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Abstract— The notion of an Intelligent Surface (iSurface) is the 

topic of several futurists’ visions.  They predict the use of Smart 

Matter, nanotechnology with computational ability, as 

ubiquitous; literally everywhere.  It will be sewn into our 

clothing, or painted on the surfaces of our environments.  The 

futurists suggest that we will use these surfaces as video displays, 

user interfaces, and composite sensor arrays.  The implication is 

that a coat of paint will be enough to add this functionality to a 

surface.  In this paper we argue that such a vision is 

fundamentally flawed.  Such a surface can be seen as an 

amorphous computer – a multitude of identical tiny computers 

with local communication capability.  Much work has been 

successfully carried out on providing functionality to idealised 

simulated amorphous computers by groups such as the MIT 

Amorphous Computing (AC) group.  An iSurface is a specialised 

version of an amorphous computer using a simulator with a 

physical grounding.  We have implemented one of the AC 

group’s experiments to show how the realities of an intelligent 

surface adversely affect a successful amorphous computing 

project. 

 

 

I. INTRODUCTION 

 

oday, people’s domestic spaces are becoming 

increasingly ‘decorated’ by electronic or computer 

based artefacts (gadgets) varying from mobile phones, through 

CD players, to transport systems and beyond”.[1] This 

conjures the vision of a rich, dynamic ecosystem of interacting 

devices with computational capabilities.  The advent of 

nanotechnology opens up new possibilities for pervasive 

computing; mass-manufactured nano-devices could literally 

saturate the environment.  “Smart matter” [2] could be 

everywhere; sewn into the fabric of our clothes, or painted on 

the surfaces of our homes as an “intelligent” skin.  Future 

visions [3] of the home suggest that applications such as video 

and user interfaces will be commonplace on these surfaces, 

and that they will also act as composite sensors such as video 

cameras.  The implication is that a simple coat of nano-scale 

device bearing paint will be enough to add this type of 

functionality to a surface.  Such an “intelligent surface” 

(iSurface) can be seen as a specialisation of an Amorphous 

Computer [4] - a multitude of identical tiny computers 

(particles), each with a CPU, memory and communication 

capability.  A possible precursor to the nano-scale particles 

can be seen in the Smart Dust mote [5], a MEMS based sensor 

and processing node. 

 

An amorphous computer is a massively parallel system limited 

to local communication between neighbouring particles. 

Amorphous computing is the development of organisational 

principles and programming languages for obtaining coherent 

behaviour from the interaction between large numbers of 

unreliable particles that are interconnected in unknown, 

random, and time-varying ways. Investigations into massively 

parallel systems, such as cellular automata, are one source of 

ideas for dealing with amorphous systems. An alternative is 

research into self-organising systems which Abelson et al [6] 

suggest offers a possible solution which is to embed all the 

required code into the particles at the time of manufacture. 

With an amorphous computing system where each particle has 

this code preloaded, the particular functions that are activated 

within any particle depends on the messages it receives from 

the local environment. The specific issue that makes this a 

hard problem, is predicting the range of functions that must be 

pre-coded given the vast number of possible states the system 

can be in. Butera argues that: “A programming model 

employing a self-organising ecology of mobile process 

fragments supports a variety of useful applications on an 

[amorphous computer].” [7]. In support of this, he offers a 

distributed programming methodology, known as ‘process 

self-assembly’.  A programming model is introduced, as is the 

“process fragment” - the atomic element of process self-

assembly.  His project demonstrates the feasibility of a mobile 

agent paradigm. 

 

II. INTELLIGENT SKIN (ISURFACE) REQUIREMENTS 

Returning to the future vision, we see that what are proposed 

as applications for an iSurface - video, composite sensors and 

user interfaces - are all data-heavy, time-critical applications.  

For this to work an iSurface needs to be able to display images 

and transfer large amounts of data.  It needs to be able to 

locate elements of an interface and allow the ability to click 

buttons and to drag and drop interface elements. It also needs 

to support connections between the functional features of the 

iSurface. The question is whether an iSurface, derived from 

the work on Amorphous Computing and Smart Dust, would be 

a feasible platform for these applications.  If so, then what is 

necessary in terms of capabilities and software? If not, then 

what are the stumbling blocks that prevent the concept being a 

success? This paper presents experimental results, based on a 

critical application for an iSurface, which suggest that this 

vision is unrealisable now, or in the future, because of a 
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number of severe problems. Specifically run-time damage, 

poor response times, and, most importantly, the load on the 

particles’ resources. 

 

III. EMERGENT PATHWAYS 

A major application problem that an iSurface would need to 

solve is the reliable transmission of data from one area to 

another. Communications on an iSurface are generally 

undirected and a method involving propagation of a signal 

throughout the network is inefficient, albeit guaranteed to 

reach its target if any path exists. Directed routing of data is 

possible. Use of a coordinate system allows messages to be 

passed in the right direction by comparing the current node’s 

coordinates to those of the target node.  However the problem 

lies with the reliability of such coordinate systems and the 

requirement of a signal knowing its target coordinates. 

Another solution is the creation of “channels” for the signals 

to pass along. A channel consists of an uninterrupted line of 

iCells between two or more points that relays signals along its 

length. It is possible for a user to explicitly define a channel 

between two points but should damage occur and this channel 

be interrupted, a user is needed to make manual repairs. 

Clement and Nagpal [8], proposed a process of growing 

connections between two endpoints and for these connections 

to be self-repairing in the event of damage to an amorphous 

computer.  As an iSurface is a specialisation of an amorphous 

computer, this process should be implementable on the 

iSurface. Clement and Nagpal’s aims appear to be based on 

the creation of shapes rather than developing connections for 

communication, but their approach provides the foundations 

for a possible solution. 

 

This Amorphous Computing approach builds upon gradient 

fields emitted from one of the endpoints of a line. The source 

endpoint uses a high value for the gradient to begin on.  This 

value is broadcast to all neighbours in the form of a message 

tuple {Processor ID, Gradient Value, State, Successor ID}. 

Processor ID is a value randomly chosen by the particle (iCell) 

as a unique identifier. Gradient Value is the gradient at that 

particle. State denotes whether that particle is part of a line. 

Finally, Successor ID is the ID of the particle that provided the 

highest gradient value to this particle. When a particle receives 

this message, it compares the gradient value with the one it 

has stored. Should this new value be higher, the particle 

decrements it and stores it along with the ID of the sender as 

the Successor ID. The successor node allows the gradient field 

to exist as a chain from each particle back to the gradient 

source; no data aside from the gradient value and the 

successor ID need be stored. 

 

 
Figure 1. The node with a value of 10 is the gradient source.   

Reversing the flow of the arrows identifies successor nodes. 

 

When the predetermined endpoint of the line receives a 

gradient value, it changes its State to on (meaning it considers 

itself to be part of the line). It then broadcasts a message 

including the new state. Its successor node will detect that it is 

identified in the message, switch itself to an on state and then 

broadcast its own message. The line forms by a process of 

backtracking through the successor nodes from the endpoint to 

the gradient source point. 

 

IV. SELF-REPAIR USING ACTIVE GRADIENT 

As the line is entirely dependent on the chain of successor 

nodes in the gradient field, any alteration of the field will alter 

the successor chains and thus alter the line. This is the 

reasoning behind the self-repair section of the Amorphous 

Computing approach. This is called an Active Gradient 

approach - a gradient field that can adapt itself to situations 

such as surface damage thus causing the line to re-route 

accordingly. Particles need to periodically broadcast their state 

and gradient information and remember a timestamp based on 

the processors internal clock.  When a particle hears from its 

successor it will update the timestamp.  Should this timestamp 

become too old then the stored values for the gradient and 

successor ID are considered to be unreliable. In this event the 

particle will decrement its stored gradient value. As time 

passes with no signal from its successor this gradient value 

will continue to decrease. Eventually another neighbour’s 

broadcast gradient signal will be higher than the stored 

gradient, thus meaning that the neighbour is now closer to the 

source. This gradient is adopted and the successor link 

replaced accordingly. Using this approach causes the gradient 

to slowly adapt itself to damage. According to the theory this 

will also cause the line to adapt to this new gradient i.e. self-

repair. 

 

The iSurface simulator on which all experimentation was 

performed simulates a grid of 65536 (256 by 256) instances of 

an iCell.  The iCell is a completely self-contained simulation 

of a “real” iCell that maintains its own message buffers for I/O 

and its own list of Agents. It is capable of communicating 

separately with each of its neighbours, assuming exclusive 

full-duplex communication with each. Each communication in 

this simulation is the same size, each cycle length equal to the 

time to transmit a message of this size; the result being that an 

iCell can transmit one message to its neighbours per cycle. 

Any other messages that the iCell tries to send during the 

cycle are added to a queue for transmission in future cycles. In 

this simulation, the message size, and hence communication 

time and cycle duration, are determined by the gradient 

information message. The Agents used in this simulation are 

stored as hard-coded classes that are instantiated by each iCell. 

They spread across the iSurface by replicating themselves on 

startup to all the “uninfected” neighbours of their host iCell. 

Each Agent has access to the sensing, effecting, processing, 

and communications capabilities of their host iCell. However, 

Agents on the same iCell are not necessarily aware of each 

other’s existence. 
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For the purpose of implementation, the way gradients are 

handled is altered.  Zero is now the start point, and values 

increase the further away the particles are from here.  This 

brings the gradient system into line with the system used in 

other iSurface experimentation, but, as the systems are 

isomorphic, this makes no difference to the workings of the 

gradient field. 

 

V. COMPARISON OF THREE TYPES OF GRADIENT CREATION 

While implementing the Amorphous Computing approach on 

the iSurface it was discovered that three methods of creating a 

gradient using much the same algorithm were possible.  

 

The algorithm for the first approach is exactly as described 

earlier. When an iCell receives a gradient information 

message, it increments the new gradient value and compares it 

to the stored value.  Should the new gradient be lower, it will 

replace the current gradient and the originator of this new 

gradient value becomes the new successor. Then a gradient 

information message is sent with the updated information to 

all of the iCell’s neighbours.  This approach establishes a 

complete gradient in a single pass and follows up with “update 

waves” whenever the agents send their periodic update 

messages. The advantage of this approach is that it is 

relatively quick to propagate and form a complete gradient. 

Figure 2 shows the total bandwidth, for the entire iSurface, 

used to complete a gradient with respect to time for both the 

first, single-pass approach and the second, multi-pass 

approach. 

 

The second, multi-pass approach is identical to the single-pass 

system except that when it receives an update message from 

its successor node, it will update its information to match this 

input, even if the new information is worse than its current 

value. This has the effect of breaking down the data-heavy 

single-pass result and creates an incomplete gradient, refined 

by the periodic update messages (Figure 2). 

 

 
Figure 2. 

 

 
Figure 3. 

 

To begin with the multi-pass system creates an incomplete 

gradient for much less bandwidth cost than the single-pass 

approach. However, the update passes carry a fixed cost as 

well as costing more bandwidth when newly updated iCells 

send their updated gradient message to their neighbours.  After 

several passes the total cost far surpasses that of the single-

pass approach. Figure 3 shows the drop off in cost as these 

passes continue. The initial pass, like the single-pass, takes up 

a considerable amount in order to lay the foundations for the 

incomplete gradient to be refined. During the latter passes 

very few updates occur, and thus there is no significant extra 

bandwidth cost other than that of the update wave itself. The 

initial high bandwidth is what causes the offset on the y-axis 

and the slight curve in Figure 2. As the bandwidth usage levels 

off, the increase of total bandwidth in figure 2 becomes linear. 

 

The third version of the algorithm takes the multi-pass 

approach but removes the behaviour of immediately 

broadcasting to its neighbours the moment its information is 

updated.  Instead, the system relies on the gradient message 

periodically sent out by the iCells in order to grow and 

maintain the gradient. Thus the time it takes to complete can 

be tied to the rate at which the periodic updates occur. 

 

VI. RESPONSIVENESS FOR GRADIENT CREATION 

Figure 4 details the data rates of the single- and multi-pass 

approaches.  The data rate is defined as the average number of 

bytes transferred per iCell per cycle.  Figure 5 conversely 

shows the time taken for both approaches to complete the 

gradient fully.  “All-in-one” indicates the first method.  The 

numbers represent the second method, specifically the time 

between periodic updates. 
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Figure 4. 

 

Figure 5. 

 

As we saw in figure 2, the single-pass approach utilises a 

briefly sustained high-bandwidth burst to create a complete 

gradient. By working in waves, the multi-pass approach can 

keep its data rates low. However, these low rates need to be 

sustained for significantly longer and also result in an overall 

higher total bandwidth cost. 

 

VII. DEALING WITH SURFACE DAMAGE 

One of the stated aims for this application area is the ability 

for the line is to adapt to damage to the iSurface. For the 

purposes of experimentation it was decided to use a similar 

form of damage to that presented by Clement and Nagpal.  All 

damage repair experiments discussed here utilise a large, solid 

rectangle cut out of the centre of the surface, bisecting any line 

present there. 

The single-pass approach was used to create an “ideal” target 

gradient by growing on a pre-damaged system. All 

experiments with gradient repair were compared to this ideal 

to find out when the repair was complete. The first problem 

that became apparent was that the single-pass system was 

incapable of adapting itself to damage in any significant way. 

 

 
Figure 6. 

 

Figure 6 is an example of what happens when the single-pass 

approach tries to deal with damage. In “A” we see the 

successor chain. In “B” the root of this chain is dead and its 

children detect this.  They then alter their gradient, as their 

programming requires. However, they subsequently form self-

contained loops that constantly pass gradient information 

between themselves, even though that information is obsolete. 

This is due to an Agent only changing it’s stored gradient if a 

lower value comes along, or if its successor node is dead. 

The multi-pass system doesn’t suffer from this problem. The 

difference being that gradient change is passed down the 

successor chain and Agents update themselves according to 

their successor data instead of waiting to adopt the lowest 

available gradient as a successor. In this way the altered 

gradient propagates through the successor network and thus 

aids adaptation. 

 

Figure 7 shows the bandwidth used by the multi-pass approach 

as it accumulates with each pass of the update wave.  As it 

increases linearly with a fixed rate we can see that the majority 

of the bandwidth is simply taken up by the update waves’ 

activity. There is no repeat of the behaviour observed in figure 

3 where large sections of iCells updated at once causing a 

bandwidth rise. We can conclude from this that the repair of 

the surface takes place very slowly on a very small scale each 

cycle. However, compare the bandwidth used by a single-pass 

complete reconstruction (experimental results provide an 

average of about 1,400,000 bytes across the surface) to that 

used by the multi-pass repair (77,177,375 bytes, see figure 7). 

Despite the higher data-rate (as evidenced in figure 4) used by 

the single-pass, it seems more efficient to scrap the damaged 

gradient and start from scratch. 

 

Figure 7. 
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However, detection of the damage in order to reinitialise the 

gradient would be a problem.  The gradient needs to be 

reinitialised at the source.  This means that the source needs to 

determine if damage has occurred.  This can be accomplished 

by regular signals being sent along the wire between the 

source and the destination.  Should a predetermined length of 

time expire without such a signal, the source may determine 

that the line is broken and start a re-initialisation.  There are 

many issues of responsiveness with this. 

 

VIII. ICELL LOAD 

 

iCell load is the overheads of an iCell’s processing and 

communications resources generated by the Agents and 

messages resident within them.  When significant pressure is 

placed on the communication system, massive backlogs 

appear which can be fatal for time critical applications. For the 

purpose of experimentation, a special agent was created to 

inhabit an iCell alongside the main agent. This new agent 

generates a random amount of noise that will overload the 

communication systems of iCells and cause backlogs. 

Figure 8 shows the amount of data generated by four levels of 

noise at various concentrations. Real world applications would 

generate far more than this, but the simulator is unable to cope 

because of the demands placed on the host machine. The 

gradients of the lines in the graph follow a series of the form  

y = m(x^c)  

allowing calculation of the resulting data rate for any 

concentration of any noise level. 

 

Figure 8. 

 

 
Figure 9. 

 

Figure 9 demonstrates the effect this iCell load has on the 

single-pass approach. An unencumbered system takes about 

100 cycles to complete. We can see that noise level 1 had little 

effect. As noise levels increase in density we see that they 

have a significant delaying effect on the propagating gradient. 

The high data rate of the gradient data compounds the 

problems caused by the high data rate of the noise making 

agents. 

 

Figure 10. 

 

Figure 10 shows the results of applying noise level 1.5 to three 

speeds of multi-pass gradient creation.  The speeds refer to the 

time between passes. We see a similar increase in time as 

density increases for all three speeds; this is due to the waves 

themselves being delayed. The real differences in time are 

simply due to the delay between sending passes. The actual 

data rate of the passes is too low to compound the problem to 

any real extent. 

 

IX. CREATING THE LINE 

Utilising the successor chains created as part of the gradient, 

the line develops exactly as expected.  However, at the time of 

writing, attempts to get the line to respond to changing 

gradients cause a highly localised concentrated form of iCell 
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load to occur.  Agents in their line state retransmit while the 

gradient field is in flux.  This causes new lines to be created.  

These new lines are quickly broken by the changing gradient, 

but not before spreading onwards.  Lines can be created faster 

than the timeout that destroys broken lines.  Coupled with the 

gradient information messages, these cause queues of 

messages that continue to increase, eventually crippling the 

iCells. 

 

X. CONCLUSIONS 

 

Clement and Nagpal’s line drawing system can be 

successfully ported over to a “real-world” Amorphous 

Computer derivative such as the iSurface. The general 

principle of using this system to directly link two areas is 

sound; the resulting gradient and line are robust when dealing 

with pre-damaged surfaces and the gradient itself is successful 

at dealing with repairing itself. Clement and Nagpal 

themselves say that responsiveness is determined by the 

timestamps used to control the updating of the gradient. This 

has been shown to be true in this system. However, using this 

system as a communication channel between two or more 

points requires reliability and this would entail quick 

responses to damage, both diagnosis and repair. The obvious 

solution would be to increase the rate of gradient update 

passes.  However, as we have seen, high data rates contribute 

heavily towards iCell load, which in turn lowers 

responsiveness of the system. To compound the problem 

increased responsiveness means the timestamps expire sooner. 

iCell load delays the necessary messages to renew the 

timestamp and so it expires. This is a false result caused by 

data being delayed. 

 

A possible solution to the problem would be to prioritise tasks 

on the iCell.  This would involve the host iCell allocating its 

resources to the agents based on need, and there are 

established methods that could be adapted to do this.  The 

result would be areas of the iSurface specialised towards 

certain applications, which is certainly feasible.  However, 

much of the common functionality, such as the system 

presented in this paper, is time-critical.  By assigning priority 

to one agent the others will suffer, and, following the example 

of this paper, these time-critical systems will have to become 

less responsive to compensate for the lower allocation of 

resources.  The result may be optimal given the system, but it 

probably will not be acceptable in terms of responsiveness. 

 

 

This problem is typical of applications proposed for an 

iSurface or similar devices. These applications demand 

responsiveness. To obtain this, the solution is usually to 

increase data rate. However, an increase in data rate can lead 

to iCell load and compound the error. A simple answer is to 

increase the capabilities of the iCells in terms of processing 

speed and communication throughput. Every time a similar 

problem occurs, the answer would be to increase these 

capabilities. Eventually the capabilities required get so high, 

that the devices they require are so far into the future that the 

applications themselves become redundant or achieved by 

other means. 
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