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Abstract- This paper addresses the development of a system
for online learning of fuzzy behaviour co-ordination for
autonomous agents in the form of robots based on genetic
algorithms (GAs) and real-time interaction with the
environment. The proposed system organises the behaviours
hierarchically and uses fuzzy engines to implement both the
behaviours and their co-ordination mechanism. In previous
work we reported on our success in the online learning of
individual behaviours (rules and membership functions)[4]. In
this paper we report on a system that allows the fuzzy
Membership Function (MF) for behaviour co-ordination to be
learnt online in a manner that satisfies some high level mission
or plan. The GAs uses adaptive learning parameters and guided
constrained optimisation to speed the GAs search and enable it
to be performed via real-world interaction rather than off-line
simulation. The results of this work are compared with results
reported elsewhere and reveals this approach to have a superior
learning performance while learning using real outdoor robots
in changing environments. The ability to learn co-ordination
skills in a short time interval without human intervention makes
this approach particularly useful for applications where access
is difficult such as nuclear reactors, underwater vehicles and
space robots and fast changing and dynamic environments such
as the agricultural environments.

I.  INTRODUCTION

    Since the first Brooks’s seminal papers [2], many
autonomous agents have been implemented following the
behaviour-based paradigm, where the overall operations of an
agent arises from the interaction of basic independent
behaviours. The importance of the problem of behaviour co-
ordination was noticed; i.e. how to co-ordinate the
simultaneous activity of several independent behaviour-
producing units to obtain an overall coherent behaviour that
achieves the intended task. Early behaviour-based
architectures [2] relied on a fixed arbitration policy, hard
wired into a network of suppression and inhibition links. This
rigid organisation contrasts with the requirement that an
autonomous robot can be programmed to perform a variety of
different tasks in a variety of different environments [10].
Later proposals relied on dynamic arbitration policies, where
the decision of which behaviour(s) to activate depends on the
current goals given by the planner and environmental
contingencies. However, many of these ideas do not allow for
the concurrent execution of behaviours [10]. Both fixed and
dynamic arbitration policies can be implemented using the
mechanisms of fuzzy logic. The two main advantages in
doing so are the ability to express partial and concurrent

activation of behaviours and the smooth transitions between
behaviours.
   One of the main problems for the behaviour-based
approach to agent design concerns the identification of the
best combination of the most suitable basic behaviours to
achieve a task, in a given situation. This is because it is
difficult to predict the interaction between the different
behaviours or their best combination especially when large
number of behaviours are involved. Some approaches
utilising machine-learning have been proposed. Mahadevan
[6] proposes a system that learns the basic behaviours most
suitable for a given, predefined behaviour architecture.
Dorigo [3] learns to co-ordinate behaviours organised in
different hierarchical architectures. Bonarini [1] learns a
coordinator, implemented by fuzzy rules. All of these
systems have learnt the relationship among antecedent and
consequent values, but keep constant the values of the
membership. In other terms, it learns the structure of the
behaviour, but not the interpretation of the data it uses. With
regard to our work it is important to note that all these
approaches were implemented using simulation, even if
tested on real robot, the learning was performed offline in
simulation and then the “learnt controller” was downloaded
to the real robot.
   Broadly speaking, our work situates itself in the recent line
of research which concentrates on the realisation of artificial
agents strongly coupled with the physical world which we
refer to as embedded-agents. A first fundamental requirement
is that such agents must be grounded in that they must be able
to carry on their activity in the real world. Another important
point is that adaptive behaviour cannot be considered as a
product of an agent considered in isolation from the world,
but can only emerge from strong coupling of the agent and its
environment [3]. There are several reasons why those who
want to use simulation models to develop control systems for
real robots may encounter problems [9]. For example
simulations do not usually consider all the physical laws
governing the interaction of a real agent with its environment,
such as mass, weight, friction, etc. Also physical sensors
deliver uncertain values, and the commands to the actuators
have uncertain effects, whereas simulative models often use
grid-worlds and sensors which return perfect information.
Also different physical sensors and actuators, even if
apparently identical, may perform differently because of
slight differences in electronics and mechanics or because of
their different positions on the robot.
   Fuzzy logic has become a popular approach to reactive
robot control in the recent years. Given the uncertain and
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incomplete information an autonomous robot has about the
environment, fuzzy rules provide an attractive means for
mapping sensor data to appropriate control actions in real
time. The success of fuzzy control is owed in large part to the
technology’s ability to convert qualitative linguistic
descriptions into non-linear mathematical functions. In
addition fuzzy controllers exhibit robustness with regard to
noise and variations of system parameters.
   The aim of our research is to produce intelligent machines
where self-adaptation is important. For instance for
applications where programming costs are a factor (e.g. niche
applications, dynamic environments, or multi-purpose roles
such as agriculture etc) or inaccessible environments (e.g.
underwater or outer space). In these environments it is
required to perform online learning through interaction with
the real environment in a short time interval. Such an
approach both saves money and increases reliability by
allowing the robot to automatically adapt to the changing user
and environment needs throughout its lifetime without further
human programming. In our previous work [4,5] we reported
on our success in the online learning of individual behaviours
(rules and membership functions) using a Fuzzy-Genetic
embedded-agent. In this paper we are looking for the best
combination of these behaviours in order to achieve the goals
supplied by a high level plan. The reported behaviour co-
ordination is based on the use of a modified form of GAs.
GAs have been successfully applied to solve a variety of
difficult theoretical and practical problems by imitating the
underlying processes of evolution such as selection,
recombination and mutation. Using only an objective
function, GAs can adapt a system to deal with any desired
task without the need for a mathematical model. These
reasons make GAs suitable for learning in robotics as it is
considered essentially difficult if not  impossible to formulate
a mathematical function to adequately describe the robot, the
physical world and their interactions. GAs are criticised for
being slow because they require significant population of
robots for fitness testing, and the robots must be tested over
many generations.  Much of the learning using GAs reported
in the literature was conducted via offline simulation as the
normal evolutionary time scale needed makes online use
infeasible. In this paper we introduce techniques for allowing
GAs based mechanism to be applied in online systems
without the need for simulation. The techniques involve the
use of adaptive learning parameters, guided GAs optimisation
plus the adoption of nearness criteria for allowing acceptance
of reasonable solutions.
   In the next section we will discuss the fuzzy hierarchical
architecture and then we introduce the GAs behaviour co-
ordination learning,. We finish by presenting experimental
results, conclusions and future work.

II. FUZZY HIERARCHICAL SYSTEMS

    Most commercial fuzzy control implementations feature a
single layer of inferencing between two or three inputs and
one or two outputs. For autonomous vehicles, however the
number of inputs and outputs is usually large and the desired
control behaviours are much more complex. The mapping

can be made manageable by breaking down the input space
for analysis by multiple agents, each of which responds to
specific types of situations and then integrating the
recommendations of these agents. Agents, also called
behaviours, can be designed independently to exhibit
behaviours such as goal seeking, obstacle avoidance, and
edge following [10]. The vehicles we have being using in our
indoor experiments have eight inputs (7 sonar inputs and an
infrared bearing sensor) and two outputs which are left and
right wheel speeds (steering and speed in case of outdoor
vehicles). And 8-axis vectored bump switch, the hardware is
based on embedded Motorola processors (68040) running
VxWorks RTOS. Each control cycle takes about 100 ms. In
our previous work we have shown how our hierarchical fuzzy
engine approach can reduce the number of rules by two
orders of magnitude [4]. This hierarchical arrangement is
shown in Figure (1) co-ordinating 4 behaviours namely Left
edge following, right edge following, obstacle avoidance and
goal seeking. Our work uses a method similar to the methods
suggested by Saffiotti [10] and Tunstel [12] to perform the
high level co-ordination between such behaviours based on
using fuzzy logic to both implement individual behaviour
elements and the necessary arbitration. Each single behaviour
is viewed as an independent fuzzy controller. In this
hierarchical architecture we will use a fuzzy operator to
combine the preferences of different behaviours into a
collective preference. According to this view, command
fusion is decomposed into two steps: preference combination
and decision. In the case of using fuzzy numbers for
preferences, product-sum combination and height
defuzzification, the final output equation is given by [10]:
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   Here i = right behaviour, left behaviour, goal seeking, Ci is
the behaviour command output. BWi is the behaviour weight.
The behaviour weights are calculated dynamically taking into
account the context of the mobile robot. In Figure (1) each
behaviour is treated as an independent fuzzy controller and
then, using fuzzy behaviour combination, we obtain a
collective fuzzy output which is then deffuzzified to obtain a
final crisp output. There are some few parameters that must
be calculated in the Root Fuzzy System block in Figure (1).
These parameters are the minimum distance of the front
sensors which is represented by d1, the minimum distance of
the left side sensors which is represented by d2, the minimum
distance of the right side sensors represented by d3. And the
minimum of the fuzzy MF of d1,d2,d3 represented by d4,
which reflects how the robot has no obstacles around. After
calculating these values, each of them is matched to its MF
which is shown in Figure(2). The values of A, B are the base
values to be learnt by the GAs for d1 and C, D in case of d2
and E and F in case of d3 and G and H in case of d4. After
matching d1,d2,d3,d4 to their MF, we have fuzzy values.
These fuzzy values are used as inputs to the context rules
which are suggested by the high level planner according to
the mission to be performed by the robot. Which are in
general : IF d1 IS LOW THEN OBSTACLE AVOIDANCE. IF
d2 IS LOW THEN LEFT EDGE FOLLOWING. IF d3 IS
LOW THEN RIGHT EDGE FOLLOWING. IF d4 IS HIGH
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THEN GOAL SEEKING. The context rules determines which
behaviour is fired, and to what degree, depending on the
fuzzy MF in Figure (2). Then the final robot output is a
mixture of the different behaviour outputs each weighted by
the degree of its importance calculated using Equation (1).
Note that a planner can eliminate the unneeded behaviours
from the context rules according to the robot’s mission. For
example in case of corridor following, there is no need for
goal seeking so the last rule in the context rule is deleted and
the goal seeking block is removed from Figure (1). We
always use the obstacle avoidance behaviour as a safety
feature. Note that the robot mission affects only the context
rules by deleting some of its rules not adding to them, and the
robot mission is represented by the GAs objective function.

Figure 1.  The behaviour co-ordinated system.

Figure 2.  The MF for  the minimum  front  and side sensors.

III. THE GENETIC ALGORITHMS LEARNING

A.  Population Initialisation

   Each parameter to be identified in the MF which are A, B
in case of d1 and C,D, in case of d2 and E,F in case of d3 and
G,H in case of d4 is represented by 5 bits (which were found
empirically to be the minimum number of bits to achieve
reasonable results and low computation time).  Note that if a
behaviour is deleted by the planner then its parameters will
not be encoded. These parameters are aligned together to

form a chromosome which represents a possible solution for
the problem. This means that when all the behaviours are
present we have at maximum a 4*2*5 =40 bit chromosome.
We use the concept of GAs guided constrained optimisation
[11] which incorporates human heuristic knowledge into the
optimisation algorithm. All the chromosomes are initialised
within the sensor range, which is fair assumption as it is very
easy to know the maximum and minimum sensors ranges
from the manufacturer data sheet. In any case, the algorithm
is also capable of determining the sensor ranges, but it will
take longer time to converge to a solution (as will be shown
later). Also we use ordering of the MF so that during
optimisation the GAs is forced to produce ordered parameters
(for example A is always greater than B and C is greater than
D, etc) within the sensor range.

B. Fitness Evaluation

   After initialisation of the chromosomes the robot starts
moving to test the proposed solution. The determination of
the fitness function depends on the high level mission. The
high level missions can be regarded as a deviation
minimisation problem. For example in case of corridor
following mission, aligning to the centre line can be obtained
by minimising the deviation between the left front and the
right front sensors to reach a nominal value of zero and trying
to achieve this by minimum steering actions and maximum
speed. Also in case of following an edge while avoiding
obstacles and reaching a goal at the end of this edge, the
mission can be viewed as minimising the deviation from a
nominal desired distance in following the edge “and“ (and
function is represented by mathematical sum) minimising the
deviation from a nominal safe distance in avoiding obstacles
and minimising the deviation from the goal to a nominal
value of zero with minimum steering deviation and a high
speed. The deviation is measured by the robot physical
sensors (sonar in case of edge following and infrared scanner
in case of goal seeking). This gives the robot the opportunity
to adapt to the sensor imprecision.
   The chromosome fitness is evaluated by how much it
reduces the average of the total absolute deviation, di  (which
is calculated as the sum of the individual deviations over the
existing behaviours m, in a given mission at each control
step) while using minimum steering deviation and high
speed, where k is a given behaviour and di is given by:

di = kdeviation

valuedeviatedalvaluenom
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   Where the nominal value will correspond to the value that
reflects the mission goals; the deviated value is any value
deviating from the nominal value. The maximum deviation
corresponds to the maximum deviation that can occur. The
solution Fitness is given by:

Fitness  = constant + (1-
N

N

i id∑ =1  ).(1-F).V                       (3)

   Where N is the total number of control steps done till the
end of testing the solution. F is the average normalised (with
respect to the maximum steering) steering of the robot over N
Control steps. V is the average speed of the robot over N
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steps. This maximises the fitness by minimising the total
absolute deviation and the steering deviation and maximising
the speed.

C. Generation of New solutions

   We use here a population formed of 4 chromosomes which
was found to be the smallest population to give convergence
whilst maximising computational simplicity and real time
performance. When all the solutions have determined a
fitness value, they are ready to generate new solutions.
   We used Mandavilli method [7] to adapt the control
parameters (mutation and crossover probabilities). The
strategy used for adapting the control parameters depends on
the definition of the performance of the GAs. In a non-
stationary environment (which is the case for outdoor and
dynamic environment), where the optimal solution changes
with time, the GAs should possess the capacity to track
optimal solutions. The adaptation strategy needs to vary the
control parameters appropriately whenever the GAs is not
able to track the optimum. It is essential to have two
characteristics in GAs for optimisation. The first
characteristic is the capacity to converge to an optimum
(local or global) after locating the region containing the
optimum. The second characteristic is the capacity to explore
new regions of the solution space in search of the global
optimum. In order to vary Pc (crossover probability) and Pm

(mutation probability) adaptively, for preventing premature
convergence of the GAs, it is essential to be able to identify
whether the GAs is converging to an optimum. One possible
way of detecting convergence is to observe the average
fitness value f’ of the population in relation to the maximum
fitness value fmax of the population.  fmax-f’ is likely to be less
for a population that has converged to an optimum solution
than that for a population scattered in the solution space. The
equations that determines Pc, Pm are given by :

Pc = (fmax-f")/(fmax-f’) f”≥f’ , Pm = (fmax-f)/2.(fmax-f’)   f≥f’   (4)
Pc =1                          f”<f’ , Pm =0.5                          f”<f’  (5)

    Where f” is the larger of the fitness values of the solutions
to be crossed, f is the fitness of the individual solutions. The
method means that we have Pc and Pm for each chromosome.
The type of crossover was chosen to be a single point
crossover for computational simplicity and real time
performance. In [7] this method was superior to the simple
GAs and gave a faster convergence rate of 8:1. We use this
adaptive method for finding the values of crossover and
mutation probabilities. This approach leads to fast
convergence, and enables adaptation in changing
environments relieving the designer from the usual need to
determine these values, heuristically [8,14].
We use an elite strategy, meaning that the best individual is
automatically promoted to the next generation, and used to
generate new populations. Also the GAs is constrained to
give ordered solutions within the sensor range so that we can
minimise the search space of the GAs and achieve faster
conversion.
   In order to justify these techniques we have conducted
various experiments with this Adaptive Genetic Algorithm

(AGA) with open range, and AGA with constrained range
and Simple genetic algorithm (SGA) with constrained range
for the problem of corridor following (using an indoor robot).
The SGA was tried with differing parameters in the range
[0.5 1.0] for Pc and [0.001 0.1] for Pm. It was found that the
AGA converges to a solution in average after only 7
iterations and 8 minutes of the real indoor robot time (most
of the time is consumed by moving forward to test the
solution and then moving backward to the same position).
The AGA with open range converges after a larger number of
iterations (11 iterations in average) as it needs more time to
explore the search space and determine its limits. This takes
about 18 minutes of our robot’s time to converge to a
solution. The SGA (using the optimal found parameters
Pc=0.68 and Pm=0.1) with defined limits converges to a
solution after an average of 32 iterations and 40 minutes of
our robot’s time. Thus, we conclude from these experiments
that the use of our constrained AGA mechanism makes
online learning practical.

D. Ending Criteria

The robot finishes learning a given mission when there is a
solution satisfying the criteria that all the average absolute
deviations from the nominal values for each behaviour k in a
given mission fall within the tolerance of sensors used in
measuring this deviation. For example in case of reaching a
goal via following an edge while avoiding obstacles, the
ending criteria will be when the average absolute deviation
from the desired distance for the edge following behaviour
reaches 10% (the degree of imprecision associated with the
sonar sensors used); and the average absolute deviation from
the safe distance for the obstacle avoidance behaviour
reaches 10% (the degree of imprecision associated with the
sonar sensors used); and when the average absolute deviation
from the goal  for the goal seeking behaviour reaches 13%
(the degree of imprecision associated with the infrared
scanner and beacons sensors used).

IV. EXPERIMENTAL RESULTS

   All the following experiments were performed using real
robots and the robot response was drawn by a bottle of paint
fixed at the back of the robot in case of indoor robots and a
tape connected to the left back wheel in case of the outdoor
robots. We had performed some experiments using the indoor
robots and the same algorithm was then transferred to the
outdoor robots operating in an open outdoor changing
environment which demonstrates the portability of our
algorithm and that the algorithm parameters are robot
independent.
    Figure (3-a) shows the robot trying to learn the best way of
coordinating three behaviours which are left edge following,
right edge following and obstacle avoidance in order in
perform the high level mission of aligning to the centre line
of a corridor. Note that this mission could be performed by
coordinating only left and right edge following behaviours
but we have added obstacle avoidance as a safety feature.
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              (a)                          (b)                         (c)                              (d)                                   (e)                               (f)

Figure 3: a) learning aligning to a corridor. b)following a complex corridor. c) learning right edge following while avoiding obstacles. d)
learning escaping a maze, avoiding obstacles and seeking a goal. e) outdoor robot learning to follow an irregular corridor whilst avoiding

obstacles. f) avoiding obstacles and aligning to the centre of the corridor.

    The robot had found a solution after an average of 7
iterations over 5 runs starting from different positions (5 runs
were chosen as the average over a higher number of runs
tends to be more or less the same as 5) which took about 8
minutes of robot time. The robot had followed the centre line
of the corridor with a small average deviation of 1.05 cm and
a standard deviation of 0.8. The learning system restricted the
obstacle avoidance behaviour to a near range of 18.75 to 25
c.m, and the left and right edge following were given high
range to control the vehicle in a wide range of corridors
within the sensors range (1m). The values of the left and right
edge following co-ordination parameters are different
because of the differing sonar characteristics and the different
robot kinematics, but the values are close because the
behaviours are similar but in opposite sides. In Figure (3-b)
we tried the robot in a complicated corridor (this experiment
was suggested by Bonarini [1]), in which the corridor
includes obstacles, the robot again followed the centre line of
the corridor with a small average and standard deviation.
   In Figure (3-c) the robot learnt to co-ordinate the right edge
following and the obstacle avoidance behaviours in order to
perform the mission of right edge following whilst keeping a
specified distance of 20 c.m and avoiding obstacles and
keeping a safe distance of 25 c.m. The robot converged to a
solution after an average of 6 iterations taking 7 minutes of
robot time. It achieved a solution involving a small average
and standard deviation for the both the desired edge
following and the safe obstacle avoidance distances. The
learning system had enlarged the range of obstacle avoidance
behaviour in order to deal as soon as possible with any
obstacles and avoid them at a safe distance.  The range of the
left edge following remained still large but different from the
previous experiments as the mission was different.
    In Figure (3-d) the robot is given a mission to escape a
maze (by giving penalty for 360o motion) and reach a goal
whilst keeping a safe distance from obstacles. This is a local
minimum problem set by Voudouris [13]. We solved the
problem simply by co-ordinating left (or right edge
following) and obstacle avoidance and goal seeking
behaviours.  We allowed our system to learn the best suited
behaviours for this mission and thus we activated all the

behaviours (left/right edge following and obstacle avoidance
and goal seeking). The robot converged to a solution after an
average of 6 iterations taking 7 minutes of the robot time.
The robot chose to activate left edge over a large range while
it had truncated right edge following. The robot selected left
edge following as providing a shorter path to the goal (in
other geometrical settings it may have chosen right edge
following). This experiment shows that the system is able to
choose the most appropriate behaviours for a given mission.
    In Figure (3-e) we used an outdoor robot with 7 sonar
sensors, its hardware was also based on embedded Motorola
processors (68040) running VxWorks RTOS with a motor for
motion and another for steering. We aimed to test the above
indoor environment techniques in more dynamic and
challenging outdoor environment involving systems with
different mechanical and sensor characteristics.
    In Figure (3-e) we applied the same mission that was
applied to the indoor robot in Figure (3-c) which is following
an irregular crop at a desired distance of 120 c.m whilst
avoiding obstacles at a distance of 1m. The robot converged
to a solution after an average of 6 iterations taking 3 minutes
of robot time (this robot is faster than the indoor robot). It
gave a small average deviation of 2.4 cm and a standard
deviation of 1.3 for the edge following, an average deviation
of 2.7 cm and standard deviation of 1.5 for the desired safe
distance.
    In Figure (3-f) we applied the robot to learning the same
mission learnt by the indoor robot in Figure (3-a). This
involved aligning the robot to the centre line of an outdoor
irregular corridor whilst avoiding obstacles at a safe distance
of 1m. The robot converged to a solution after an average of
8 iterations taking 4 minutes of the robot time with small
average deviation and standard deviation from the desired
values.
    All of the above experiments were performed in changing
weather conditions varying from rain through sunshine to
wind and on different ground surfaces. The robot was always
able to fulfil its objective and produce the same response
under these different conditions. This was because the co-
ordination parameters were learnt online and through
interaction with the real environment so that the system could
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deal with different environments taking into account the
sensor imperfections. The algorithm succeeded in learning
the appropriate parameters in such challenging environments
as an agricultural setting without human intervention, where
it is difficult for a human designer to estimate the
coordination parameters as he has to take into account, the
irregularities of the crop and the ground and environmental
conditions. This system can also be applied to environments
which are difficult to access such as the nuclear reactors,
space robots and under water vehicles, as it needs the only a
desired objective and then it will adjust itself. In all the above
experiments the system produced different solutions for the
same mission, however the average and standard deviation of
the worst solution (in terms of deviation) was close to those
produced by the best solution, which supports our thesis that
this techniques is capable of providing good behaviour
coordination. We also performed the statistical t-Test for
matched (paired) samples over the worst and best solution
and we found that the t-Test had showed that the two
solutions are statistically similar. Also, the hand crafted
coordination parameters always produced much larger
average and standard deviation (3 times greater) than the
automatically learnt ones. In addition, the learnt solution gave
an average path repeatability of 98 % when starting from
different positions.
    Although it is difficult to compare our work with other
researchers, as each group uses different robots, sensors and
different hardware but we have tried to compare the concepts
and obtained results. Bonarini [1], used evolutionary learning
to learn to co-ordinate fuzzy behaviours for autonomous
agents. This system was implemented in simulation and did
not use real robots, unlike our system. His system learnt rules
in the co-ordinator and kept constant the MF, which learnt the
structure of the behaviour but not the interpretation of the
data it uses. In case of the corridor following in experiment
(3-b) this caused the robot not to stay in the centre of the
corridor whilst we were able to balance the behaviours to
cause aligning to the centre line of the corridor. Also he did
not consider applying his system to more complicated
missions such as we have. We have faster conversion for our
system while learning online.
    Dorigo [3] used a classifier system to learn the co-
ordination strategy for a robot, in which the co-ordination is
performed by a bit string. He used a real robot to learn simple
tasks like goal-seeking. It took him 4 hours to achieve
convergence, while the maximum time for our system to
learn more complicated missions was 9 minutes.
    Mahadevan [6] used reinforcement and Q-learning for
learning basic behaviours aimed at simple tasks such as
finding a box and pushing it. After two hours of learning
(compared with maximum learning time of 9 minutes for
more complicated tasks for our system), the performance of
the robot at the end learning according to Mahadevan is
somewhat disappointing.

V. CONCLUSIONS

In this paper, we have presented a fast converging online-
learning GAs based system that learns the best co-ordination

parameters of fuzzy behaviours within a hierarchically
organised architecture for a given mission or plan. The GAs
had used adaptive learning parameters, guided constrained
GAs optimisation [11] and a “stopping window” criteria.
These techniques have enabled the GAs to converge in a
short interval (a maximum of 4 minutes using our outdoor
robots). The system learnt co-ordination of its behaviours to
perform different complicated tasks and the system was
always able to find the best co-ordination membership
parameters to perform the mission. It was also proved able to
identify the best suited behaviours for a given mission. The
system is appropriate for inaccessible environments such as
underwater or space environments as well as dynamic and
changing environments such as the agricultural environments.
The techniques are advantageous wherever programming
costs are a factor during the agent’s lifetime as the system
effectively programs itself.  For the future work, we intend to
integrate some form of planning with our system. We also
intend to implement the patented aspects of the system (UK
patent number “99 10539.7) in programmable hardware in
order to meet the needs of very fast real-time needs or cost
conscious applications.
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