formats supported by Jane’s phone and, as result, sends
the details in HTML form.

Each of the scenarios differ in terms of their context.
However, they all have one thing in common, which
involves the transfer of application sessions within
smart space environments. Furthermore, the transfer
process is done at the touch of a button, hence being
invisible to the user. We believe scenarios such as these
can only be realised by examining different approaches
to state migration, together with their strengths in
favouring certain scenarios. Three approaches are now
described.

3. APPROACHES TO SESSION TRANSFER
WITHIN SMART SPACE ENVIRONMENTS

Any system concerned with session transfer must
clearly identify the objects needed for mobilisation. We
refer to these objects as application sessions: anything
an application may transfer, handle and present to
devices within a space. Sessions may include
personalised state, such as the state of a user’s desktop
environment (scenarios 2.1, 2.2), or the current state of
an application. Sessions may also be stateless and de-
coupled from a user or application, such as a file or
snippet of web content, e.g the conference session
within scenario 2.3, where the session consists of an
ordinary file belonging to a shared space, together with
a web page. Application sessions may be requested or
pulled by a user in a space (e.g. using a mobile device)
and then pushed using relevant protocols. Sessions may
also be pushed according to contextual information,
such as a user’s location within a space (e.g. moving
across rooms in a building).

Techniques for migrating and pushing application
sessions will now be provided, along with their

strengths in favouring specific smart space scenarios
and application types.

3.1 Server based redirection

Server based redirection is concerned with running
users’ application sessions within a local, centralised
server environment, and redirecting input/output
channels, such as display and sound, to and from
networked devices. This approach is taken in remote
desktop systems (11) (12), where personal computing
environments are directed to whatever device a user
wishes to use. These systems include specialist
protocols that split a host computer’s low level
input/output devices into separate network aware
channels. Input/output is therefore piped over these
network channels to a thin-client residing in a device. In
some ways, server based redirection resembles previous
dumb terminal to main-frame models.

Server based redirection for smart space environments
will typically be used to move complex user sessions to
and from devices within a smart space, as described in
scenario 2.1. Since application and user environments
will reside within a server node, server-based
redirection will allow the transfer of runtime application
state, such as a desktop, to any device in the local space.
A change of context, such as moving to a different room
in the building, could cause the server node to redirect
and transfer all output to the user’s new device.

Although server based redirection can capture and
transfer real-time session state, such as a user’s desktop
environment; network connectively and latency must
remain optimal, which is adequate for transfer in local
spaces, but may cause problems when connectivity is
unavailable; such as accessing server sessions from
more remote locations. Another approach, virtual
machine driven transfer, transfers actual session state
between session servers located in separate spaces,
therefore being more suited to nomadic and remote
interaction. This method will now be examined.

3.2 Virtual machine driven transfer

Early work in mobile agent systems envisioned software
agents migrating themselves between devices to
perform user tasks, such as information retrieval.
Important work here included the need to migrate agents
between heterogeneous device architectures, which in
turn was addressed by employing interpretative
environments, such as virtual machines.

Process migration techniques using virtual machines can
provide an alternative form of session state transfer,
suited to scenarios of uncertain network connectively
and latency, together with times when one may wish to

In the IEE International Workshop, Intelligent Environments 2005 (IE05), Colchester, UK, 28-29th June 05

© Essex University & IEE June 2005 3

fully import their personal computing environment into
another space, therefore making full use of any local
resources in the space. One such system, Internet
suspend/resume (4) provides virtual machine based state
transfer using commercial strength virtual machine
technology. Virtual machine monitors (VMMs) are
deployed to examine the volatile state of a user’s
computing environment. When a state transfer is
required, e.g. from a user’s home PC to a work PC, the
VMM will push all volatile state to a distributed file
system - whilst the user makes the transition from home
to work. A VMM on a target host will then be notified,
and pull any relevant state, hence restoring a user’s
active computing environment as it was left. Combined

with smart spaces, virtual machine transfer may be used
in nomadic situations where a user is continually
moving between spaces and wishes to pull his
computing environment, as he left it, into the current
space (scenario 2.2). This way, utilisation of powerful
local resources is maximised, rather than wasted by
treating these resources as thin-clients, as in server
based redirection. Figure 1 illustrates virtual machine
based transfer. As shown, a user has a session, B within
intelligent building A. The user then moves to another
intelligent building environment, B, and requests
session B. Using virtual machine transfer, the user’s
session is imported into intelligent building B, and
displayed on a terminal within the user’s space. Both

Figure 1: Virtual machine driven transfer across smart spaces

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

Figure 2: Transferring data objects to a mobile device in a smart space

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

In the IEE International Workshop, Intelligent Environments 2005 (IE05), Colchester, UK, 28-29th June 05

© Essex University & IEE June 2005 4

Figure 3: Controlling redirection of a user session within a smart space

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

server-based redirection and virtual machine driven
transfer prove useful for transferring sessions with
complex state, such as a user’s personal computing
environment. Sometimes, especially in public space
scenarios, we may wish to transfer smaller, finer grained
sessions called data objects. Typically, data objects will
correspond to the state of a particular application or to
local files or URLs. Transfer of data objects will now be
examined.

3.3 Data object transfer

Data object transfer is concerned with capturing small,
fine-grained data objects and pushing these to a relevant
device. To do this, protocols must be utilised that
support pushing of objects, such as OBEX Push (10) or
WAP-Push (13) for instance. Each data object must also
be augmented with META-DATA describing itself, e.g.
its MIME type value. This allows the receiving device
to process a data object accordingly, just as a web
browser handles MIME types.

Embedding data objects into a space requires some form
of logical encapsulation regarding available data objects
for transfer. We call this encapsulation a data box.
Figure 2 includes a data box for a conference space. As
shown, the data box groups various data objects that
point to files or individual application sessions. For
example, object B and object C point to a URL
describing the conference agenda and a PDF file of the
conference proceedings. object A points to a running
application, X, which keeps track of the active speaker.
This data object is therefore referring to the run time
state of application X, i.e. current speaker information.
A device within the space could request object A,

causing the space to extract the run-time state of
application X, via object A, and transmit this
information as a VCard, using a suitable PUSH
protocol.

Devices entering a space will handle a certain set of
protocols for object transfer, therefore requiring the
space to determine which protocol to use when
transferring an object. For example, a space may ask a
smart phone device for the various PUSH services it
supports. The space could then determine that the
device supports the OBEX File Push protocol, hence
choosing to push a data object over OBEX.

Each of the outlined approaches is suited to different
usage scenarios. Server-based redirection is typically
used for directing the output channels of a user’s server
session to devices within a space (scenario 2.1). Virtual
machine transfer is used by nomads to import their
computing environment into a new space, therefore
allowing session movement across spaces, such as
between built environments (scenario 2.2). Finally, data
object transfer is useful for seamlessly pulling snippets
of information associated with a space (scenario 2.3)
Overall, the challenge lies in taking these approaches
and their respective strengths in favouring particular
migration techniques, and combining them together
under the context of smart spaces, such as intelligent
buildings. OTIS is our sample framework for achieving
this, and will now be described by outlining its main
components.

In the IEE International Workshop, Intelligent Environments 2005 (IE05), Colchester, UK, 28-29th June 05

© Essex University & IEE June 2005 5

4. OTIS: OBJECT TRANSFER IN SMART
SPACES

OTIS will encapsulate all session transfer services
within a smart space, and provide adequate support to
transfer application sessions within and across spaces.
Each of OTIS’s components will now be described:

4.1 Session transfer

All processing related to transferring application
sessions is handled by the session transfer (ST)
component. This component includes control
mechanisms to carryout the following:

—Server based redirection: Redirect the output channels
from a server-based session to appropriate devices
within a space. Figure 3 illustrates the control
mechanisms used for server-based redirection. All user
sessions are stored within a session server. When a user
wishes to move a session to a different device, the
server simply drops the connection to the current
terminal device, and re-instantiates a connection to the
target device by requesting the thin client to connect to
the user’s server session. An appropriate protocol is
used to send display and audio output to the terminal
device, together with input events from the terminal
device to the server session. Note that terminal devices
may take the form of PADs, Tabs or Boards, as
described by Weiser (5).

—Virtual machine transfer: When a user moves to a
completely new environment, such as a different
building, this component will provide control
mechanisms to import users’ computing environments
into the current space. Control mechanisms will
typically be based on already existing approaches such
as Internet/Suspend and Resume, whereby a user’s
computing environment will be stored in a distributed
file system. The session transfer component (ST) will
then act as a virtual machine monitor by accessing the
distributed file system, importing a user’s computing
environment into an appropriate VM, and creating a
server-based session for the user. Since the imported
environment will be represented as a server-based
session, server-based redirection will be possible
between devices within the local space. The ST will also
provide mechanisms for restoring a user’s server session
back to the distributed file-system, therefore allowing
retrieval from another environment.

—Accessing space specific data objects: A data-box
will hold any space specific data objects intended for
transfer. The ST component will then mediate access to
and from the data-box by interacting with the mobile
device mediator component. Using the mobile device
mediator, the ST component will be able to determine
the various PUSH protocols supported by a device. It

will then use an appropriate service to transfer a data
object over an appropriate protocol. For example, a web
service could be used to send a data object
corresponding to a URL, with WAP-Push as the
underlying PUSH protocol.

4.2 Mobile device mediator

Mobile device mediators (MDMs) will typically be used
to allow mobile devices to enter and merge into a space.
Users will typically use their mobile devices to retrieve
data objects available within the current space (scenario
2.3). Alternatively, a mobile device could be used as a
remote control for seamlessly triggering the retrieval of
a user’s computing environment into a stationary device
in the space (scenario 2.2). The MDM works by
performing sever beaconing via one of its sensors,
therefore detecting any mobile devices within the
current space. Different wireless technologies may be
used depending on the granularity of a space. For
example, one may wish to split a room into lots of small
tiny zones using sensing technology such as RF-ID.
Alternatively, the boundary of a space could span the
whole building using Wi-Fi technology, or employ
bluetooth like technology; since the range of bluetooth
corresponds to the theory of our behaviour being
associated with the room that we are in. Once a device
has been detected and authenticated, the MDM queries
the context model and retrieves all session services (e.g.
available data objects) within the space. These are then
sent to the mobile device for display. A user may select
a particular session, causing an event to be sent to the
MDM, which then relays the event to the ST component
thus causing a data object being sent to the mobile
device, or a user’s computing environment being
transferred to an appropriate device within close
proximity to the user.

When pushing data objects to a mobile device, the ST
component may require the type of underlying PUSH
protocols supported by the device. Using service
discovery mechanisms, such as bluetooth SDP (7), the
MDM may discover any PUSH protocols supported by
the device, and relay this information back to the ST
component, therefore allowing the ST to adapt
appropriately.

4.3 Context model

Many forms of context are required when transferring
sessions using the identified approaches. It turns out that
each approach requires its own type of context from a
space:

4.3.1 Modelling server based redirection. Using
server-based redirection, a user may wish to transfer

In the IEE International Workshop, Intelligent Environments 2005 (IE05), Colchester, UK, 28-29th June 05

© Essex University & IEE June 2005 6

their current, active session, to another device within the
local space. To do this, the context model must
represent all active devices within the local space.
Typically, protocols such as UPnP (6) may be used to
discover devices by multi-casting service discovery
requests within the local space. The context model may
then cache returned XML service advertisements, to
provide a snapshot of current device context within the
local space.

4.3.2 Modelling virtual machine transfer. Using
virtual machine based transfer, users may request their
personal computing environment to appear on a
terminal situated near themselves. In order to do this,
we must be able to model the location of a user with
respect to the terminal they wish to use. Many
technologies may be used for this task. For example,
near-communication (3) may be used, where a user
simply touches the relevant terminal using a mobile
device. A request containing the information regarding
the user and the device touched, is then sent to the
session transfer component, which retrieves the user’s
environment and uses server-based redirection to direct
output to the device selected by the user.

Alternatively, stereo computer vision may be used to
identify users (9), and place them within a geometric
model, where entities are positioned in a space, along
with their relationships and more importantly, their
’extent’. Using a geometric model, the session transfer
component may determine all terminals situated close to
the user and transfer a session’s output to these
terminals.

Since the ST component will act as a VMM, and access
a distributed file system, appropriate user credentials
must be available for establishing a secure connection.
Typically, these credentials will be stored on a user’s
personal device, such as a smart card.

4.3.3 Modelling data objects . A data box may hold
various data object sessions linked to applications,
URLs or files. To make these part of a space, these
sessions must be represented in a form that allows the
MDM to make their availability known to a mobile
device entering a space. One way to model data objects
is to use the W3C standard, CC/PP: a framework for
contextualisation, where profiles may be defined based
on various objects such as people, devices, locations and
applications etc. Profiles are organised into components,
which are described using attributes. Since CC/PP is
based on the resource description framework (RDF),
components and attributes are identified using XML
name-spaces; thus allowing profiles to be formed from
heterogeneous components. CC/PP may be used to
develop a profile for data object sessions. A session
could be described by the approach taken in modelling
context using CC/PP (2):

—[SessionProfile
[User [SessionID, URI]]
[Application [URI]] [Location [URI]]
[Display [URI]] [Transformer [URI]]
]

Here, a session profile includes pointers to the session
author, along with a session identifier. An application
URI describes the type of session and may correspond
to a MIME type. Location points to the actual data
object, which may be a file or a call to an application’s
interface. Display is used by the MDM for displaying
data object presence, hence allowing the user to select
an object for transfer. Finally, transformer allows data
returned from the location URI to be transformed into a
specific format, e.g. converting personal info into
VCard format. Typically, many ’transformer’
components will exist, with the session transfer
component being able to select the correct transformer,
depending on the transfer format required.

5. COMPARISON TO OTHER APPROACHES

We now compare OTIS to two similar pervasive
computing frameworks: AURA and GAIA.

5.1 AURA

Out of all research being conducted on application
migration within ubiquitous computing environments,
the AURA project (8) seems to relate most closely to
this work. AURA is a ubiquitous computing
infrastructure specialised towards giving users the
ability to seamlessly move their computational tasks
across environments, such as buildings. AURA
monitors a user’s activities and location by deploying a
context observer. When a user changes context, such as
moving to another environment, AURA uses a task
manager, PRISM, to control migration of any tasks to
the new environment. PRISM interacts with a local
environment manager to determine whether tasks can be
restored using the resources and task suppliers of the
new environment. If so, a user’s environment is restored
by using a distributed file system to retrieve any
personal state. AURA is thus concerned with a
computer environment which follows a user by
deploying separate PRISMs in each new environment.

Examining AURA’s migration techniques, all
applications intended for migration are abstracted into
high-level tasks. These tasks are then mapped onto
service suppliers which wrap existing applications.
When task migration is required, a user’s current tasks
are captured and saved using each active application’s
service supplier. Within a new location, a PRISM
restores tasks by consulting an environment manager for
any local suppliers that can handle the tasks a user

In the IEE International Workshop, Intelligent Environments 2005 (IE05), Colchester, UK, 28-29th June 05

© Essex University & IEE June 2005 7

wishes to import. Since applications are abstracted into
high-level descriptions, application migration across
completely heterogeneous environments is possible,
such as moving from Word in Windows to Emacs in
UNIX. The main problems with this approach come
from the need to define custom suppliers or wrappers
for every application supported, and then map these to
high level task definitions. This may be a problem when
considering the many applications being used, and
introduced into everyday computing environments.
Building wrappers around every existing application can
also be a complex and time consuming process. We
know this from experience, as we have built a prototype
system, Tele-Web, that allows web sessions to be tele-
ported between different web browser applications.
Here, the task of abstraction is a ’Web session’, as
defined in HTTP. The aim is to build wrappers around
individual web browser applications, and map these to
an abstracted web session definition. Wrappers allow
access to each browser’s web specific session state,
such as Form Field Values, Bookmarks and Cookies etc.
Two application specific wrappers were built for both
Internet Explorer and a custom Java based web browser.
In order to achieve the relatively simple process of
transferring web state from Internet explorer to the Java
browser, much effort was required in terms of building
individual application wrappers since each browser
holds internal state in a different way. Furthermore,
some applications provide only limited access to their
internal object models; the ones that do are certainly not
intuitive and take time to understand. In time, we
decided that the best way to move application state in
pervasive computing environments was to combine a
mixture of state transfer techniques, as supported by
OTIS. Finally, we believe AURA’s ability to move
application tasks between environments such as
Windows and Linux may prove powerful; however,
users generally familiarise themselves with applications
over time, and may feel slightly puzzled if their session
is restored in a different application, which incorporates
a completely different usability model.

OTIS supports migration of a user’s complete
environment as they left it, therefore moving all
applications belonging to a user. Since migration across
spaces is performed at a virtual machine level, the need
to implement custom wrappers for each application is
eliminated. OTIS does require each environment to run
user sessions within a VM environment and deploy
OTIS components for state transfer in a smart space.
This is however, analogous to AURA requiring its own
components, such as PRISMS and Environment
Managers to be deployed in each environment. OTIS is
also different from AURA in that it takes a different
approach by combining the strengths of different state
migration techniques and integrating these within the
context of smart space environments. The framework
behaves like AURA when using virtual-machine
transfer, but provides other migration techniques for use
within a space, such as server-based redirection and data
object transfer, which are required to support scenarios,

such as 3.1 and 3.3 respectively. In terms of interaction,
AURU tries to anticipate a user’s next location, and
automatically transfer an environment to that location.
OTIS includes a mobile device mediator to allow a user
to summon a personal computing environment by using
a mobile device as a remote control (scenario 3.2).
Since mobile devices are now incorporating contact less
smart card technology, it appears perfectly feasible to
hold a user’s credentials on a smart card, such as user-
name/password and encryption keys for accessing a
distributed file system using VM transfer.

5.2 GAIA

GAIA (1) is a comprehensive ubiquitous computing
infrastructure for the creation of ’active spaces’. The
main idea behind GAIA is to provide a programmable
metaoperating system that co-ordinates software entities
and heterogeneous devices contained in a space. A key
part of the GAIA framework is its context -aware file
system, where context is addressed through file name-
spaces and files are made available from personal
(remote server) and space based storage services (local
server). This concept is very similar to data object
transfer and the data-box concept, although our
framework emphasises the use of a mobile device
mediator (MDM) to detect mobile devices, such as
smart phones, and push data objects by selecting
relevant PUSH protocols. GAIA’s context aware file
system on the other hand expects users to mount their
own file systems into a space, together with creating
mount points into the local space. This is quite different
from the more seamless interaction scenario found in
2.3.

Generally, GAIA aims to provide a ubiquitous
computing middle-ware, rather than a specific service as
with OTIS. We believe GAIA’s context aware file
system could be combined with OTIS’s MDM and data-
box, hence allowing data objects to be transferred to a
mobile device using contextual information.

6. DISCUSSION

We have introduced OTIS, a framework created from
our earlier work in making web browser sessions
teleport their active state between heterogeneous
devices. OTIS has been compared with similar
frameworks, such as AURA and GAIA, and differs by
taking a different approach to state migration within
smart space environments. We believe that determining
which framework is best suited to application transfer in
pervasive computing, requires careful, user-centred
evaluation examining the following:

—Do users find OTIS’s session transfer techniques
useful? What needs to be changed?

In the IEE International Workshop, Intelligent Environments 2005 (IE05), Colchester, UK, 28-29th June 05

© Essex University & IEE June 2005 8

—Do users want sessions to appear instantaneously, or
do they prefer to manually request sessions?

—Do users prefer the OTIS or AURA approach to
session transfer? Can these approaches be combined to
offer superior behaviour?

These are the type of questions we expect to guide
future research by implementing parts of OTIS and
introducing server-based redirection and data-object
transfer within our new intelligent building testbed: the
iDorm2. Currently, a sample OTIS data-box is being
implemented that allows a bluetooth enabled device to
interact with a space via an MDM, and request any
relevant data object sessions. OBEX and WAP Push are
currently being used as the underlying protocols to
PUSH objects to a device.

Overall, we have outlined the benefits of OTIS in
combining different state transfer techniques, and
believe the challenge lies in creating a system that can
support the distinct advantages that server-based
redirection, virtual machine transfer and data object
transfer bring to pervasive computing environments. In
time, we aim to evaluate our prototype systems using
different usage scenarios. We hope this will give us
insight into evolving our framework for future work.
We are also interested in exploring the broader, social
aspects of how people interact with, and use space
within intelligent building environments.

REFERENCES

1. M. Roman, C. Hess, R. Cerqueira, A. Raganat, R.
 Campbell, and K. Nahrstedt. 2002. Gaia: A
 middleware infrastructure to enable active spaces.
 IEEE Pervasive Computing, 1(4):74–83.

2. J Indulska, R Robinson, A Rakotonirainy, and K
 Henricksen. 2003. Experiences in using cc/pp in
 context aware systems. Proceedings of the 4 th
 International Conference on Mobile Data
 Management, pages 247– 261.

3. ECMA International. 2004. Near field
 communication white paper. Technical report, NFC
 Forum, 2004.

4. M. Kozuch and M. Satyanarayanan. 2002. Internet
 suspend/resume. In Fourth IEEE Workshop on
 Mobile Computing Systems and Applications, pages
 40-46

5. M. Weiser. 1991. The computer for the 21st century.
 Scientific American, 265(3):94–104.

6. White Paper. UPnP device architecture. 2000.
 Technical report, UPnP Forum.

7. S. Avancha, A. Joshi, and T. Finin. June 2002.
 Enhanced service discovery in bluetooth. IEEE
 Computer, 35(6):96–99.

8. D. Garlan, D. Siewiorek, A. Smailagic, and P.
 Steenkiste. 2002. Project aura: Towards distraction-
 free pervasive computing. IEEE Pervasive
 Computing, 21(2):22–31.

9. B. Brumitt, B. Meyers, J. Krumm, A. Kern, and S.
 Shafer. 2000. Easyliving: Technologies for intelligent
 environments. In Proc. 2nd Int’l Symp Handheld and
 Ubiquitous Computing (HUC 2000) , pages 12–27.

10. Extended Systems. 2003. Obex protocol v1.3
 technical specification. Technical report, Infrared
 Data Association.

11. T. Richardson and K. Wood. 1998. The rfb protocol,
 version 3.3. Technical report, ORL, Cambridge.

12. Microsoft Whitepaper. 2000. Remote desktop
 protocol (rdp) features and performance. Technical
 report, Microsoft Corporation.

13. WAP Forum Whitepaper. 2002. Wap 2.0 technical
 white paper. Technical report, Open Mobile
 Aliance.

