

© Essex University 2005 1

University of Essex

Department of Computer Science

INHABITED INTELLIGENT

ENVIRONMENTS GROUP

TECHNICAL REPORT

CSM 612

Adam King

Victor Callaghan,

Graham Clarke,

July 2005

© Essex University 2005 2

Abstract— The notion of an Intelligent Surface (iSurface) is the

topic of several futurists’ visions. They predict the use of Smart

Matter, nanotechnology with computational ability, as

ubiquitous; literally everywhere. It will be sewn into our

clothing, or painted on the surfaces of our environments. The

futurists suggest that we will use these surfaces as video displays,

user interfaces, and composite sensor arrays. The implication is

that a coat of paint will be enough to add this functionality to a

surface. In this paper we argue that such a vision is

fundamentally flawed. Such a surface can be seen as an

amorphous computer – a multitude of identical tiny computers

with local communication capability. Much work has been

successfully carried out on providing functionality to idealised

simulated amorphous computers by groups such as the MIT

Amorphous Computing (AC) group. An iSurface is a specialised

version of an amorphous computer using a simulator with a

physical grounding. We have implemented one of the AC

group’s experiments to show how the realities of an intelligent

surface adversely affect a successful amorphous computing

project.

I. INTRODUCTION

oday, people’s domestic spaces are becoming

increasingly ‘decorated’ by electronic or computer

based artefacts (gadgets) varying from mobile phones, through

CD players, to transport systems and beyond”.[1] This

conjures the vision of a rich, dynamic ecosystem of interacting

devices with computational capabilities. The advent of

nanotechnology opens up new possibilities for pervasive

computing; mass-manufactured nano-devices could literally

saturate the environment. “Smart matter” [2] could be

everywhere; sewn into the fabric of our clothes, or painted on

the surfaces of our homes as an “intelligent” skin. Future

visions [3] of the home suggest that applications such as video

and user interfaces will be commonplace on these surfaces,

and that they will also act as composite sensors such as video

cameras. The implication is that a simple coat of nano-scale

device bearing paint will be enough to add this type of

functionality to a surface. Such an “intelligent surface”

(iSurface) can be seen as a specialisation of an Amorphous

Computer [4] - a multitude of identical tiny computers

(particles), each with a CPU, memory and communication

capability. A possible precursor to the nano-scale particles

can be seen in the Smart Dust mote [5], a MEMS based sensor

and processing node.

An amorphous computer is a massively parallel system limited

to local communication between neighbouring particles.

Amorphous computing is the development of organisational

principles and programming languages for obtaining coherent

behaviour from the interaction between large numbers of

unreliable particles that are interconnected in unknown,

random, and time-varying ways. Investigations into massively

parallel systems, such as cellular automata, are one source of

ideas for dealing with amorphous systems. An alternative is

research into self-organising systems which Abelson et al [6]

suggest offers a possible solution which is to embed all the

required code into the particles at the time of manufacture.

With an amorphous computing system where each particle has

this code preloaded, the particular functions that are activated

within any particle depends on the messages it receives from

the local environment. The specific issue that makes this a

hard problem, is predicting the range of functions that must be

pre-coded given the vast number of possible states the system

can be in. Butera argues that: “A programming model

employing a self-organising ecology of mobile process

fragments supports a variety of useful applications on an

[amorphous computer].” [7]. In support of this, he offers a

distributed programming methodology, known as ‘process

self-assembly’. A programming model is introduced, as is the

“process fragment” - the atomic element of process self-

assembly. His project demonstrates the feasibility of a mobile

agent paradigm.

II. INTELLIGENT SKIN (ISURFACE) REQUIREMENTS

Returning to the future vision, we see that what are proposed

as applications for an iSurface - video, composite sensors and

user interfaces - are all data-heavy, time-critical applications.

For this to work an iSurface needs to be able to display images

and transfer large amounts of data. It needs to be able to

locate elements of an interface and allow the ability to click

buttons and to drag and drop interface elements. It also needs

to support connections between the functional features of the

iSurface. The question is whether an iSurface, derived from

the work on Amorphous Computing and Smart Dust, would be

a feasible platform for these applications. If so, then what is

necessary in terms of capabilities and software? If not, then

what are the stumbling blocks that prevent the concept being a

success? This paper presents experimental results, based on a

critical application for an iSurface, which suggest that this

vision is unrealisable now, or in the future, because of a

Developing Intelligent Surfaces for Pervasive

Computing – Architectural Issues

Adam King (amking@essex.ac.uk), Vic Callaghan (vic@essex.ac.uk), Graham Clarke

(graham@essex.ac.uk): Department of Computer Science, University of Essex, Colchester, Essex, CO4 3SQ,

United Kingdom

“T

© Essex University 2005 3

number of severe problems. Specifically run-time damage,

poor response times, and, most importantly, the load on the

particles’ resources.

III. EMERGENT PATHWAYS

A major application problem that an iSurface would need to

solve is the reliable transmission of data from one area to

another. Communications on an iSurface are generally

undirected and a method involving propagation of a signal

throughout the network is inefficient, albeit guaranteed to

reach its target if any path exists. Directed routing of data is

possible. Use of a coordinate system allows messages to be

passed in the right direction by comparing the current node’s

coordinates to those of the target node. However the problem

lies with the reliability of such coordinate systems and the

requirement of a signal knowing its target coordinates.

Another solution is the creation of “channels” for the signals

to pass along. A channel consists of an uninterrupted line of

iCells between two or more points that relays signals along its

length. It is possible for a user to explicitly define a channel

between two points but should damage occur and this channel

be interrupted, a user is needed to make manual repairs.

Clement and Nagpal [8], proposed a process of growing

connections between two endpoints and for these connections

to be self-repairing in the event of damage to an amorphous

computer. As an iSurface is a specialisation of an amorphous

computer, this process should be implementable on the

iSurface. Clement and Nagpal’s aims appear to be based on

the creation of shapes rather than developing connections for

communication, but their approach provides the foundations

for a possible solution.

This Amorphous Computing approach builds upon gradient

fields emitted from one of the endpoints of a line. The source

endpoint uses a high value for the gradient to begin on. This

value is broadcast to all neighbours in the form of a message

tuple {Processor ID, Gradient Value, State, Successor ID}.

Processor ID is a value randomly chosen by the particle (iCell)

as a unique identifier. Gradient Value is the gradient at that

particle. State denotes whether that particle is part of a line.

Finally, Successor ID is the ID of the particle that provided the

highest gradient value to this particle. When a particle receives

this message, it compares the gradient value with the one it

has stored. Should this new value be higher, the particle

decrements it and stores it along with the ID of the sender as

the Successor ID. The successor node allows the gradient field

to exist as a chain from each particle back to the gradient

source; no data aside from the gradient value and the

successor ID need be stored.

Figure 1. The node with a value of 10 is the gradient source.

Reversing the flow of the arrows identifies successor nodes.

When the predetermined endpoint of the line receives a

gradient value, it changes its State to on (meaning it considers

itself to be part of the line). It then broadcasts a message

including the new state. Its successor node will detect that it is

identified in the message, switch itself to an on state and then

broadcast its own message. The line forms by a process of

backtracking through the successor nodes from the endpoint to

the gradient source point.

IV. SELF-REPAIR USING ACTIVE GRADIENT

As the line is entirely dependent on the chain of successor

nodes in the gradient field, any alteration of the field will alter

the successor chains and thus alter the line. This is the

reasoning behind the self-repair section of the Amorphous

Computing approach. This is called an Active Gradient

approach - a gradient field that can adapt itself to situations

such as surface damage thus causing the line to re-route

accordingly. Particles need to periodically broadcast their state

and gradient information and remember a timestamp based on

the processors internal clock. When a particle hears from its

successor it will update the timestamp. Should this timestamp

become too old then the stored values for the gradient and

successor ID are considered to be unreliable. In this event the

particle will decrement its stored gradient value. As time

passes with no signal from its successor this gradient value

will continue to decrease. Eventually another neighbour’s

broadcast gradient signal will be higher than the stored

gradient, thus meaning that the neighbour is now closer to the

source. This gradient is adopted and the successor link

replaced accordingly. Using this approach causes the gradient

to slowly adapt itself to damage. According to the theory this

will also cause the line to adapt to this new gradient i.e. self-

repair.

The iSurface simulator on which all experimentation was

performed simulates a grid of 65536 (256 by 256) instances of

an iCell. The iCell is a completely self-contained simulation

of a “real” iCell that maintains its own message buffers for I/O

and its own list of Agents. It is capable of communicating

separately with each of its neighbours, assuming exclusive

full-duplex communication with each. Each communication in

this simulation is the same size, each cycle length equal to the

time to transmit a message of this size; the result being that an

iCell can transmit one message to its neighbours per cycle.

Any other messages that the iCell tries to send during the

cycle are added to a queue for transmission in future cycles. In

this simulation, the message size, and hence communication

time and cycle duration, are determined by the gradient

information message. The Agents used in this simulation are

stored as hard-coded classes that are instantiated by each iCell.

They spread across the iSurface by replicating themselves on

startup to all the “uninfected” neighbours of their host iCell.

Each Agent has access to the sensing, effecting, processing,

and communications capabilities of their host iCell. However,

Agents on the same iCell are not necessarily aware of each

other’s existence.

© Essex University 2005 4

For the purpose of implementation, the way gradients are

handled is altered. Zero is now the start point, and values

increase the further away the particles are from here. This

brings the gradient system into line with the system used in

other iSurface experimentation, but, as the systems are

isomorphic, this makes no difference to the workings of the

gradient field.

V. COMPARISON OF THREE TYPES OF GRADIENT CREATION

While implementing the Amorphous Computing approach on

the iSurface it was discovered that three methods of creating a

gradient using much the same algorithm were possible.

The algorithm for the first approach is exactly as described

earlier. When an iCell receives a gradient information

message, it increments the new gradient value and compares it

to the stored value. Should the new gradient be lower, it will

replace the current gradient and the originator of this new

gradient value becomes the new successor. Then a gradient

information message is sent with the updated information to

all of the iCell’s neighbours. This approach establishes a

complete gradient in a single pass and follows up with “update

waves” whenever the agents send their periodic update

messages. The advantage of this approach is that it is

relatively quick to propagate and form a complete gradient.

Figure 2 shows the total bandwidth, for the entire iSurface,

used to complete a gradient with respect to time for both the

first, single-pass approach and the second, multi-pass

approach.

The second, multi-pass approach is identical to the single-pass

system except that when it receives an update message from

its successor node, it will update its information to match this

input, even if the new information is worse than its current

value. This has the effect of breaking down the data-heavy

single-pass result and creates an incomplete gradient, refined

by the periodic update messages (Figure 2).

Figure 2.

Figure 3.

To begin with the multi-pass system creates an incomplete

gradient for much less bandwidth cost than the single-pass

approach. However, the update passes carry a fixed cost as

well as costing more bandwidth when newly updated iCells

send their updated gradient message to their neighbours. After

several passes the total cost far surpasses that of the single-

pass approach. Figure 3 shows the drop off in cost as these

passes continue. The initial pass, like the single-pass, takes up

a considerable amount in order to lay the foundations for the

incomplete gradient to be refined. During the latter passes

very few updates occur, and thus there is no significant extra

bandwidth cost other than that of the update wave itself. The

initial high bandwidth is what causes the offset on the y-axis

and the slight curve in Figure 2. As the bandwidth usage levels

off, the increase of total bandwidth in figure 2 becomes linear.

The third version of the algorithm takes the multi-pass

approach but removes the behaviour of immediately

broadcasting to its neighbours the moment its information is

updated. Instead, the system relies on the gradient message

periodically sent out by the iCells in order to grow and

maintain the gradient. Thus the time it takes to complete can

be tied to the rate at which the periodic updates occur.

VI. RESPONSIVENESS FOR GRADIENT CREATION

Figure 4 details the data rates of the single- and multi-pass

approaches. The data rate is defined as the average number of

bytes transferred per iCell per cycle. Figure 5 conversely

shows the time taken for both approaches to complete the

gradient fully. “All-in-one” indicates the first method. The

numbers represent the second method, specifically the time

between periodic updates.

© Essex University 2005 5

Figure 4.

Figure 5.

As we saw in figure 2, the single-pass approach utilises a

briefly sustained high-bandwidth burst to create a complete

gradient. By working in waves, the multi-pass approach can

keep its data rates low. However, these low rates need to be

sustained for significantly longer and also result in an overall

higher total bandwidth cost.

VII. DEALING WITH SURFACE DAMAGE

One of the stated aims for this application area is the ability

for the line is to adapt to damage to the iSurface. For the

purposes of experimentation it was decided to use a similar

form of damage to that presented by Clement and Nagpal. All

damage repair experiments discussed here utilise a large, solid

rectangle cut out of the centre of the surface, bisecting any line

present there.

The single-pass approach was used to create an “ideal” target

gradient by growing on a pre-damaged system. All

experiments with gradient repair were compared to this ideal

to find out when the repair was complete. The first problem

that became apparent was that the single-pass system was

incapable of adapting itself to damage in any significant way.

Figure 6.

Figure 6 is an example of what happens when the single-pass

approach tries to deal with damage. In “A” we see the

successor chain. In “B” the root of this chain is dead and its

children detect this. They then alter their gradient, as their

programming requires. However, they subsequently form self-

contained loops that constantly pass gradient information

between themselves, even though that information is obsolete.

This is due to an Agent only changing it’s stored gradient if a

lower value comes along, or if its successor node is dead.

The multi-pass system doesn’t suffer from this problem. The

difference being that gradient change is passed down the

successor chain and Agents update themselves according to

their successor data instead of waiting to adopt the lowest

available gradient as a successor. In this way the altered

gradient propagates through the successor network and thus

aids adaptation.

Figure 7 shows the bandwidth used by the multi-pass approach

as it accumulates with each pass of the update wave. As it

increases linearly with a fixed rate we can see that the majority

of the bandwidth is simply taken up by the update waves’

activity. There is no repeat of the behaviour observed in figure

3 where large sections of iCells updated at once causing a

bandwidth rise. We can conclude from this that the repair of

the surface takes place very slowly on a very small scale each

cycle. However, compare the bandwidth used by a single-pass

complete reconstruction (experimental results provide an

average of about 1,400,000 bytes across the surface) to that

used by the multi-pass repair (77,177,375 bytes, see figure 7).

Despite the higher data-rate (as evidenced in figure 4) used by

the single-pass, it seems more efficient to scrap the damaged

gradient and start from scratch.

Figure 7.

© Essex University 2005 6

However, detection of the damage in order to reinitialise the

gradient would be a problem. The gradient needs to be

reinitialised at the source. This means that the source needs to

determine if damage has occurred. This can be accomplished

by regular signals being sent along the wire between the

source and the destination. Should a predetermined length of

time expire without such a signal, the source may determine

that the line is broken and start a re-initialisation. There are

many issues of responsiveness with this.

VIII. ICELL LOAD

iCell load is the overheads of an iCell’s processing and

communications resources generated by the Agents and

messages resident within them. When significant pressure is

placed on the communication system, massive backlogs

appear which can be fatal for time critical applications. For the

purpose of experimentation, a special agent was created to

inhabit an iCell alongside the main agent. This new agent

generates a random amount of noise that will overload the

communication systems of iCells and cause backlogs.

Figure 8 shows the amount of data generated by four levels of

noise at various concentrations. Real world applications would

generate far more than this, but the simulator is unable to cope

because of the demands placed on the host machine. The

gradients of the lines in the graph follow a series of the form

y = m(x^c)

allowing calculation of the resulting data rate for any

concentration of any noise level.

Figure 8.

Figure 9.

Figure 9 demonstrates the effect this iCell load has on the

single-pass approach. An unencumbered system takes about

100 cycles to complete. We can see that noise level 1 had little

effect. As noise levels increase in density we see that they

have a significant delaying effect on the propagating gradient.

The high data rate of the gradient data compounds the

problems caused by the high data rate of the noise making

agents.

Figure 10.

Figure 10 shows the results of applying noise level 1.5 to three

speeds of multi-pass gradient creation. The speeds refer to the

time between passes. We see a similar increase in time as

density increases for all three speeds; this is due to the waves

themselves being delayed. The real differences in time are

simply due to the delay between sending passes. The actual

data rate of the passes is too low to compound the problem to

any real extent.

IX. CREATING THE LINE

Utilising the successor chains created as part of the gradient,

the line develops exactly as expected. However, at the time of

writing, attempts to get the line to respond to changing

gradients cause a highly localised concentrated form of iCell

© Essex University 2005 7

load to occur. Agents in their line state retransmit while the

gradient field is in flux. This causes new lines to be created.

These new lines are quickly broken by the changing gradient,

but not before spreading onwards. Lines can be created faster

than the timeout that destroys broken lines. Coupled with the

gradient information messages, these cause queues of

messages that continue to increase, eventually crippling the

iCells.

X. CONCLUSIONS

Clement and Nagpal’s line drawing system can be

successfully ported over to a “real-world” Amorphous

Computer derivative such as the iSurface. The general

principle of using this system to directly link two areas is

sound; the resulting gradient and line are robust when dealing

with pre-damaged surfaces and the gradient itself is successful

at dealing with repairing itself. Clement and Nagpal

themselves say that responsiveness is determined by the

timestamps used to control the updating of the gradient. This

has been shown to be true in this system. However, using this

system as a communication channel between two or more

points requires reliability and this would entail quick

responses to damage, both diagnosis and repair. The obvious

solution would be to increase the rate of gradient update

passes. However, as we have seen, high data rates contribute

heavily towards iCell load, which in turn lowers

responsiveness of the system. To compound the problem

increased responsiveness means the timestamps expire sooner.

iCell load delays the necessary messages to renew the

timestamp and so it expires. This is a false result caused by

data being delayed.

A possible solution to the problem would be to prioritise tasks

on the iCell. This would involve the host iCell allocating its

resources to the agents based on need, and there are

established methods that could be adapted to do this. The

result would be areas of the iSurface specialised towards

certain applications, which is certainly feasible. However,

much of the common functionality, such as the system

presented in this paper, is time-critical. By assigning priority

to one agent the others will suffer, and, following the example

of this paper, these time-critical systems will have to become

less responsive to compensate for the lower allocation of

resources. The result may be optimal given the system, but it

probably will not be acceptable in terms of responsiveness.

This problem is typical of applications proposed for an

iSurface or similar devices. These applications demand

responsiveness. To obtain this, the solution is usually to

increase data rate. However, an increase in data rate can lead

to iCell load and compound the error. A simple answer is to

increase the capabilities of the iCells in terms of processing

speed and communication throughput. Every time a similar

problem occurs, the answer would be to increase these

capabilities. Eventually the capabilities required get so high,

that the devices they require are so far into the future that the

applications themselves become redundant or achieved by

other means.

REFERENCES

[1] Callaghan, V., Clarke, G., Colley, M., Hagras, H.: "Embedding

Intelligence, Research Issues for Ubiquitous Computing", The 1st

Equator IRC Workshop on Ubiquitous Computing - Nottingham UK,

September 2001.

[2] PARC: "MEMS / Smart Matter Research at PARC", Available at

http://www2.parc.com/spl/projects/smart-matter/

[3] Masens, C.: "Smart walls, smart windows, smart bricks and tiles..", July

2004, Available at

http://www.smarthouse.com.au/articlesbytopic/homesystems/automation

/1685

[4] Katzenelson, J.: "Notes on Amorphous Computing", MIT Artificial

Intelligence Laboratory, 2000, Available at

http://citeseer.ist.psu.edu/325443.html

[5] Pister, K., Kahn, J., Boser, B.: "Smart Dust: Wireless Networks of

Millimeter-Scale Sensor Nodes. Highlight Article in 1999 Electronics

Research Laboratory Research Summary", 1999, Available at

http://robotics.eecs.berkeley.edu/~pister/SmartDust/

[6] Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Knight, T.,

Nagpal, R., Rauch, E., Sussman, G., Weiss, R.: “Amorphous

computing”, Communications of the ACM, 43(5), May 2000.

[7] Butera, W.: "Programming a Paintable Computer", PhD Thesis, MIT

Media Lab, 2001

[8] Clement, L., Nagpal, R.: "Self-Assembly and Self-Repairing

Topologies", Workshop on Adaptability in Multi-Agent Systems -

RoboCup Australian Open, January 2003, Available at

http://www.swiss.ai.mit.edu/projects/amorphous/papers/arobocup-

2003.ps

