
Presented at the 6h International Conference on Information Systems Analysis and Synthesis (ISAS 2000), Orlando, Florida, July 2000 

 1

 
A Distributed Intelligent Building Agent 

 Language (DIBAL) 

Filiz Cayci, Victor Callaghan, Graham Clarke 

Department of Computer Science,  
University of Essex 

Wivenhoe Park, Colchester CO4 3SQ 
United Kingdom 

Email: fcayci@essex.ac.uk 
 

 
 

ABSTRACT 
 

From the multi-agent system perspective 
Intelligent Buildings (IB) are a new research area 
and this domain poses several interesting 
challenges. Our IB model comprises a building 
containing room based embedded-agents which 
control environmental variables and devices 
within rooms that communicate with each other 
via a network. Inter-agent communication is 
central to such multi-agent systems. In this paper 
we explain why existing agent communication 
languages (ACLs) are unsuitable for IB 
embedded-agents and present a specification for 
a hierarchical Distributed Intelligent Building 
Agent Langauge (DIBAL) that overcomes the 
problems in applying ACLs to IB based 
embedded-agents. The paper begins by reviewing 
existing Agent Communication Languages (ACL) 
and discussing their unsuitability for IB 
applications before preenting our IB embedded-
agent communition  language, DIBAL. We then 
illustrate the ways in which DIBAL would 
facilitate the functionality we require by looking 
at a few IB scenarios in some detail. 

 
1. INTRODUCTION 

 
An Intelligent Building (IB) has been described as 

one “that utilises computer technology to autonomously 
govern the building environment so as to optimise user 
comfort, energy-consumption, safety and monitoring-
functions” [2].  

The Intelligent Building domain poses several 
interesting challenges to computer science and AI in 
particular.  

These challenges arise because of (a) the existence 
of the many different tasks and interactions involved to 
achieve an IB’s goals, (b) a requirement that actions be 
taken in real-time and (c) because IB’s comprise large 
numbers of connected and interacting components. It is 
intrinsically difficult to design aspects of individual 
embedded-agents that, when connected together, will 
cause the desired over-all system functionality to be 

implemented successfully which is why the agents have 
to be adaptive and intelligent. 

 The way the system should behave as a whole 
depends upon the way the agents communicate and 
interact, and the information they exchange with one 
another. Because of this the communication language 
has to be supportable by the agents.  

The embedded agents developed at Essex use the 
behaviour-based paradigm first proposed by Brooks [1]. 
In this approach the interaction of behaviours provides 
the required pseudo reasoning and planning whilst a 
deliberative layer provides learning [2, 3, 13]. 

 These embedded agents based on a microcomputer 
or embedded Internet chip built into a device have a 
small computational footprint with potentially high 
levels of input and output. The form of collaboration 
being addressed here allows different embedded agents, 
possibly employing different strategies, to communicate 
and produce the best functionality to the benefit of the 
buildings stakeholders (owners and occupiers).  

The architectural paradigm we have developed, in 
order for our multi-embedded-agent system to function, 
is a high-level building and occupant related 
information exchange [3]. There is an underlying 
network infrastructure to support the technical needs, 
such as sending and receiving packets and dealing with 
changing agent configuration that is managed via an IP 
network.  

In a typical agent based IB systems, control goals 
are split into four related functions: economy , for energy 
efficiency, emergency for dealing with unexpected 
situations, safety to ensure the environmental variables 
remain at safe levels and comfort, which are particular 
preferences relating to an individual occupant.  

The communication load will also entail messaging 
to and from sensors, between room agents, to and from 
personal agents, and with agents from the outside world. 
This information will be in a wide variety of forms, for 
example room status and occupant information, 
readings from a variety of sensors, information about 
the times of particular activities etc.  

In section two we are going to discuss research 
relating to standard ACLs like KQML or FIPA and 
frameworks that have been developed with a similar 
functionality. We will look at these critically in the light 



Presented at the 6h International Conference on Information Systems Analysis and Synthesis (ISAS 2000), Orlando, Florida, July 2000 

 

of our needs for a comp utationally light solution 
because of the constraints on IB agents. We will argue 
that the type of agent used in IB will not need, or be 
able to support, a complex communication language like 
KQML or FIPA. 

Section three will introduce and specify our 
proposed communication model and language and the 
hierarchical message passing technique between agents 
in our IB model. We propose a JAVA based Distributed 
Intelligent Building Agent Language (DIBAL), which 
will be flexible and efficient and does not produce too 
much of an overhead computationally. We specify a 
generic, compact and hierarchical data message packets 
structure with two main categories of message 
primitives: an agent must be able to both, send and 
request information from others.  

In order to show that the DIBAL specification is 
adequate to the IB domain, in section four we will look 
in some detail at characteristic IB scenarios and show 
how IB goals could be achieved using the language 
specified. 
 
2. CRITICAL REVIEW OF EXISTING 

ACLs 
 

The Knowledge Query and Manipulation Language 
(KQML) is a high-level agent communication language, 
based on speech act theory, which provides twelve 
reserved performatives, falling into seven categories. 
KQML, conceived in the early 90's, gradually 
developed the concept of an ACL. According to Finin 
[5,6,12], KQML is independent of the transport 
mechanism, independent of the content language and 
independent of the ontology assumed by the content. It 
is divided into three layers: the content, the message and 
the communication layer. The content layer bears the 
actual content of the message, the communication level 
encodes a set of features to the message which describe 
the lower level communication parameters and the 
message layer that is used to encode any message that 
one application would like to transmit to another. 
KQML has a fixed context partly because the language 
has too many constraints and partly because it is 
inflexible [4]. For example, by imposing the pragmatic 
requirement to be co-operative, which may not be 
acceptable in certain contexts because of violating a key 
prerequisite. 

Foundation for Intelligent Physical Agents (FIPA) is 
also a high-level ACL, which, like KQML, is based on 
speech act theory. Messages are actions or 
communicative acts, as they are intended to perform 
some actions by virtue of being sent. 

 KQML and FIPA are almost identical with respect 
to their basic concepts and the principles they observe 
and differ primarily in the details of their semantic 
frameworks [5]. Their syntax is identical except for the 
different names for some reserved primitives.  

Labrou [6] defines agent communication languages 
(ACL) as a collection of message types each with a 
reserved meaning. An ACL is not concerned with the 

physical exchange, over the network, of an expression 
in some language, but rather with stating an attitude 
about the content of this exchange, like making a 
promise or a commitment to perform a future action.  

Because of the small computational footprint and the 
structure of our embedded agents, such highly 
developed, heavy weight and functionally complex 
ACLs like KQML and FIPA are not suited to our IB 
domain. For example the number of primitives and the 
complex layered structure of these ACLs could not be 
easily accommodated within the constraints of our 
agents limited resources. 

Beside this, FIPA does not support what is a very 
important component for IB needs, that is, the problem 
of acknowledging receipt of messages. This is a 
conceptual problem related to agent interaction. An 
agent waiting for an answer does not know whether the 
agent it is communicating with is busy (and will reply 
later) or does not want to answer.  

This has a negative impact on protocols which imply 
synchronisation between the involved agents and whose 
termination is subordinate to the reception of all the 
communication acts. To overcome this problem, FIPA 
allows time specifications to be placed in a message to 
constraint the reply; but this in turn introduces new 
problems when the peer agent needs time to compute 
the answer [7]. In our case, it is important that a sender 
(room) agent knows whether a message has been 
executed or received and understood by the receiver 
agent. 

Standard ACL languages do not have convenient 
and flexible mechanisms for registering new agents 
presence on the network since this has not been the 
focus of the standardisation efforts [5].   

As well as fully-fledged ACLs like KQML and 
FIPA there are a number of frameworks, which aim to 
achieve the same functionality. We have looked at these 
also with a view to using them if they suit our IB 
specific problem.  

There has also been the development of agent 
communication languages for the domain of mobile 
robots that we will consider first. 

Wang and Premvuti [8] argue that, the general 
principles of the Distributed Robotic Systems model 
(mobile agents) for instance does not allow for any co-
ordination mechanism such as a centralised CPU, a 
centralised and shared memory, or a synchronised 
clock. Moreover, the system only consists of multiple, 
autonomous mobile robots. They also state that, there is 
no centralised ‘ground support’ such as a 
communication server. Autonomous mobile agents in 
distributed robotic systems communicate through either 
localised broadcasting  (point-to-point communication) 
or other types of ground support. The communication in 
these systems takes place mostly through radio 
communication network and is mostly sensor based. 
The lack of a co-ordination mechanism makes this 
unsuitable for IB applications. 

Over the past few years, a multitude of applications 
and systems have appeared that are built around agent 



Presented at the 6h International Conference on Information Systems Analysis and Synthesis (ISAS 2000), Orlando, Florida, July 2000 

 

communication languages. Either they are applications, 
i.e. multi-agent systems, that use an ACL for inter-agent 
communication, or APIs that facilitate the incorporation 
of ACL capabilities into an application. 

The Java-based Agent Framework for Multi-Agent 
Systems (JAFMAS), developed at the University of 
Cincinnati, provides a generic methodology for 
developing speech-act (e.g. KQML) based multi-agent 
systems (MAS), an agent architecture, and a set of 
classes to support implementing these agents in Java 
[14]. JAFMAS also supports direct (point-to-point) 
communication as well as subject-based broadcast 
communications.  

Jackal, developed at University of Maryland 
Baltimore Country, is another Java package that allows 
applications written in Java to communicate via an ACL 
(KQML is currently the ACL of choice). Jackal strongly 
emphasizes conversations between agents and provides 
a flexible framework for designing agents around 
conversations [9]. 

Both Jackal and JAFMAS are extensions to JAVA. 
They both aim to implement the functionality of an 
ACL like KQML. It seems likely that this would require 
even more of the limited resources of an embedded 
agent than KQML and is therefore also unsuitable for 
our agents. 

Another application, Java Agent Template, Lite 
(JATLite) is a package of Java programs, developed at 
Stanford, that allows users to quickly create 
communication agents. Agents are running as applets 
actuated from a browser and because of that all agents 
register with an Agent Message Router facilitator 
(AMR) that handles message delivery.  

JATLite is centralized, and from this it follows, that 
it does not allow a peer-to-peer communication between 
the agents [10]. Intelligent Building based embedded 
agents have to communicate in a distributed 
environment. In many cases occupant related 
information have to be sent directly to an appropriate 
agent, instead of broadcasting to all agents. This 
limitation would make it unsuitable for IB related 
applications. 

We have made a few different enquires to the people 
who produced the systems mentioned above concerning 
the size of the system and the possibilities of reducing 
this in order to fit our embedded agents needs, but 
unfortunately we have yet to received any positive 
response. 

Martin [11], describes the Open Agent Architecture 
(OAA) Interagent Communication Language (ICL), for 
instance, as the interface, communication and task co-
ordination language. One of the fundamental elements 
of ICL is the "event". The ICL includes a layer of 
conversational protocol, similar in spirit to that provided 
by KQML, and a content layer, analogous to that 
provided by Knowledge Interchange Format (KIF). The 
conversational layer of ICL is defined by the event 
types. The content layer consists of the specific goals, 
triggers, and data elements. 

This approach offers greater expressiveness than an 
approach based solely on a fixed selection of speech 
acts, such as embodied in KQML [11]. We assume, that  
this expressiveness will in all probability make the ACL 
larger and therefore not fulfil our special interest in 
keeping the ACL's size as limited as possible. 

Each implementation introduces its own variety of 
supporting agents and services. Agreement is needed on 
the assumptions of these services so that such sevices 
can be provided as a standard suite of tools.  

ACLs also present problems when their semantics 
are considered: (1) they are tied to a specific agent 
theory that might not be applicable to all agents that 
want to use the ACL, and (2) they introduce complex 
formalisms that have no bearing on the implementation 
of agent systems [12]. 

In the next section we will introduce our proposed 
agent communication language – DIBAL - and specify 
the language primitives and the structure of the 
messages needed for our Intelligent Building domain. 
Our communication language allows us to reduce the 
amount of infrastructure by providing for both 
communication and control with a much lighter-weight 
system. 
 
3. THE DIBAL MODEL 
 

Our Intelligent Building model consists of different 
rooms; each controlled with an embedded agent and 
equipped with different sensors for temperature, light, 
door and window status and so on. Our Intelligent 
Building model uses a combination of Ethernet (agent-
to-agent) and LONWorks (agent-to-sensors) networking 
technology.  

 

 
The embedded agents [Picture 1], e.g. 

microcomputer or embedded Internet chip built on a 
device1, have limited computational resources - 
processor power and memory. To be effective agents 
have to handle all of the following processes - learning 
occupant behaviours, controlling environment variables, 
monitoring sensors and other devices and  

                                                                 
1 http://www.ibutton.com/TINI/index.html 

Picture 1: Essex Embedded Agent Prototype 



Presented at the 6h International Conference on Information Systems Analysis and Synthesis (ISAS 2000), Orlando, Florida, July 2000 

 

 
communicating with other agents whilst operating 
within these resource limitations.  

This is one of the overriding reasons for making the 
communication language as compact and flexible as 
possible. For this reason we are using a hierarchical and 
tagged form of messaging, and have a limited number of 
main primitives [Figure 1]. 

Each agent will have the two main primitives at its 
disposal: send and request. All messages will contain a 
message type, which describes the content of the 
message. Any embedded agent will know, after 
receiving a message, what kind of data is going to be 
sent and what kind of action is expected. As the figure 
shows there are eleven message types. Each of these 
types will help to enable a specific scenario 
characteristic of Intelligent Buildings. An agent 
receiving a “command” message for instance will 
automatically know that the data package contains 
actions, which have to be executed immediately. On the 
other hand an agent receiving an “information” message 
can decide whether this information package is useful 
for it or not.  

The next "tag" contains lower-level information such 
as the sender and receiver of the message, its priority, 
time and whether an acknowledgement, such as 
‘message successfully performed’, or, ‘error occurred’, 
is required from the receiver.  

Our proposed agent communication language is not 
concerned exclusively with the domain of Intelligent 
Building since we can envisage the development of 
mobile personal agents and the spread of embedded 
agents into all areas of life. This will mean that a 
distributed agent language will be required for a whole  
range of environments including the home, the car, 
other forms of transport and eventually space vehicles 
and extraterrestrial habitats.  

 
      As mentioned before the domain of Intelligent 
Buildings is generally composed  
of cooperating control functions. In our case we are 
utilising behaviour-based agents composed of economy , 
emergency, safety and comfort behaviours (effectively, 
sets of rules) [2]. These are individual to the occupant. 
In our message structure each of these behaviour types 
relates to its own environmental values such as 
temperature, light or window status etc.  

The transmitted message packages, excluding the 
data package, have the same fixed message size. The 
variable data package associated with environmental 
variables starts with a flag specifying the number of 
records and their total size. N.B. it is here that the 
identity of the user, for whom this behaviour is 
important, is stored. Even before “editing” the high-
level data content, the agent has to know if its existing 
limited resources are enough to process the message 
data. 

 Each behaviour – rule is also specified with its own 
size, to allow the agent to execute just the first two rules 
for instance (Figure 1: n=2).  
 
send ( initialisation  
  (group-flag, sender, receiver, time of msg, 
   priority of msg., ACK, Mode, 
     (house, comfort, temp,  
       [Data-type, Number of Items, Total Size, person- id, 
       (RuleId 
           (size/length of field, usefulness, history(10),rule(s)),  
        RuleId 
          (size/length of field, usefulness, history(10),rule(s)))])))      

 
The tagged and hierarchical structure of our message 

formats allows the embedded agents to communicate 
flexibly and quickly in real time environments, which is 
appropriate to their limited resources. An example of a 
transmitted message is shown above. 

Figure 1: Message Format 

Primitive:

 Send 

 Request 

Type: 

 initialisation 
 update 

 command 
 information 

 copy 

Message Header:

..... 

 group-id 
 sender 

 receiver 
 time 

 ACK Type .... 

Domain: 

 Building 
 Car 

 Phone 
 House 

Behaviour Type:

 economy  
Environmental Values: 

.....

 temperature 
 light 

 window 
 door 

 occupied 

 No  Size Id 

 Data Package 

 1….n  
 Rules / Behaviours / Sets 

 awalker 
 pwalker 

 diffusion 
 add 

 delete 
 reply 

 priority 

 emergency 
 safety 

 comfort 

tag tag tag tag tag 



Presented at the 6h International Conference on Information Systems Analysis and Synthesis (ISAS 2000), Orlando, Florida, July 2000 

 

An agent receiving an initialisation message enters 
new behaviours or rules, in this case, personal 
temperature preferences, in its list of current behaviours. 
This is useful in cases where a new person moves into a 
new room and the room agent needs to set up 
appropriate comfort behaviours for its new occupant.  

The next section looks at such scenarios in greater 
detail and demonstrates the appropriateness of the 
proposed ACL primitives and message types for 
different characteristic Intelligent Building scenarios. 
 
4. THE DIBAL SCENARIOS 
 

Different scenarios for the operation of an Intelligent 
Building can best be understood using a 3-tier-model.  

The actual scenario, as some completed function of a 
room agent for instance, is made up of a series of 
messages between itself and other agents, each of which 
is built out of the primitive message types specified in 
the DIBAL.  

 

This process runs in parallel with the operation of the 
reasoning and learning capabilities of the agent, which 
may, or may not themselves require messages to and 
from other agents to be completed successfully. 

In all the scenarios that follow we assume that each 
person in the building can be uniquely identified by the 
system. 

Buildings contain all sorts of different activities such 
as, people entering and leaving rooms and/or the 
building, gathering together for meetings or social 
intercourse in rooms that might be general purpose or 
specifically tailored to particular uses. Similarly at any 
point in time rooms that were occupied might become 
empty and remain empty or emergency situations of one 
sort or another might develop like the outbreak of fire or 
an attempted burglary.  

Each person in the building will have his or her own 
preferences regarding environmental variable that it is 
the agents' task to learn and make part of its repertoire 
of behaviours. 

 These behaviours (sets of rules related to 
environmental variables, devices and people) are split 
into economy, emergency, safety and comfort types, and 
are stored in a form that is consistent with the 
communication languages data packages.  

The building consists of a network of room-based 
agents covering the entire building. The location and 
function of the room for each agent can be used to 
group agents into useful categories. For instance all 

corridor agents might be part of a group or all agents on 
one floor of a building etc. There is no reason why an 
agent might not be part of several different groups.  

One significant scenario involves the case of an 
attempted break-in.  

Imagine that someone tries to enter a room on the 
first floor by breaking a window. The agent will be able 
to work out that there is movement from an unidentified 
person who has entered the room without opening the 
door. The room agent then has to make sure that the 
doors of rooms next to it, or all doors on the same floor, 
are locked immediately. To realise this, it should be 
possible to send each appropriate agent (members of a 
particular group for instance) a “command” message, as 
follows: 

 
send (command 
          (group-flag, sender, receiver, time of msg, priority of  
           msg., ACK, Mode, 
            (house, emergency, door, “lock door”) )) 
 

If the group-flag is set, than the receiver is going to 
be a group of agents, like all agents in the same floor or 
office agents etc otherwise the receiver will be one 
specific agent. 

We assume that empty rooms in the buildings are 
going to have default temperature setting to ensure that 
the building functions economically. This temperature 
will possibly be dependent on the time of year - the 
value in summer times is likely to be different than the 
one in winter. To update and reconfigure an existing 
standard value for a group or all agents it is possible to 
send the following message: 

 
send ( update  
  (group-flag, sender, receiver, time of msg, priority of  
   msg., type, ACK, Mode, 
     (house, economy, temp,  
       [Data-type, Number of Items, Total Size,  
         (RuleId 
           (size/length of field, usefulness, history(10),rule(s)),)])))  
 

Next, we would like to show more complex 
scenarios including several messages. Suppose in a 
normal everyday situation, a person enters a building. 
The entrance hall or door agent recognises this person, 
and sends a message throughout the building, to inform 
other agents that a specific person has entered the 
building.  
 
send (information 
 (group-flag, sender, receiver, time of msg, priority of msg., 
  (ACK), Mode, 
      (house, economy, occupied, “person X entered building”))) 
 

 If this person is already known, this message could 
be a direct message to his room agent, if not, it will be a 
broadcast. Let us imagine that this person is a regular 
occupant of a room – his office say, but before he goes 
to his office he goes to a laboratory. The laboratory 
agent will therefore also request this persons preferred 
comfort behaviours, though this time from the agent of 
the space adjacent to the laboratory: 

Concrete instance of message

Language Primitives  

Actual communication 

Set of concrete Instances  Living Scenario 

Figure 2: 3 tier-model for Scenarios 



Presented at the 6h International Conference on Information Systems Analysis and Synthesis (ISAS 2000), Orlando, Florida, July 2000 

 

request (copy 
 (group-flag, sender, receiver, time of msg, priority of msg., 
  Reply_With, Mode, 
       (house, comfort, temp, person-id(RuleId))) 
   

This sort of scenario will be repeated often as a 
person moves about the building. This walking through 
different rooms allows us ‘behaviour migration’ for 
each person throughout a building.  

Suppose however that the person who entered is new 
to the building. Naturally the standard economy, 
emergency and safety behaviours will be available in 
advance. To save time and agent resources on learning 
from scratch the agent can for instance request a default 
set of comfort behaviours.  
 
request (diffusion  
 (group-flag, sender, receiver, agent-type, time of msg,  
  priority of msg., Reply_With, Mode, 
    (house, comfort, temp)))  
 

Because of the “group-flag” mentioned earlier, the 
“agent-type” specifies the agent in more detail for 
instance agents located in rooms, elevators, kitchen etc. 

Each of our message types is related to important 
activities occurring on a regular basis in Intelligent 
Buildings. 
 
5. CONCLUSION AND FUTURE WORK 
 

Agent communication languages have been used for 
about ten years in proprietary multi-agent systems, and 
KQML was among the first such ACL to be developed 
and used. KQML has also played a large and important 
rule in defining what an Agent Communication 
Language is and what the issues are when it comes to 
integrating communication into multi- agent system. 

  In this paper, we have outlined the reasons why an 
agent communication language for embedded agents in 
the domain of Intelligent Buildings is required. Within 
the space limitations of this paper we have specified the 
DIBAL language and described the operational model. 
DIBAL is a compact, flexible and hierarchical way of 
messaging with consideration of the limited 
computational resources of embedded-agents. 

The next step in this work will be to implement the 
DIBAL model in Java and evaluate it using a 
representative Intelligent Building environment.  
 
REFERENCES 
 
[1] Brooks R.A, Intelligent Room Project, MIT Artificial 

Intelligence Lab, Proceedings of the Second 
International Cognitive Technology Conference (CT'97), 
Aizu, Japan, August 1997  

[2] Sharples S, Callaghan V, Clarke, G “A Multi-Agent 
Architecture For Intelligent Building Sensing and 
Control”, Int'l Sensor Review Journal, Vol 19. No. 2. 
May 1999  

[3] Callaghan V, Clarke G, Pounds-Cornish A, Sharples S, 
“Buildings As Intelligent Autonomous Systems: A 
Model for Integrating Personal & Building Agents”, The 

6th International Conference on Intelligent Autonomous 
Systems, Venice, Italy; July 25 - 27 

[4] Singh M.P, North Carolina State University, "Agent 
Communication Languages: Rethinking the Principles", 
December 1998 

[5] Labrou Y, Finin T, Peng Y, “The current Landscape of 
Agent Communication Languages”, 1999 

[6] Labrou Y, Finin T, Peng Y, “The Interoperability 
Problem: Bringing together Mobile Agents and Agent 
Communication Languages, 1999 

[7] Mamdani E, Charlon P, Cattoni R, Potrich A, 
“Evaluating the FIPA Standards and Its Role in 
Achieving Cooperation in Multi-agent Systems”, 
Submitted to Multiagent Systems, Internet and 
Applications (HICSS-33 Minitrack), January 2000 

[8] Wang J, Premvuti S, “Resource sharing in distributed 
robotic systems based on a wireless medium access 
protocol”, Robotics and Autonomous System 19 (1996), 
33-56 

[9] Cost R.S, Finin T, Labrou Y, Luan X., Peng Y, Soboroff 
I, Mayfield J and Boughannam A, "Jackal: A Java Based 
Tool for Agent Development“, " Working Notes of the 
Workshop on Tools for Developing Agents (AAAI 
Technical Report), AAAI 98, 1998 

[10] Jeon H, Petrie C, Cutkosky M.R, "JATLite: A Java 
Agent Infrastructure with Message Routing", University 
of Stanford, IEEE Internet Computing, March/April 
2000 

[11] Martin D.L, Cheyer A.J., Moran D.B., "The Open Agent 
Architecture: A Framework for Building Distributed 
Software Systems", January -March, 1999 

[12] Labrou Y and Finin T, “Towards a standard for an 
Agent, Communication Language”, 1997 

[13] Callaghan V, Clarke, G., Colley, M., Hagras, H. "A 
Soft -Computing DAI Architecture for Intelligent 
Buildings",  Journal of Studies in Fuzziness and Soft 
Computing on Soft Computing Agents, Physica-Verlag-
Springer, July, 2000 

[14] Galan A, "JAFMAS: A Java-based Agent Framework 
for Multiagent Systems Development and 
Implementation", Deepika Chauhan, ECECS 
Department, University of Cincinnati, 1997   

 


