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Abstract— We outline a vision, methodology and architectural design for creating an ambient environmental intelligence within 

a ubiquitous computing environment made up of scaleable, networked embedded agent-based artefacts. Embedded-agents are 
integrated into artefacts, such as domestic appliances or robots to give the artefact some useful amount of intelligence. We 

describe a practical ubiquitous computing test-bed environment, the Essex intelligent Dormitory (iDorm), which combines a

number of heterogeneous artefact based agents and networks. We show novel results where the iDorm was occupied by a user 

for five and half consecutive days. During this period the iDorm was monitored and controlled by an intelligent and adaptive 

embedded agent using our fuzzy Incremental Synchronous Learning (ISL) approach. The ISL operates in a life long learning 
mode realising ambient intelligence in which it learns the user behaviour and controls the room according to his preferences  in 

a personalised and non-intrusive way. 

Keywords: Fuzzy Logic, Learning, Embedded Agents, Ambient Intelligence, Ubiquitous Computing, Pervasive
Computing

Ambient Intelligence in Ubiquitous Computing Environments

“Star Trek” and similar science fiction films and television series paint an intriguing picture of the future, one in which 

masses of unseen and tireless electronic devices and intelligent-agents attend to the occupants of their space habitats every 

need; regulating the air they breath, the temperature of their cabins, their entertainment and communications, etc.. For 

many, space exploration and extraterrestrial planetary habitats are  not just the “final frontier” for mankind but the ultimate 
vision for ubiquitous computing and ambient intelligence. 

    Ubiquitous computing is a paradigm where technology becomes virtually invisible. Instead of having a desktop or 
laptop machine, the technology we use is embedded in our environment [11]. Recent estimates show that of the order of 8 

billion microprocessors that were produced in 2001, only 2% of which went into PCs, the rest went into embedded 

computer devices most people wouldn’t recognize as computers [3]. Cheap and compact microelectronics means everyday 

artefacts (e.g. clothing, desks) are now potential targets of embedded-computers, while ever-pervasive networks allow 
such artefacts to be associated together in both familiar and novel arrangements to make highly personalized systems. This 

new and exciting computing paradigm promises to revolutionize the way we interact with computers, services, and the 
surrounding physical spaces, yielding higher productivity and a more seamless interaction between users and computing 

services. To fully realise this visionambient intelligence is needed.

    Ambient intelligence refers to an exciting new information technology paradigm where people are empowered through a 

digital environment that is aware of their presence and context, and is sensitive, adaptive, and responsive to their needs. 

Ambient intelligence improves the quality of life by creating the desired environment conditions and functionality via 
intelligent, personalised interconnected systems and services. Ambient intelligence environments are characterised by their 

ubiquity, transparency and intelligence. Ubiquitous because the user is surrounded by a multitude of inter-connected
embedded systems. Transparent because the computing equipment appears invisible to the user as it is seamlessly

integrated into the background. Intelligent because the system is able to recognise the people that live in it and is able to 
program itself to meet their needs  by learning from their behaviour.

     For the vision of ambient intelligence to be realised, people must be able to use and configure computer-based artefacts 
and systems without being cognitively overloaded. If the user has to program each device and work out how to connect 

them together to achieve the required functionality, this vision may never be realised. In many computer-based products 
the computer remains very evident and the user is forced to refer to complicated manuals and to use their own reasoning 

and learning processes to use the device successfully. This situation is likely to get much worse as the number, varieties 
and uses of computer based artefacts increases. The increasing complexity leads to the need to design a system that would 

allow intelligence to disappear into the infrastructure, automatically learning to carry out everyday tasks based upon the 
users’ habitual behaviour. Such a system would enable devices embedded in the environment to co-operate with one 

another to make a wide range of new and useful applications, to achieve greater functionality, flexibility and utility. Such a 
system would allow the computational resources to disappear into the infrastructure to define active spaces [3]; buildings, 

shopping malls, theatres, domestic environments, instrumented with embedded devices that collaborate in response to 
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users’ behaviour to automatically carry out everyday tasks. The compelling question then becomes “how can we achieve 

the vision of ambient intelligence in such ubiquitous  computing environments?” One approach, which we present in this 

paper, is to embed intelligent agents into the devices that make up ubiquitous environments thus forming embedded
agents.
    The work proposed by this paper focuses on the development of learning and adaptation techniques for embedded 

agents seeking to provide an online, life -long, personalised learning of anticipatory adaptive control to realise ambient 
intelligence in ubiquitous computing environments. We will use the Essex intelligent dormitory (iDorm) as a testbed for 

our work 

Intelligent Embedded Agents 

Embedded intelligence can be regarded as the inclusion of some capacity for reasoning, planning and learning in an 
artefact. Embedded-computers that contain such an intelligent capability are normally referred to as “embedded-agents”

[3].

    It is now common for such “embedded-agents” (as intrinsic parts of “intelligent artefacts”) to have an Internet
connection thereby facilitating multi embedded-agent systems. In a fully distributed multi embedded-agent systems each 

agent is an autonomous entity co-operating, by means of either structured or ad-hoc associations with its neighbours. 

    Most automation systems (which involve a minimum of intelligence) utilize mechanisms that generalize actions (e.g. set 

temperature or loudness that is the average of many peoples’ needs). However, we argue that Artificial Intelligence (AI)
applied to personal artefacts and spaces needs to particularize to the individual [3]. Further, we argue that it is essential 

that any agent serving a person should always and immediately carry out any requested action (i.e. people are always in 
control, subject to overriding safety considerations). The embedded-agent learning technique we will outline is

characterized by its ability to particularize its actions to individuals and immediately execute commands, wherever that is 

a practical possibility. Thus, the value of an intelligent embedded agent lies in the agent’s ability to learn and predict the 

human and the system needs, automatically adjusting the agent controller based on a wide set of parameters [2]. There is 
thus a need to modify effectors for environmental variables such as heat and light etc on the basis of a complex multi 
dimensional input vector, which cannot be specified in advance. For example, something happening to one system (e.g. 
reducing light level) may cause a person to change behaviour (e.g. sit down), which in turn may result in them affecting 

other systems (e.g. needing more heat). An agent that only looks at heat levels is unable to take these wider issues into 

account. An added control difficulty is that people are essentiality non-deterministic and highly individual. When viewed 

in such integrated control terms it is possible to see why simple PID or fuzzy controllers are unable to deal satisfactorily 
with the problem of online learning for embedded agents.

Intelligent Inhabited Environments and Intelligent Buildings

Intelligent Inhabited Environments (IIE) are spaces such as cars, shopping malls, homes and even our own bodies that will 

allow these environments to respond “thoughtfully” to our needs. Such environments would consist of a multitude of, 
possibly disconnected active spaces to provide ubiquitous access to system resources according to the current context of 

the user. Such environments promise a future where computation will be freely available everywhere, in a similar fashion 

to the current availability of batteries and power sockets. Computation will constitute the human world, handling our goals 

and needs. Devices, either handheld or embedded in the environment, will bring computation to us, no matter where we 
are or in what circumstances. These devices will personalize themselves in response to our presence and behaviour.

Precursors to such environments can be found now in intelligent buildings
A typical ‘container’ environment for ubiquitous computing is an intelligent building which might be a house or office. 

The heterogeneity, dynamism and context-awareness in a home make it a good choice to explore design challenges within

the range of ubiquitous systems. We view intelligent buildings as computer-based systems, gathering information from a 

variety of sensors (and other computers), and using intelligent embedded-agent techniques to determine the appropriate 
control actions. In controlling such systems one is faced with the imprecision of sensors, the large number of information 

sources, lack of adequate models of many of the processes and the non-deterministic aspects of human behaviour. It is 

important for the building that embedded agents are able to continuously learn and adapt to the needs of the individuals 
within, whilst always providing a safe and timely response to any situation.

    There are a growing number of research projects concerned with applying intelligent agents to IIE and intelligent 
buildings. In Sweden, Davidsson [3] utilises multi-agent principles to control building services. These agents are based on 

the AI thread that decomposes systems by function rather than behaviour as in our research. Their work does not address 
issues such as occupant based learning. In Colorado Mozer [9] uses a soft computing approach - neural networks -

focusing solely on the intelligent control of lighting within a building. Their system, implemented in a building with a real 
occupant, achieved a significant energy reduction, although this is sometimes at the expense of the occupant’s comfort. 
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Work at MIT on the HAL project [2] concentrates on making the room responsive to the occupant by adding intelligent 

sensors to the user interface. Context Aware systems such as that of the Aware Home work at Georgia Tech are more 

concerned with time independent context rather than temporal history or learning as is a central issue in this proposal [1].

There are other high profile Intelligent Environment projects such as the Microsoft Smart House, BT's Tele-care and 
Cisco’s Internet Home [10]. However most of these industrial projects, including home automation technologies, like 

Lonworks and X10 are geared toward using networks and remote access with some smart control (mostly simple 
automation) with sparse use of AI and little emphasis on learning and adaptation to the user’s behaviour.  To the authors' 

knowledge no other work has addressed the online learning and adaptation of intelligent embedded agents to the users’ 

habitual behaviour operating within IIE [6].

The iDorm – A Testbed for Ubiquitous Computing and Ambient Intelligence

We have chosen the Essex Intelligent Dormitory (iDorm) pictured in Figure (1-a) to be a demonstrator and test-bed for 

ubiquitous computing environments and use it to test our intelligent learning and adaptation mechanisms needed by the 
embedded agents for the realization of ambient intelligence in ubiquitous computing environments. Being an intelligent 

dormitory it is a multi-use space (i.e. contains areas with differing activities such as sleeping, working, entertaining etc) 
and can be compared in function to a one room apartment for elderly or disabled people or an intelligent hotel room. The 

room, which looks like any other room, contains the normal mix of furniture found in a study/bedroom allowing the user 

to live comfortably. The furniture (most of which are fitted with sensors that provide data for the network) includes a bed, 

a work desk, a bedside cabinet, a wardrobe and a PC-based work and multimedia entertainment system. The PC contains 
most office type programs to support work and the entertainment support includes audio entertainment (e.g. playing music 

CDs and radio stations using Dolby 5.1 surround sound) as well as video services (e.g. television and DVDs, etc). 

    In order to make the iDorm as responsive as possible to the needs of the occupant it is fitted it with an array of 
embedded sensors (e.g. temperature, occupancy, humidity, light level sensors etc) [8] and effectors (e.g. door actuators, 

heaters etc). Amongst the many interfaces, we have produced a virtual reality system (VRML) shown in Figure (1-b) that 
marries the Virtual Reality Modelling Language with a Java interface controlling the iDorm. It provides the user with a 

visualisation tool showing the current state of the iDorm and allows direct control of the various effectors in the room.

(a)                                                                                  (b)

Figure (1): a) Photo of iDorm. b) The iDorm VRML interface.

    Although the room looks like any other, above the ceiling and behind the walls hides a multitude of different networks 

and networked devices. In building the iDorm, we have installed devices that reside on several different types of network.
As such access to the devices needs to be managed, gateways between the different networks can be regarded as critical 
components in such systems, combining appropriate granularity with security. Currently the iDorm is based around three 
networks Lonworks, 1-Wire (TINI) and IP, providing the diverse infrastructure present in ubiquitous computing

environments and allowing the development of network independent solutions [8].
    Lonworks is Echelon’s proprietary network and encompasses a protocol for building automation. There are many 

commercially available sensors and actuators for this system. The physical network installed in the iDorm is the Lonworks 

IEEE Intelligent Systems, Vol. 19, Issue 6, pp. 12-20, November/December 2004



Accepted for Publication in IEEE Intelligent Systems (expected to appear Fall 2004)

© Essex University November 2003 (Inhabited Intelligent Environments Group) 4

TP/FP10 network.  The gateway to the IP network is provided by Echelon’s iLON 1000 web server.  This allows the states 

and values of sensors and actuators to be read or altered via a standard web browser using HTML forms. The majority of 

the sensors and effectors inside the iDorm are connected via a Lonworks network. 

    The 1-Wire network, developed by Dallas semiconductor was designed for simple devices to be connected over short 
distances. It offers a wide range of commercial devices including small temperature sensors, weather stations, ID buttons 

and switches. The 1-Wire network is connected to a Tiny Internet Interface board (TINI board), which runs an embedded 
web server serving the status of the networked devices using a Java servlet. The servlet collects data from the devices on 

the network and responds to HTTP requests. 

    The IP network forms a backbone to interconnect all networks and other devices like the Multi-media PC (MMPC). The 

MMPC will be the main focus for work and entertainment in the iDorm. Again the MMPC uses the HTTP protocol to 

display its information as a web page.
      The iDorm’s gateway server is a practical implementation of an HTTP server acting as a gateway to each of the room’s 

sub networks. This illustrates the concept that by using a hierarchy of gateways it would be possible to create a scaleable 
architecture across such heterogeneous networks in IIE [8]. The iDorm gateway server allows a standard interface to all of 

the room’s sub networks by exchanging XML formatted queries with the entire principal computing components, which 
overcomes many of the practical problems of mixing networks.. This gateway system will allow the system to operate over 

any standard network such as EIBus, Bluetooth and Lonworks and could readily be developed to include ‘Plug N Play’ 
allowing devices to be automatically discovered and configured using intelligent mechanisms (as far as we know,

Lonworks does not have such a facility) [8].  In addition, it is clear such a gateway is an ideal point to implement security 
and data mining associated with the sub network. Figure (2) shows a logical network infrastructure in the iDorm.

Figure (2): The logical network infrastructure in the iDorm.

The iDorm Embedded Agents

The iDorm has three types of embedded computational artefacts connected to the network infrastructure. Some of these 

devices contain agents.
    The first type is a physically static computational artefact closely associated with the building. In our case this artefact 

contains an agent and is located in a room (a Room Embedded Agent) which receives the iDorm sensor values through the 
network infrastructure and contains the Incremental Synchronous Learning system to learn the user’s behaviour and 

compute the appropriate control and send it to iDorm effectors across the network. The Room Embedded Agent (or more 

generically Building Agent) is shown in Figure (3-a) and is based on 68000 Motorola processor with 4 Mbytes of RAM, 
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an Ethernet network connection and  runs VxWorks Real Time Operating System (RTOS). The sensors and actuators 

available to the iDorm Building Agent are as follows: 

    The building agent accesses eleven environmental parameters (some, such as entertainment, being parameters on multi-

function appliances): 

?? Time of the day measured by a clock connected to the 1- Wire network 

?? Inside room light level measured by indoor light sensor connected to the Lonworks network 

?? Outside outdoor lighting level measured by an external weather station connected to the 1 -Wire network 

?? Inside room temperature measured by sensors connected to the Lonworks and the 1-Wire networks 

?? Outside outdoor room temperature measured by external weather station connected the 1- wire network 

?? Whether the user is using his audio entertainment on the computer – sensed by custom code publishing the 
activity on the IP network

?? Whether the user is lying or sitting on the bed or not, measured by pressure pads connected to the 1-Wire

network

?? Whether the user is sitting on the desk chair or not, measured by a pressure pad connected via a low power 
wireless connection 

?? Whether the window is opened or closed measured by a reed switch connected to the TINI 1-Wire network 

?? Whether the user is working or not, sensed by custom code publishing the activity on the IP network

?? Whether the user is using video entertainment on the computer - either a TV program (via WinTV) or a DVD 
using the Winamp program sensed using custom code publishing the activity on the IP network

The building agent controls nine effectors, which are attached to the network infrastructure: 

?? Fan Heater 

?? Fan Cooler 

?? A dimmable spot light above the Door 

?? A dimmable spot light above the Wardrobe 

?? A dimmable spot light above the Computer 

?? A dimmable spot light above the Bed 

?? A Desk Lamp 

?? A Bedside Lamp 

?? Automatic blind status (i.e. open/closed and angle )

The room is also supplied with other sensors such as a smoke detector, a humidity sensor, activity sensors and telephone 
sensor to sense whether the phone is on or off the hook as well as a camera to be able to monitor what happens inside. It is 

possible to follow (and control) the activities inside the iDorm, via a live video link over the Internet. 

The second type is a physically mobile computational artefact. This takes the form of a service robot and contains an 

embedded agent. A prototype used in the iDorm is shown in Figure (3-b).  The robot can be regarded as a servant-gadget
with the aim of delivering various objects of interest to the user of the iDorm such as food, drink and medicine. The 

mobile robotic agent has a rich set of sensors (9 ultrasound, 2 bumpers and an IR beacon receiver) and actuators (wheels). 
It uses 68040 Motorola processors and runs VxWorks Real Time Operating System (RTOS). The robot is equipped with 

essential behaviours for navigation, such as obstacle avoidance, goal-seeking and edge-following. These behaviours are 

combined and co-ordinated with a fuzzy coordination module so the robot can reach a desired location whilst avoiding 

obstacles and is also capable of online learning of its navigation behaviour as explained in our previous work [6]. The 
robot’s location is passed to and processed as an additional input by the static embedded Building Agent that controls the 

iDorm. In the experimental set up we use a simplified system in which the robot can go to two locations identified by 

infrared beacons to pick up objects. After picking up an object the robot can deliver it to the user and then go to its 
charging station, which is identified by another infrared beacon. The robotic agent sends information about its location to 

the building agent and it takes destination instructions from the building agent depending on the user’s previous behaviour.
For example the robot might have learned to go and fetch a newspaper from a specific location whenever it is delivered in 

the morning..
    The communication between the static embedded building agent and the mobile robotic agent is implemented via a 

wireless link. Communication is established by initiating a request from the embedded building agent to the mobile 
embedded agent server. Once the request has been sent the server passes it to the robotic agent to carry out the task and 

informs the building agent of the robot’s current status . If the task is in progress or not completely finished then the server 
sends a message indicating that the job is not complete. Every time the building agent wants to send out a new request, it 

waits until the previously requested job has been successfully completed.
    The third type is a physically portable computational artefact. Typically these take the form of wearable technology that 

can monitor and control the iDorm wirelessly. The handheld iPAQ shown in Figure (3-c) contains a standard Java process 
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that can access and control the iDorm directly, this forms a type of “remote control” interface that would be particularly 

suitable to elderly and disabled users. Because the iPAQ supports Bluetooth wireless networking, it was possible to adjust 

the environment from anywhere inside and outs ide the room. Because the iDorm central server can also support the WML 

language it is possible to interact with the iDorm through mobile phones. Figure (3-d) shows the mobile phone WAP 
interface which is a simple extension of the web interface. It is possible for such portable devices to contain agents but this 

remains one of our longer term aims.
     The learning mechanism within the embedded agent is designed to learn behaviours relating to different individuals. In 

order to achieve this it needs to be able to distinguish between users of the environment. This is achieved by using an 

active lock, designed and built by our research team, based on Dallas Semiconductors 1 -Wire protocol. Each user of the 

environment is given an electronic key, about the size of a penny. This is mounted onto a key fob and contains a unique 

identification number inside its 2-kilobyte memory. The Unique ID Number of the user is passed to the embedded agent so 
that it may retrieve and update previous rules learnt about that user.

(a)                                     (b)                                                  (c)                                                    (d)

Figure (3): The iDorm embedded agents a) Static Building Agent. b) Mobile Service Agent. c) Portable iPAQ interface. d) 

Portable mobile phone interface

Fuzzy Incremental Synchronous Learning (ISL) Technique

Broadly speaking this work is situated in the recent line of research that concentrates on the realization of artificial agents 
strongly coupled with the physical world. In our work, learning is done through interaction with the actual environment 

and we call this online learning as adaptive behaviours cannot be considered as a product of an agent in isolation from the 
world, but can only emerge from strong coupling of the agent and its environment.

    The Incremental Synchronous Learning (ISL) architecture is shown in Figure (4). The ISL forms the learning engine 
within the embedded agent and is the subject of British patent 99-10539.7. The ISL system aims to provide life-long

learning and adapts by adding, modifying or deleting rules. It is memory based in that the system can use its previous 

experiences (held as rules) to narrow down the search space and speed up learning. The embedded agent is an augmented 

behaviour based architecture, which uses a set of parallel Fuzzy Logic Controllers ,, each forming a behaviour. We have 
used the Fuzzy Logic Control ler (FLC) approach as it has proven to be very useful where the processes are too complex 

for analysis by conventional quantitative techniques or when the available sources of information are interpreted
qualitatively, imprecisely or uncertainly [6], which is the case of embedded agents operating in IIE. 

    In general we divide the behaviours available to the embedded agent operating in the iDorm into fixed or dynamic sets, 

where the dynamic behaviours are learnt from the person’s behaviour and the fixed behaviours are pre-programmed. These 

latter behaviours need to be predefined because they cannot easily be learnt e.g. the temperature at which water pipes 
freeze. The fixed behaviours include safety behaviour, an emergency behaviour and economy behaviour. The Safety
behaviour ensures that the environmental conditions are always at a safe level. The Emergency behaviour, which in the 
case of a fire alarm or another emergency, might open the emergency doors and switch off the main heating and 

illumination systems. The Economy behaviour ensures that energy is not wasted so that if a room is unoccupied the 

heating and illumination will be switched to a sensible minimum value. All of the previous behaviours are fixed but 
adjustable.
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    Each dynamic FLC (the comfort behaviour in the iDorm case) has one parameter that can be modified which is the Rule
Base (RB) for each behaviour. Also, at the high level the co-ordination parameters can be learnt [6, 7]. Each behaviour 

uses a FLC using singleton fuzzifier, triangular membership functions, product inference, max-product composition and 

height defuzzification. The selected techniques were chosen due to their computational simplicity and real-time
considerations. The equation that maps the system input to output is given by:
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Where M is the total number of rules, yp is the crisp output for each rule, ? ? Aip is the product of the membership functions 

for each rule’s inputs and G is the number of inputs.

We use a higher level FLC to combine the preferences of different behaviours into a collective preference (giving a 
two-level behaviour hierarchy). In this model, command fusion is decomposed into two steps: preference combination and 

decision making and in the case of using fuzzy numbers for preferences, product-sum combination and height
defuzzification.

The final output equation is given by: 
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Where i represents the behaviours activated by context rules, which can be comfort, safety, emergency and economy. Yt is 

the behaviour command output. mmy is the behaviour weight which is calculated dynamically taking into account the 
context of the agent.

The output of each FLC is then fed to the actuators via the Co-ordinator that weights its effect. More information about 
the fuzzy hierarchical architecture can be found in [6, 7].

    The ISL works as follows: - when a new user enters the room they are identified by the active key button and the ISL 

enters a Monitoring initialisation mode where it learns the user’s preferences during a non intrusive cycle. In the 

Experimental set-up we used a period of 30 minutes but in reality this is linked to how quickly and how completely we 
want the initial rule base. For example in a care home we might want this rule base to be as complete as possible, in a hotel 

we might want this initialisation period to be small to allow fast learning. The rules and preferences learnt during the 
Monitoring mode form the basis of the user rules which are reactivated whenever the user renters the room. During this 

initialisation period the system monitors the inputs and the user’s action and tries to infer rules from the user’s behaviour. 

The user will usually act when a set of environmental conditions (an input vector) is unsatisfactory to him by altering the 

output vector (he needs to turn a light on or adjust the heating etc). Learning is based on negative reinforcement, as the 
user will usually request a change to the environment when he is dissatisfied with it.

    After the Monitoring initialisation period the ISL enters a Control mode in which it uses the rules learnt during the 
Monitoring mode to guide its control of the room’s effectors. Whenever the user behaviour changes, there may be a need 

to modify, add or delete some of the rules in the rule base. Thus the ISL goes back to the non intrusive cycle and tries to 

infer the rule base  change to determine the user’s preferences in relation to the specific components of the rule that has 

failed. This is a very short cycle that the user is essentially unaware of and such modifications are distributed throughout
the lifetime of the use of environment, thus forming a life-long learning phase.

    As in the case of classifier systems, in order to preserve system performance the learning mechanism is allowed to 

replace a subset of the classifiers (the rules in this case). The worst m classifiers are replaced by m new classifiers [5]. In 
our case we will change all the consequents of the rules whose consequents were unsatisfactory to the user. We find these 

rules by finding all the rules firing at this situation whose firing strength ? ?Ai > 0. We replace these rule consequents by 

the fuzzy set that has the highest membership of the output membership function. We make this replacement to achieve 

non-intrusive learning avoiding direct interaction with the user. The learnt consequent fuzzy rule set is guided by the 
Contextual prompter which uses the sensory input to guide the learning. 

    During the non-intrusive monitoring and life-long learning phases the agent encounters many different situations as both 

the environment and the user’s behaviour change, e.g. the agent attempts to discover the rules needed in each situation 

guided by the occupant’s behaviour in response to different temperature and lighting levels inside and outside the room..
The learning system consists of learning different episodes; in each situation only small number of rules will be fired. The 

Yht  =

Yt  =
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model to be learnt is small and so is the search space. The accent on local models implies the possibility of learning by 

focusing at each step on a small part of the search space only, thus reducing interaction among partial solutions. The 

interaction among local models, due to the intersection of neighbouring fuzzy sets means local learning reflects on global 

performance [3]. So we can have global results coming from the combination of local models, and smooth transition 
between close models. By doing this we don’t need to learn the complete rule base all at once but we learn only the rules 

needed by the user during the different episodes. There is a significant difference in our method of classifying or managing 
rules, rather than seeking to extract generalised rules we are trying to define particularised  rules. 

Figure (4): The ISL Embedded-Agent Architecture

After the initial monitoring phase the system tries to match the user derived rules to similar rules stored in the 
Experience Bank that were learnt from other occupiers. The system will choose the rule base that is most similar to the 

user-monitored actions. By doing this the system is trying to predict the rules that were not fired in the initialisation 
session thus minimising the learning time as the search starts from the closest rule base rather than starting from a random 

position. This action should be satisfactory for the user as the system starts from a similar rule-base then fine-tunes the 
rules.

    Subsequently the agent will operate with rules learnt during the monitoring session plus rules that deal with situations 
uncovered during the monitoring process, which are ported from the rule base of the most similar user, all the rules that are 

constructed and added to the system are symbolised by the Rule Constructor block in Figure(4) . The system then operates 
with this rule-base until the occupant’s behaviour indicates that his needs have altered which is flagged by the Solution
Evaluator (i.e. the agent is event-driven). The system can then add, modify or delete rules to satisfy the occupant by 
briefly re-entering the Monitoring mode. In this case again the system finds the rules fired and changes their consequent to 

the action exhibited by the user. We also employ a mechanism - learning inertia - that only admits rules to the rule base 
when their use has exceeded some minimal frequency (we have used 3). One of our axioms is that “the user is king” by 

which we mean that an agent always executes the user’s instruction unless safety is compromised. In the case where 
commands are inconsistent with learned experience learning inertia acts as a filter that only allows the rule-base to be 

altered when the new command is demonstrated by its frequent use to be a consistent intention. It is in this way that the 
system implements a life long learning strategy.

    It is worth noting that, as we are dealing with embedded agents with limited computational and memory capabilities, it 

is very difficult to deal with a large number of rules in the rule base, e.g. for the comfort behaviours the complete set of 
possible rules for the iDorm is 62208 rules and this would lead to large memory and processor requirements which are not 

realistic in embedded agents. Therefore we set a limit on the number of stored rules to 450 (in our case, the maximum 

number the agent can store on the onboard memory without exceeding the memory limit or degrading the real-time

IEEE Intelligent Systems, Vol. 19, Issue 6, pp. 12-20, November/December 2004



Accepted for Publication in IEEE Intelligent Systems (expected to appear Fall 2004)

© Essex University November 2003 (Inhabited Intelligent Environments Group) 9

performance). Each rule will have a measure of importance according to how frequently this rule is used since it was 

added to the system.  In calculating this degree of importance  we also include a measure of most-recent-use. When the 

memory limit is reached the Rule Assassin retains rules according to the priority highest-frequency , followed by most-

recently-used. If two rules share the same degree of relative rule frequency recall tie breaking is resolved by a least-
recently-used rule. In order not to lose the rules that are chosen for replacement we store them in an external hard disk 

representing the Experience Bank so they can be recalled when needed. This action causes the onboard memory to only 
store the most efficient and frequently used rules and not degrade the real time performance of the embedded agent. 

Experimental Results

We have conducted a novel experiment over five and a half days (132 hours) in which a user occupied the iDorm while the 

iDorm was under the control of the building embedded agent using the ISL architecture.

    Figure (5): a) The Agent Communication Path. b) The user is sleeping in the bed in the iDorm, which is controlled by 

the ISL. c) Using the active lock. d) Another User is sitting at the desk in the afternoon in the iDorm, which is controlled 

by the ISL

The user was identified by his intelligent key, which activates the active lock as shown in Fig (5-b). Throughout the 

experiment, the user used the wireless iPAQ to monitor and control the iDorm environment whenever they were not happy 
with the current state of the environment and made a note of the decisions they were making in a journal. Whenever 

changes to controls occurred, the building embedded agent received the request, generated a new rule or adjusted a 

previously learnt rule and allowed the action through as shown in Figure (5-a). A small parsing tool was written to convert 

the text file containing the fuzzy rule sets into a human readable format. At the end of the experiment, the rules were 
converted into this form and examined in two different ways. The first involved comparing the human readable rules to the 

journal entries from the user to ensure that the agent had successfully learnt the behaviours the user was intending. The 

second was to compare the number of rules learnt over time. The embedded agent’s success can be measured by 
monitoring how well it matches the environment to the user’s demands. If it does this well, the user will intervene less and 

Agent

User action is

communicated
to the Agent

Agent takes snapshot of                                                                (b)

environment state that
caused the user action

Agent sends “switch
on” request to lamp

Lamp switches on

(b)

(a) (c)
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cause less rule generation over time. If it does this badly, the user will intervene more and cause more rule generation over 

time.

The results of the experiment are summarised in Figure (6). The data making up the graph was generated by a monitoring 

program which stored the number of rules learnt by the ISL along with a time stamp. It took a reading every five minutes 
for the duration of the experiment. There are several sections of the graph worthy of note.

    In the first section from 0-24 hours starting from an initial rule base of zero, it can be seen that a very large number of 
rules are learnt in a comparatively short period of time. In fact, in the first nine hours of the experiment, the agent learnt 

128 rules. This is nearly half the total number of rules learnt by the end of the experiment. These results are consistent with 

the agent learning and making incorrect decisions for the user in the initial stage. However, as the end of the period is 

reached it can be seen that the learning rate of the agent (Rules/Time) reduces drastically. This is consistent with the 

agent’s reactions requiring less correction by the user and is therefore consistent with the agent making useful decisions 
about the environment state based on the user’s requirements. The latter trend of fewer rules learnt over time is consistent 

across the whole of the experiment. Hence the level of “comfort” experienced by the user (in relation to the environment 
state) is high enough for them not to make an environmental change and consequently alter the learning rate.

The second section of the graph from 60-72 hours shows a sharp increase in the learning rate of the agent. This is 
explained by the user introducing novel activity into his repertoire of behaviours as the system operates in a life long 

learning mode.
    The third section 72-132 hours shows that in last two days the agent had not generated any new rules. This constitutes a

control period where the user was generally satisfied with agent control action that resulted from the embedded agent 
successfully learning the user behaviour.

Figure (6): The rules learnt plotted against experiment time

The agent has learnt the 280 rules needed to capture the behaviour of this user over the 132 hours experiment, which 
demonstrated that our system can learn effectively using the ISL and it doesn’t need to learn the complete rule base (62208

rules in case of the iDorm). Figure (6) shows that the agent had to learn less new rules about the user as the experiment 
progressed. Since this was one of our criteria for measuring the agent’s success the evidence of the continual reduction in 

the learning rate, leads us to conclude that the agent managed to pick out the pertinent behaviour of the user over time.
An example of a rule learnt by the agent could be written as follows:

In the evening when it is dark inside and bright outside, temperate inside and warm outside, sitting on the bed, 
with the window open I switch the heater off, switch the cooler off, switch the door spotlight off, switch the 
wardrobe spotlight off, switch the computer spotlight off, switch the bed spotlight off, turn off the bed lamp turn 
on the table lamp and close the blind and send the robot to the bed.
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The rules involves the robot moving to the user (who is lying on the bed) at specific input vector.  The mobile robot was 

used as a method of transporting specific objects to the user such as a pen or a can of drink. These objects were placed on a 

flat area of the robot that could be used as a tray, retrieved, used and replaced when finished.

In our previous work we tried experimenting with different room users [6] and the role of the Experience Bank was 
important in reducing the time it takes to learn the user’s behaviour and achieve  user satisfaction. This is because it starts 

learning the user’s behaviour from the best matching behaviour previously recorded rather than starting from random.
    These experiments showed how our embedded agent approach can realise the vision of ambient intelligence in a

ubiquitous computing test bed environment like the iDorm by learning the user behaviour and controlling the iDorm

accoriding to the user desires. The learning was done in a non intrusive  way without the user aware of the existanmce of 

the agent.

Conclusions

Using our embedded agent approach in the iDorm we have demonstrated the vision of ambient intelligence in ubiquitous 

computing environments, where our emebeded the agent was able to learn the user behaviour and control the iDorm 
without the user being aware of the agent. We argue that embedded-intelligence can bring significant cost and effort 

savings over the evolving lifetime of products by avoiding expensive programming (and re-programming). In particular, if 

people are to use collections of computer based artefacts to build systems to suit their own personal tastes (which may be 

unique in some sense) then self programming embedded-agents offer one way of allowing this without incurring an undue 
cognitive  overhead.

We have performed a 5 day experiment using the iDorm and demonstrated that our fuzzy logic based ISL can develop 

useful particular rules over a short time frame. This technique has the ability to add, delete or modify rules in the dynamic 
behaviour rule base which is an essential feature of an “always oN” life-long learning embedded agent. We have shown 

that the ISL agent is both immediately reactive to a user’s command (subject to safety restrictions) and is able to 
particularise itself to the user’s behaviour (including idiosyncratic actions) rather than by generalising for a group of users, 

both of which are an essential feature of any agent that is to be acceptable to people. These experiments suggest that 
surprisingly few rules are required by the agent (i.e. in the order of a few hundred) in order to autonomously create a 

comfortable environment with diminishing need for user correction.
We believe that these results support the idea that human behaviour can be usefully modelled without high processing 

power or large amounts of memory. Indeed, the results suggest that over the experimental period the agent made a 
significant reduction in the cognitive load of the user. The shape of the learning curve in Figure (6) also suggests that the 

agent moved increasingly closer towards the user’s environmental preference even though this preference was never static.

Future Work

Our current experimental programme includes plans for multi-user habitation experiments and wider deployment of 
embedded agents (e.g. personal agents inside wearable technology). We are also in the process of building a multi-roomed

version of the iDorm, iDorm-2, as a preliminary step towards the construction of a fully functional apartment (iFlat) which 
will house both visiting researchers and act as a pervasive computer test-bed. The iFlat is currently being designed for such 

experimentation from the ground up.
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