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   Abstract-- This paper introduces a learning algorithm to on-

line adapt a robot controller consisting of fuzzy behaviors 

which are organized hierarchically and coordinated using 

fuzzy logic to any environmental or ground or even robot 

dynamics changes. This allows the robot to deal adaptively 

with outdoor changing environments such as the agricultural 

environment. 

    A modified version of the Fuzzy Classifier system (FCS) is 

used in this algorithm. The FCS is equipped with Long Term 

Memory (LTM) to make it possible for the learning system to 

transfer its problem solving expertise into a solution for the 

problem of interest, as well as allowing the GA to start its 

search from the best point found. The system also uses its 

sensory information in-order to narrow the search space for 

the Genetic Algorithm (GA). Adaptive mutation is also used to 

speed up the GA search. The proposed techniques have 

resulted in a fast converging algorithm that can be applied to 

adapt as well as learn the robot behaviors to perform a global 

task (such as get out of a maze while avoiding obstacles) on-

line with real robots with no need to simulation. The proposed 

system is also characterized by being adaptive so that if any of 

the environmental conditions or the robot dynamics is 

changed the robot can still adapt itself to the environment 

without the need to repeat the learning cycle from the 

beginning. The algorithm is robot independent so that it can 

be applied to different robots irrespective of their shapes or 

sizes. The Results achieved with a real robot are discussed and 

compared with the other methods to show the effectiveness 

and the speed of the proposed method.  

 

   Index Terms-- Fuzzy Logic, genetic algorithms, classifier 

systems, mobile robots. 

I. INTRODUCTION 

    In the past several years, fuzzy logic control has been 

explored for mobile robot reactive navigation [22] [24]. A 

robot control system is decomposed into several task 

oriented parallel computing modules called behaviors [21]. 

Each behavior is implemented with a set of fuzzy control 

rules, which has the form if x is A and y is B then z is C.  

 

Through fuzzification, fuzzy set operations and fuzzy 

reasoning processes, a fuzzy control rule produces a control 
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output. The control outputs of a fuzzy behaviors are 

produced by synthesizing all the outputs of the fuzzy 

control rules through defuzzification. The main advantage 

of fuzzy logic control is that expert knowledge and human 

experiences can be easily translated into fuzzy control rules. 

A fuzzy logic controller is also capable of accommodating 

approximate, imperfect and noisy information presented in 

real world environments and producing smooth control 

output [24].  

    GA  are a stochastic global search method that mimic the 

metaphor of natural biological evolution. GA operated on a 

population of potential solutions applying the principle of 

survival of the fittest to produce better and better 

approximations to a solution. At each generation, a new set 

of approximations is created by the process of selecting 

individuals according  to their fitness in the problem 

domain and breeding them together using operators 

borrowed from natural genetics. The GA begins by 

initialization of the genes of each individual in the 

population P(k), where k is the number of generations. It 

then generates P(k+1) from P(k) by evaluating the fitness 

of each individual in P(k) and selection of individuals from 

P(k) with a probability proportional to their fitness. 

Recombine, reproduce and mutate them using the genetic 

operators of reproduction, crossover and mutation. If 

termination condition is met, stop and return the best 

individual. Otherwise set k=k+1 and produce new P(k) [8]. 

    The goal of our research is to develop a robot for the 

outdoor agricultural domain. In an agricultural setting  the 

inconsistency of the terrain, the irregularity of the product 

and the open nature of the working environment result in 

complex problems of identification and sensing and control. 

Problems can range from the effects of varying weather 

conditions on vehicle sensors and traction performance, 

through to the need to deal with the presence of 

unauthorized people and animals. All these problems 

provide good opportunities for fuzzy systems as they excel 

in dealing with imprecise and varying conditions which 

characterizes such situations. In previous work [10], we 

have used a hierarchical fuzzy control architecture for 

controlling the robot in an outdoor agriculture media, but 

the parameters of the fuzzy controllers must be varied under 

different field environmental changes and robot kinematics 

changes. So for successful out-door navigation we need a 
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fast learning and adaptive system. In this paper a new 

algorithm is developed which is using modified version of 

FCS which have its GA search space reduced by the sensor 

data. Also this algorithm is equipped with a long term 

memory so that to make it possible for the learning system 

to transfer its problem solving expertise into a solution for 

the problem of interest, as well as allowing the GA to start 

its search from the best point found to the moment in the 

search space instead of starting from scratch. Also the 

practical problems involved with using learning for real 

robots such as determining the distance traveled by the 

robot (to be used in the objective function) are solved. The 

algorithm is designed to be robot independent so that the 

algorithm can be applied to different robots independent of 

their shapes or sizes. This algorithm will be used to modify 

and learn rules of a robot controller consisting of fuzzy 

behaviors which are organized hierarchically and 

coordinated using fuzzy logic to perform a global task (such 

as get out of a maze while avoiding obstacles) on-line with 

real robots with no need to simulation. The algorithm is 

adaptive  to any environmental or ground or even robot 

dynamics changes, with no need to repeat the learning cycle 

whenever any of the surrounding circumstances changes.  

    The proposed system can be viewed as a double 

hierarchy system in which the fuzzy behaviors are 

organized in a hierarchical form and the online learning 

algorithm is also a hierarchy in which in the higher level we 

have a population of solutions stored in the LTM and they 

are tested in a queue , if one of these stored experiences 

leads to a solution then the search ends, if none of these 

stored experiences leads to a solution then each of these 

experiences acquires a fitness by finding the distance it had 

moved before failing. The highest fitness experience is used 

as a starting position to the lower level GA which is used to 

produce new solution to the current situation. 

    This paper is organized as follows. In the next three 

section we briefly introduce the merits of learning using 

real robots over learning by simulation then we introduce 

the work done in designing fuzzy controllers using GA. 

Then fuzzy classifier systems and fuzzy hierarchical 

controller are introduced. Then we outline the algorithm 

and outline the problem definition and then explain the 

algorithm different components and the LTM technique and 

the choosing of crossover and mutation techniques and their 

variation effect on convergence rate. In the final section we 

introduce the results of the experiments done on real robots 

and compare them with results obtained by the researchers 

in this field. 

A. Why Online Learning 

    Broadly speaking, our work situates itself in the recent 

line of research which concentrates on the realization of 

artificial agents strongly coupled with the physical world. A 

first fundamental requirement is that agents must be 

grounded in that they must be able to carry on their activity 

in the real world in real time. Another important point is 

that adaptive behavior cannot be considered as a product of 

an agent considered in isolation from the world, but can 

only emerge from strong coupling of the agent and its 

environment[5]. 

    Despite most robotics regularly use simulations to test 

their models, the validity of computer simulations to build 

autonomous robots is criticized and the subject of much 

debate. Computer simulations may be very helpful to train 

and test robotics models. However as Brooks[4] pointed out 

“it is very hard to simulate the actual dynamics of the real 

world ”. This  may imply that effort will go into solving 

problems that simply do not come up in real world with a 

physical robot and that programs which work well on 

simulated robots will completely fail on real robots. 

    There are several reasons why those who want to use 

computer models to develop control systems for real robots 

may encounter problems [19]: 

a) Numerical simulations do not usually consider all the 

physical laws of the interaction of a real agent with its 

own environment, such as mass, weight, friction, inertia, 

etc.…. 

b) Physical sensors deliver uncertain values, and 

commands to actuators have very uncertain effects, 

whereas simulative models often use grid-worlds and 

sensors which return perfect information. 

c) Different physical sensors and actuators, even if 

apparently identical, may perform differently because of 

slight differences in the electronics and mechanics or 

because of their different positions on the robot. 

    Even if some researchers are using real robots to learn 

behaviors, these behaviors if learnt successfully are usually 

frozen in the robot so that if some of the robot dynamics is 

changed or the environmental circumstances is changed , 

the robot must repeat a time-consuming learning cycle. 

    In our case we aim to use Fuzzy Classifier Systems with 

GA as a rule discovery system to adapt the robot to ongoing 

environmental changes. Such adaptivity to the environment 

is important especially if using outdoor agricultural robots 

where the agricultural environment is rapidly changing. 

 

B. Fuzzy Logic and GA Learning 

    In many applications the robot’s environment changes 

with time in a way that is not predictable by the designer in 

advance. In addition , the information available about the 

environment is subject to imprecision , incompleteness and 

imperfection due to the perceptual quality of sensors. These 

problems limits the utility of traditional model-based 

reasoning approaches. 

    Evolutionary algorithms constitute a class of search and 

optimization methods guided by the principles of natural 

evolution. GA are optimization methods inspired by 

principles of natural evolution and genetics. GA  have been 

successfully applied to solve a variety of difficult 

theoretical and practical problems by imitating the 

underlying processes of evolution such as selection, 

recombination and mutation. Their capability of learning 

enables a GA to adapt to a system to deal with any desired 

task .  

    Fuzzy logic offers a framework for representing 

imprecise , uncertain knowledge. Similar to the way in 



In he 8th International Conference on Fuzzy Systems (FUZZ-IEEE'99), Seoul, Korea, August 22-25, 1999 

© Essex University 1999 

3 

which human beings make their decisions fuzzy systems are 

using a mode of approximate reasoning, which allows them 

to deal with vagueness and incomplete information. Fuzzy 

controllers show robustness with regard to noise and 

variations of system parameters. 

    Combinations of various soft computing disciplines 

which includes fuzzy logic ,neural networks genetic 

algorithms have acquired the name of hybrid systems. 

Several work have focused in automating the design of the 

rule bases so that the fuzzy controller is fully optimized.  

    Karr [14]  , developed systems that learned to balance an 

inverted pendulum. The system learnt slowly , taking 

several thousand generations to develop a good controller.     

    Lee and Takagi developed the technique in [16] , using 

real coded GA to represent rules as vectors. They used a 

fixed length string and a variable length string , with results 

markedly better than Karr’s on the same problem ,due to 

the fact that the GA had the flexibility to design the system 

antecedent sets. 

    Herrera et.al [11] describe a system where the fuzzy rule 

bases are coded using strings of real numbers , combined 

with arithmetical crossover and mutation operators. 

    Leitch in [17] had  developed a new algorithms in which 

he used a new coding technique called context dependent 

coding (CDC)  which is unlike the position dependent 

schemes where the meaning of the codon is determined by 

its absolute position in a chromosome. The CDC codon’s 

interpretation is determined by  the context in which it is , 

that is the meaning is dependent on the values of 

surrounding codons. This means that some sequence of 

codons will have the same interpretation regardless of  

where they lie on the chromosome. The main advantage of 

this is that it allows for great flexibility , so crossover is 

very simple and can occur at any site as the coding is robust 

to disruption due to the meaning being dependent on 

context rather than position. He also used an implicit 

chromosome reordering operator which improved the 

algorithm performance for this application , reducing 

epistasis by using an estimate of it to favor  chromosomes 

with low epistasis during selection. Because he was using 

simulation, he introduced the co-evolution of controller test 

sets which leads to a situation similar to a biological 

predator/prey pair , where controllers are continually 

adapting to a new test sets , while the test sets adapt to be as 

difficult for the controller as possible. He used the GA off-

line using simulation and training data set to optimize his 

fuzzy rule set in robotics for very simple independent  

problems like corridor tracking , performing a multi point 

turn in a confined space.  

    Hoffmann [12] had implemented a new design of  

hierarchical fuzzy controllers using messy genetic 

algorithms which is unlike the classical GA which encode 

candidate solutions to strings of fixed length. Messy GA 

work with strings of flexible length in which genes can be 

arranged in any order. Each gene is composed of a pair of 

integers. The first entry specifies the meaning of the gene , 

which in case of a standard coding is determined by the 

location within the string. The second integer plays the 

same role as in classical GA by representing the value of 

the gene. This algorithms has new genetic operator such as 

the cut-splice operator which replaces the crossover. It is 

immune to disruption by the crossover techniques and very 

robust as the chromosome is variable sized. He also applied 

the problem again to the simulation of learning the obstacle 

avoidance and goal seeking for the robot by using different 

input data and applied the controller to a real robot. 

   However a lot of work remains to be done. The most 

important problems are to increase the speed of 

convergence while maintaining stability, implementing pure 

reinforcement learning , these problems will be involved in 

our research. 

 

C. Fuzzy Hierarchical Systems 

    Modular decomposition is a well known technique for 

reducing system complexities. Hierarchies are a proven 

method of effectively handling and managing modularized 

control structures . Albus[1], among others shows how any 

complex activity can be decomposed into a hierarchy of 

behavioral modules each consisting of few behaviors. He 

sites many examples of such systems ranging from the 

organization of government through to control architecture.  

    For mobile robot and complex reactive systems, the size 

of the input space requires a complicated control function. 

This mapping can be made manageable by breaking down 

the input space for analysis by multiple agents, each of 

which responds to specific types of situations and then 

integrating the recommendations of these agents. Agents 

also called behaviors, can be designed independently to 

exhibit behaviors such as goal seeking, obstacle avoidance, 

and wall following [24]. The work presented in this paper 

seeks to apply these hierarchical efficiencies to the 

organization of fuzzy architectures.  

    There are many ways for behavior co-ordination. A 

classical robot architectures such as the subsumption[4] 

architectures which decomposes the system into small 

independent decision-making processes , or behaviors. 

These architectures use a on-off switching schema : in each 

situation , one behavior is selected and is given complete 

control of the effectors. This simple scheme may  be 

inadequate in situations where several criteria should taken 

into account. Also this rigid organization contrasts with the 

requirement that an autonomous robot can be programmed 

to perform a variety of different tasks in a variety of 

environments[24]. Later proposals relied on dynamic 

arbitration policies , where the decision of which behavior 

to activate depends on both the current (sub- goal), given by 

the planner and the environmental  conditions. Both fixed 

and dynamic arbitration policies can be implemented using 

the mechanisms of fuzzy logic. The two main advantages in 

doing so are : 

a) The ability to express partial and concurrent 

activation’s of behaviors . 

b) The smooth transition between behaviors[9]. 

    In previous work [10] we have developed a fuzzy 

hierarchical controller which can combine four behaviors 

and navigate in an unknown environment reactively . 
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D. Fuzzy Classifier Systems 

    A classifier system in an adaptive, general purpose 

machine learning system which is designed to operate in 

noisy environments with infrequent and often incomplete 

feedback. 

    Classifiers simply are if-then rules. The name Learning 

Classifier Systems (LCS) comes from the capability of rules 

to classify messages into arbitrary message sets [13]. 

However, this is only one facet of rules. In classifier 

systems rules or productions have the same role as 

instructions in ordinary programs. Such production systems 

are computationally complete [20] and therefore as 

powerful as any other Turing-equivalent programming 

language. 

 

 

 

 

 

                                               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 : The classifier system. 

    A classifier systems is a machine learning system which 

learn rules in order to guide its performance in any arbitrary 

environment [7]. Its main components are a production 

system and one or several learning algorithms as shown in 

Fig. 1. This classifier system is characterized by a very 

simple pattern language, parallel rule firing and message-

based internal communication. 

    At the top level, the classifier system communicate with 

the environment. The classifier system effects action in the 

environment and detects information on the state of the 

environment. Moreover, an action or sequence of actions 

may lead to payoff received by the classifier system. The 

classifier system consists of the production system and two 

learning components, namely an apportionment of credit 

system and a rule discovery system. In a Holland classifier 

system [13], the apportionment of credit algorithm for 

updating rule weights is a bucket brigade algorithm, the rule 

discovery algorithm is a GA. 

    The bucket brigade algorithm modifies the weight of 

rules (called the strength) in the rule base with the payoff 

from the environment, with payments from message 

consuming rules and with payments to message producing 

rules. However, for the bucket brigade to work properly, all 

useful rules must be present in the rule base [5]. 

    Generating new rules is the task of the GA. The GA sees 

the rule base as a population of classifiers, whose fitness is 

the rule-strength obtained under the bucket brigade 

algorithm. The GA is invoked by the production system 

periodically, and it generates a new population of rules 

according to rule-strength. However for the GA to work 

properly, the strengths of the rules generated by the bucket 

brigade algorithm must reflect the true fitness of the rules. 

    There are two different approaches in learning fuzzy 

controllers using GA. In the so called “Michigan” approach 

of GA [7] the population consists of fuzzy rules. The fitness 

is assigned to individual rules competing among each other 

in the evolution process. This approach is appropriate for 

on-line learning because the fuzzy controller is built of the 

population itself and is improved constantly in the evolution 

process [18]. A mechanism of credit assignment to 

individual rules is required , which is difficult when 

reinforcement is only provided sporadic after a sequence of 

control actions. Credit assignment procedures like the 

bucket brigade can be used to distribute reinforcement 

among fuzzy rules activated sequentially in time. 

    The so called “Pitts” approach of GA uses a population 

of fuzzy controllers. Each individual alone is a candidate 

solution to the optimization problem. It is only possible to 

learn off-line because in each generation a population of 

solutions has to be tested [18]. The fitness function 

evaluates the performance of the entire fuzzy controller. 

The assignment of credit is easier but involves the 

drawback that rules of  bad  quality sometimes benefit from 

good ones. 

    In many complex environments the LCS have not had 

not much application due in part to the limitations of their 

syntax to represent continuously varying variables. A 

simple and promising way of dealing with this problem is 

through fuzzy set theory [11]. 

    A FCS is a genetic based machine learning system whose 

classifier list is a fuzzy rule base. They learn by creating 

fuzzy rules which relate the values of the input variables to 

internal or output variables. They integrate the same 

elements of the LCS but working in fuzzy environment.  

    Valezuela –Rendon [23] gave the first description of the 

fuzzy classifier system , the classifiers are fuzzy rules , 

similar to fuzzy controllers. Each classifier is a binary string 

that encodes the membership function of  the fuzzy sets 

defined for variables involved in the problem so that the 

number of bits in a condition or an action is the number of 

fuzzy sets defined over a given variable. A “1” indicates 

that the corresponding fuzzy set is part of the condition or 

action. He tested his fuzzy classifier system in the 

identification of static one-input one-output systems using a 

stimulus-response fuzzy classifier system . 

    Bonelli [3]  produced a new system in which each 

variable has associated a fuzzy set and i.e. each variable is 

described by a membership function. This description is 

variable and will evolve through genetic search. Each 

classifier contains the actual description of the membership 

functions that correspond to each input and output variable, 

which consists of parameters that define the associated 
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fuzzy set. There is also an associated strength to each 

classifier that indicate its credibility. The degree to which 

each classifier is activated is calculated by taking the 

minimum of the current inputs membership values with 

respect to the fuzzy sets present in the condition part of 

each classifier. In the output interface the partially activated 

fuzzy sets of same output variables are combined using the 

weighted sum method to produce a final fuzzy set for each 

output variable. Its credit assignment system only works 

with positive rewards. It deducts a fraction of each active 

classifier strength and distributes the payoff  quantity of the 

obtained reward to each active classifier strength according 

to a measure of goodness. This measure determines the 

quality of the classifiers action and the quality of the 

classifiers conditions for this particular input. He applied 

this model to the same examples used by [23] and he 

obtained better results. 

    Very few and simple applications of on-line learning in 

robotics among these are Bonarini [2] in which he suggests 

a hybrid method solving the co-operation versus 

competition problem. He uses sub `populations of similar 

fuzzy rules ,which are undergoing a local competition. Co-

operation of fuzzy rules is achieved by composing each of 

the best local solutions into an entire fuzzy controller, he 

had applied this method for simple behaviors like following 

another  robot or moving in a corridor and then he had 

coordinated them, but in this work he developed his 

controllers by simulation and then he applied it to real 

robots so it is not pure on-line learning. 

    Other work was done by Furuhashi [7] on which he 

based his credits for each rule on the number of 

membership function in the antecedent having values larger 

than zero. He applied his algorithm with a standard GA to a 

very simple simulation problem of two ships attempting to 

avoid each other.  

 

II. THE FUZZY HIERARCHICAL SYSTEM CONFIGURATION 

     Most commercial fuzzy control implementations feature 

a single layer of inferencing between two or three inputs 

and one or two outputs. For autonomous robot, however the 

number of inputs and outputs are usually large and the 

desired control behaviors are much more complex. For 

example in our case we have 7 sonar inputs and an infrared 

bearing sensor i.e. eight inputs and we have two outputs 

which are the left and right wheel speeds and assuming that 

each input will be represented only by three fuzzy sets and 

each output by four fuzzy sets. In this case, using a single 

layer of inferencing will lead to determining 3
8
=  6561 rules 

which is difficult to determine if not impossible. While if 

we divide the whole system to four co-operating behaviors , 

the obstacle avoidance which consists of three sonar inputs 

each represented by three fuzzy sets, this leads to determine 

3
3
 =27 rules, the left and right wall following each having 

two sonar inputs each represented by three fuzzy sets this 

will lead to 3
2
 =9 rules in each behavior, the goal seeking 

behavior only taking one infrared bearing scanner input 

each represented by seven fuzzy leading to 7 rules. Then 

the total required rules to be determined in the individual 

behaviors are 27+9+9+7=52 rules which is easy to be 

determined. However we need some form of co-ordination 

scheme in order to combine these behaviors into a single 

action. In this paper we have chosen the fuzzy context rule 

combination method developed by Saffiotti [24] to perform 

the high level co-ordination between the behaviors. The 

context depending rules are characterized by each behavior 

generates preferences from the perspective of its goal. Then 

each behavior has a context of activation, representing the 

situations where it should be used. The preferences of all 

behaviors, weighted by the truth value of their contexts, are 

fused to form a collective preference. Then one command is 

chosen from the collective preference.   

    The work described in this paper suggests a solution 

based on using fuzzy logic to both implement individual 

behavior elements and necessary arbitration (allowing both 

fixed and dynamic arbitration policies to be implemented). 

We achieve this by implementing each behavior as a fuzzy 

process and then using other fuzzy processes to co-ordinate 

them. 

    Each fuzzy process provides some basic machine 

behavior. In this system four behaviors will be used for 

robot navigation, namely goal seeking, obstacle avoidance, 

right edge-following and left edge following.  

    In the obstacle avoidance behavior, the robot is required 

to avoid obstacles from the front. To accomplish this task, 

the three front sensors of the robot are used, which are the 

Left Front Sensor (LFS), Medium Front Sensor (MFS) and 

the Right Front Sensor (RFS). The sensor configuration is 

shown in figure (2). 

    The left and right edge following are used to follow a 

wall or an edge on the left or right side of the robot , thus 

enabling it to navigate out of mazes and in tight corridors. 

The Left edge following behaviors uses two left side 

sensors : Left Side Front (LSF), Left Side Back (LSB). The 

Right edge following behaviors uses two Right side sensors 

: Right Side Front (RSF), Right Side Back (RSB). 

    The goal seeking  behavior is used for the robot to reach 

a goal, and the path of the robot to its goal is completely 

reactive with no previous planning and the goal in our 

experiments is in the form of an infra-red beacon. To 

accomplish this behavior the input to this behavior is from 

an infra-red scanner. 

    

 



In he 8th International Conference on Fuzzy Systems (FUZZ-IEEE'99), Seoul, Korea, August 22-25, 1999 

© Essex University 1999 

6 

                
 
Figure 2 : The robot and its sensor configuration. 

 

 

 

 

(a)                                            (b)   

 

Figure 3: a) The Membership function (MF) of the front 

sensors b) The MF of the side sensors. 
 

    In this work  all input Membership Functions (MF) of all 

the behaviors are pre specified to the controller and are 

shown in Fig. 3, Fig. 5. The output MF of  all the behaviors 

are shown in Fig. 4-a and are chosen to be the right and left 

wheel velocities. These MF were used in our previous work 

to guide a robot in an outdoor agricultural environment and 

they were derived using human experience according to the 

designer estimates of the safety distances as well as the 

upper and lower limits of the sensor readings. 

    The rule bases of the left and right edge following and 

the obstacle avoidance are to be learnt and modified on-line 

using real robots and using the proposed on-line GA 

algorithm, however we have supplied the rule base of the 

goal seeking behavior which was designed using human 

experience. The reason for this is, in this work we are 

interested in solving the problem of getting out of a maze 

safely without hitting any obstacles, and we are not 

interested of finding the optimal path toward the goal, we 

are only interested in reaching this goal, which is the case in 

an agricultural domain. 

    In the following design of each single behaviour we will 

use singleton fuzzifier, triangular membership functions, 

product inference, max-product composition, height 

defuzzification. The selected techniques are chosen due to 

their computational simplicity.  

 

The equation that maps the system input to output is given 

by: 

                          (1) 

Where M is the total number of rules , y is the crisp output 

for each rule, Ai  is the product of the membership 

functions of each rule inputs, G is the number of inputs. 

More information about fuzzy logic can be  found in [15]. 

    The resultant architecture takes a hierarchical tree 

structure form and is shown in Fig. 6. Saffiotti [24] defines 

fuzzy command fusion as interpretation of each behaviour 

producing unit as an agent expressing preferences as to 

which command to apply. Degrees of preferences are 

represented by a possibility distribution (or fuzzy as in our 

case) over the command space. In our hierarchical 

architecture we use a fuzzy operator to combine the 

preferences of different behaviour into a collective 

preference.     

    According to this view, command fusion is decomposed 

into two steps: preference combination and decision. In 

case of using fuzzy numbers for preferences, product-sum 

combination and height defuzzifcation. The final output 

equation is [24]: 

 

C=                    (2) 

Where i = right behavior, left behavior, obstacle avoidance, 

navigation.  Ci  is the behavior command output (left and 

right velocity in our case). These vectors have to be fused in 

order to produce a single vector C to be applied to the 

mobile robot. BWi  is the behavior weight. The behavior 

weights are calculated dynamically taking into account the 

situation of the mobile robot. By doing this there is no need 

to pre-plan as the system plans for its self depending on the 

current situation of the environment.    

    In figure(6) each behavior is treated as an independent 

fuzzy controller and then using fuzzy behavior combination 

we obtain a collective fuzzy output which is then 

deffuzzified to obtain a final crisp output. 

     In behavior coordination there are some few parameters 

that must be calculated in the root fuzzy system. These 

parameters are the minimum distance of the front sensors 

which is represented by d1, in this case A= 40 c.m, B=100 

c.m. The minimum distance of the left side sensors which is 

represented by d2 , the minimum distance of the right side 

sensors is represented by d3, in this case A=18 c.m, B=36 

c.m (these values were designed according to the designer 

interpretation of safe distances) After calculating these 

values, each of them is matched to its membership function 

which are shown in Fig. 4-b and these fuzzy values are used 

as inputs to the context rules which are : 
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IF d1 IS LOW THEN OBSTACLE AVOIDANCE. 

IF d2 IS LOW THEN LEFT WALL FOLLOWING 

IF d3 IS LOW THEN RIGHT WALL FOLLOWING 

IF d1 IS HIGH AND d2 IS HIGH AND d3 IS HIGH 

THEN GOAL SEEKING. 

 

 

 

 

 

(a)                                           (b) 

 

Figure 4: a) The MF of the left and right wheel velocity of 

the robot. b) The MF of d1,d2,d3. 

 

 

   

 

 

 

 

 

Figure 5: The MF of bearing from the goal for the goal 

seeking behaviour 

 

These context rules determines which behaviour is fired and 

to what degree, then the final robot output is calculated 

using equation 2.  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6: The behavior coordinated system. 

 

III. OVERVIEW OF THE PROPOSED ON-LINE ALGORITHM 

    In this work, we are considered of making the robot learn 

to adapt its combined behaviors to achieve a high level goal 

which is getting out of a maze while avoiding obstacles. 

 

Table 1 : The Fuzzy rule base of the goal seeking 

behaviour. 

Bearing From 

Goal 

Left Velocity RightVelocity 

Very Very Negative Very Low Very High 

Very Negative Very Low Very High 

Medium Negative Low Medium 

Normal Very High Very High 

Medium Positive Medium Low 

Very Positive High Very Low 

Very Very Positive Very High Very Low 

 

    In a real-time GA, it is desirable to achieve a high level 

of online performance while, at the same time being 

capable of reacting rapidly to process changes requiring 

new actions. Hence it is not necessary to achieve a total 

convergence of the population to a single string, but rather 

to maintain a limited amount of exploration and diversity in 

the population. Incidentally, it can be observed that near-

convergence can be achieved in terms of fitness, with 

diverse structures. These requirements mean that the 

population size should be kept sufficiently small, so that 

progression towards near-convergence can be achieved 

within a relatively short time. Similarly the genetic 

operators should be used in a way that achieves high-fitness 

individuals in the population rapidly [18]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                     

 

 

 

 

 

 

 

 

 

 
Figure 7: Block diagram of the Proposed on-line algorithm. 
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 Fig. 7 introduces a block diagram of the operation of the 

proposed on-line algorithm. In this system as we are 

concerned in adapting an existing controller to the existing 

environment, we will assume that all the behaviors have 

useless rules that cannot achieve the robot goal (which is 

getting out of a maze while avoiding obstacles) and need to 

be modified. This can also be viewed as learning the rules 

of the different behaviors from scratch. As argued by [21], 

if the robot starts with a random rule base then it can do 

unpredictable things which can damage the robot or turn the 

robot on spot with out moving at all. To avoid this problem, 

the obstacle avoidance behavior as well as the right and left 

wall following are randomly initialized to have the same 

consequent such consequent is move forward with normal 

speed or move to the right with low speed, but not move 

with zero speed. By doing this then we make sure that the 

robot is moving to start its learning sequence. This is  

similar to classifiers systems where all the classifiers are 

initialized with same fitness strength. In the following 

sections the algorithm component will be introduced. 

A.  Finding the Blamed Rules 

    After rule base initialization of the three behaviors the 

robot starts moving with these bad rule bases, until it hits an 

obstacle or wall. Then the on-line  algorithm is fired to 

generate new set of rules to escape from this collision. As in 

classifier systems, in order to preserve the system 

performance the GA is allowed to replace a subset of the 

classifiers (the rules in our case). The worst m classifiers 

are replaced by m new classifiers created by the application 

of the GA on the population. The new rules are tested by 

the combined action of the performance and apportionment 

of credit algorithms [6]. In our case, only 4 rules 

consequences will be replaced and these rules are the most 

effective rules in the situation of crashing, because they are 

the mostly blamed for this crashing. These rules are found 

by making the robot using its Short Time Memory that 

maintains the last 2000 actions and replaying them to 

remember the robot path and find the blamed rules. The 

distance backed at this step will be used after as the starting 

point of all the solutions proposed by the algorithm. The 

method of specifying the rules to be replaced will be 

explained later in detail. 

 

B.  Fitness determination and Credit assignment: 

    The system fitness is evaluated by the distance moved by 

the robot from its starting point before crashing. To 

determine this distance we use triangulation between 3 

infrared beacons placed at known distances to know how 

far away is the robot from an origin point. And then by 

subtracting this distance from the distance of the starting 

point from the origin we can know the  

distance the robot had travelled before crashing.  

C. LTM Application  

    After determination of the rules whose consequences to 

be replaced, the robot then matches the current rules to 

chunks of rules stored in a LTM. If for examples we have 

rules 1,2,3,4 to be replaced and in the first chunk we have 

the consequences of rules 1,3,6,7. Then the consequences of 

rules 1,3 will be changed and 2,4 will remain the same. 

Then the robot begins moving with this modified rule base. 

If it survives and gets out of this situation with no collision 

then these rules are kept in the rule base of the controller 

and we have saved the process of learning a solution to this 

problem from the beginning by using our memorized 

experience. If the robot crashes again, it returns to the first 

point where it had started and measure the distance it had 

moved to determine the fitness of the solution proposed by 

this memory chunks. After all memory chunks have been 

examined and the robot still crashes, the best solution 

proposed by LTM is kept in the rule base of the controller, 

in order to serve as a starting position of the GA search 

instead of starting from a random point. This LTM will 

serve to speed up the search. 

 

D. Producing New Solution by GA 

    The GA then starts its search for a new rule 

consequences for the blamed rules. The fitness of every rule 

in the population is proportional to its contribution in the 

final action. If the proposed action by the new solution 

results in improvement in the distance then the rules that 

have contributed more will have their fitness increases than 

the rules that have contributed less in this situation. If the 

result was a decrease in the distance then the rules that have 

contributed more to this action will have their fitness less 

than the rules that have contributed less to this action. This 

allows us to go away from the those points in the search 

space that causes no improvement or degradation in the 

performance. The method employed in credit assignment 

will be discussed later. 

    Then the parents for the new solution are chosen 

proportional to their probability using the roulette-wheel 

selection process. And the genetic operations of crossover 

and mutation are applied. The crossover is selected to be 

1.0 by empirical experiments and the mutation is variable 

according to the improvement in the distance. If this there is 

no improvement or there is degradation then the mutation is 

set to high probability was chosen to be 0.5 by empirical 

experiments, which means that we want to introduce new 

genetic materials in the solution. If the result was 

improvement then the mutation rate is lowered proportional  

to this improvement until it reach a high limit (to be 

discussed later) , the mutation is set to zero which means 

that we want to keep this genetic material with no high 

disruption and to fine tune the solution using crossover. 

Binary coding is used in coding of the chromosomes. 

    After the GA generates a new solution the robot tries the 

controller with the modified rule base, if the robot had 

moved a certain distance with no crashing ( to be 

determined later), then this is an ending criteria, which 

means that the robot had learnt this situation. Then the 

robot keeps this solution to the rule base and keeps it in the 

LTM. If not It tries from the step B skipping step C. 

In the following section we will explain these steps in more 

detail. 
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    The proposed system can be viewed as a double 

hierarchy system in which the fuzzy behaviors are 

organized in a hierarchical form and the online learning 

algorithm is also a hierarchy in which in the higher level we 

have a population of solutions stored in the LTM and they 

are tested in a queue , if one of these stored experiences 

leads to a solution then the search ends, if none of these 

stored experiences leads to a solution then each of these 

experiences acquires a fitness by finding the distance it had 

moved before colliding. The highest fitness experience is 

used as a starting position to the lower level GA which is 

used to produce new solution to the current situation. 

 

IV. DETAILED ALGORITHM DESCRIPTION 

A. Finding the Blamed Rules 

    The robot is equipped with a Short Time Memory (STM) 

composed from the last 2000 actions the robot had taken 

using the HFLC till collision (with an obstacle or a wall). 

When it begins moving again using the new generated rule 

base the STM is initialized to record the new 2000 actions. 

    As mentioned before the robot starts its operation by 

moving using the initial rule base until collision. At the 

moment of collision the robot begins backing off by 

replaying the actions that are stored in the memory starting 

from the last action it had taken. 

   We want to determine the distance it backs off to make it 

escape from crashing again and to enable us to find the 

blamed rule for this crash. In the following analysis we will 

try to make all the computations related to the robot 

dimension, so that when we move from large robot to small 

robot, the algorithm can still work but with changing some 

parameters in the algorithm that depend on the robot 

dimensions. This means that our algorithm is robot 

independent and it is not developed for one kind of robot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure (8): The Robot turning distances. 

 

    As the collision with an obstacle requires steering away 

from it, then we are required to find the minimum distance 

that if we applied maximum steering we can pass without 

hitting the obstacle. 

    The minimum front distance from which the robot if 

applied maximum steering can escape from hitting an 

obstacle is equal to the width of the robot (W) as shown in 

figure (8). The robot also must satisfy that at this point the 

left and right side will also be safe at turning. This can be 

satisfied be making the minimum distance from the left 

walls (X1) equal to L1-W and from the right side X2 equal 

to L2-W. Then if we made the robot back off until the 

minimum front sensor is equal to or just greater than  W, 

and the minimum left sensor is equal to or just greater than 

X1,and the minimum right sensor is equal to or just greater 

than X2. In this distance if the robot applied maximum 

steering, it should avoid the obstacle safely. We will call 

this distance the First Backing (FB). This technique is also 

efficient when encountering dead ends or when the space is 

tight for the robot to maneuver, in this case the robot will 

go back until it is possible for it to maneuver.  

    But doing this means that the robot at this distance must 

try maximum steering to get out of this situation, while if it 

backed more, it can apply less steering and get out of this 

situation. This is similar to a driver  near an end of a corner 

tries maximum steering to get out of this situation, while if 

he backed more he can easily get out of this situation. Also 

if corrected our self earlier we can avoid collision. So we 

will back another distance double the FB and we will call 

this Second Backing (SB). At the end point of SB the robot 

stops backing and consider this point its starting point of all 

the next iterations. 

    As mentioned earlier we cannot replace all the rules in 

the population, so we will replace only a part of the 

population. We will choose to replace the most two 

effective rules in each backing, these rules are blamed, 

because if they had taken the right actions, the robot can 

avoid collision. So at FB we stop and find all the rules that 

fired at this situation and evaluate strength of each rule by 

how much it contributed to the final action, the greater it 

contributes the larger it will be blamed for collision by 

reducing its initial fitness with respect to other rules, the 

most two effective rules (lowest fitness) consequents will 

be replaced later by two new rules consequents. The robot 

then backs and at SB it does the same for the rules at the SB 

situation, and the most two effective rules (lowest 

fitness)consequents will be replaced later by two new rules 

consequents. The population of GA is composed of all the 

rules that have contributed to the actions at FB, SB. 

 

B. Fitness determination and Credit assignment 

    In this work, we are considered in making the robot learn 

to adapt its combined behaviors to achieve a high level goal 

which is getting out of a maze while avoiding obstacles . 

This could be done by introducing the robot to different 

situations (such as corridors, obstacles, walls) and through 

avoiding collisions with these objects, the robot can learn 

these tasks by adapting its combined behaviors. In this case 

reinforcement is available only when the performing system 

collides or escapes from collision after an ending criteria. 

The state of the performing system where the performance 

is evaluated is called a reinforced state [2]. The 
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achievement of a reinforced state may not depend only on 

the last action done, but also on the state from where it has 

been applied, i.e. , on the actions done before. This is called 

delayed reinforcement [2]. Delayed reinforcement concern 

tasks where the performing system needs time to express its 

behavior. For example; this is the case for an agent blocked 

in a corner that should maneuver to escape. It should apply 

maneuvering behavior for a given period, to be able to 

demonstrate its ability. Only at the end of this period it may 

receive a reinforcement that judges its performance. If this 

is evaluated too early, the system will never discover how 

to escape, since the intermediate states are not desirable per 

se, but as part of the escaping maneuver. The only 

possibility is to evaluate the agent’s performance when it 

succeeds in escaping, and when it is collides with that 

corner. From this we evaluate the performance of an agent 

after a sequence of control steps called episodes. This 

evaluation strategy averages the effects of the single rules, 

and, in general, it has a stabilizing effect [2]. At the end of 

each episode, the reinforcement program evaluates the 

agent’s performance and it distributes the corresponding 

reinforcement to the rules that have contributed to control 

actions at FB and SB. 

    In the following actions we will not use the Bucket 

Brigade algorithm for apportionment of credit assignment. 

As discussed in [26], the bucket-brigade algorithm may 

loose effectiveness as action sequences grow long, and as 

we use HFLC system we have long chains of rules. So we 

will only apply credit assignment to the rules FB and SB, as 

it will be shown that modifying these rules is sufficient to 

find a solution and there is no need to backward chaining.  

    The fitness of each rule at a given situation is given as 

follows: 

By applying equation (2) and substituting Ci from 

equation(1) we can write the crisp output Yt as: 

 

                 (2) 

 

 

 Where M is the total number of rules , y is the crisp output 

for each rule , Ai  is the product of the membership 

functions of each rule inputs. G is the number of the input 

variables, mmy is firing strength of each of the four 

behaviors. 

    Because we are having two output variables which are 

the left and the right wheel speeds, then we have Yt1 and 

Yt2. Then the contribution of each rule p for  a behavior y to 

the total output Yt1 is denoted  by Sr1 where Sr1 is given by: 

Sr1        =          (3) 

 

Sr2  is given by: 

Sr2=                   (4) 

 

    If there is improvement of the distance, then the rules 

that contributed more must be given more fitness to boost 

their actions. If there is no improvement then the rules that 

contributed more must be punished by reducing their fitness 

w.r.t to other rules and beginning examining the solutions 

that were proposed the small contributing actions. 

The fitness of each rule is given by: 

Srt =    Constant + (dnew-dold)                  (5) 

where dnew is the distance after producing a new rule base 

by the online algorithm, dold is the distance moved by the 

robot from the previous iteration, dnew-dold is the distance 

improvement or degradation caused by the adjusted rule 

base produced by the algorithm. In the first population of 

GA, as there is no distance moved yet, we blame only the 

rules that have contributed more for the action of collision 

and the fitness of each rule is given by:  

Srt =    Constant -                                  (6) 
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Figure (9): The Position estimation using the 3 infrared 

beacons. 

 

    In this way the rules that have contributed more to this 

bad action will have lower fitness value than the rules that 

have less to this action which allows the GA to go away 

from these bad actions and begins exploring  other actions. 

 

1) Determination of the distance moved by the robot 

     In simulation, it is very easy to determine exactly,  

the distance the robot had moved, while in real world it is 

difficult. 

    In the lab experiments to determine this distance we have 

used three infrared beacons placed at right angels and at 

known distances a, b, and the infrared scanner sensor 

mounted on the robot gives bearing of the robot w.r.t. the 

three beacons. The distance of the robot from a point O 

(beacon number zero ) is given by: 

 

r =                                          (7) 

where C is given by  and  is given by: 

 

tan( )= . 

 

    At the first collision of the robot (sensed by its bumper 

switches) and after the FB and SB. The robot at the end of 

SB calculates its distance r from point O which will be the 

original point for any new distance and is denoted by ro. For 

example if the robot moves new distance r1, then dnew will 

be equal to: 

 

  (8) 

C. Long Time Memory (LTM) Application 

    Zhou [27] presented CSM (Classifier System with 

Memory) system that addresses the problem of long versus 

short term memory, i.e. how to use past experience to ease 

the problem solving activity in novel situations. Zhou’s 

approach is to build a system in which a short and long term 

memory are simultaneously present. The short term 

memory is just the standard set of rules found in every 

learning classifier system; the long term memory is a set of 

rule chunks, where every rule chunk represents a 

generalized version of problem solving expertise acquired 

in previous problem solving activity. Every time the agent 

is presented a problem it starts the learning procedures 

trying to use long term experience by means of an 

appropriate initialisation mechanism. Thereafter, the system 

works as a standard classifier system-except for some minor 

changes- until an acceptable level of performance has been 

achieved. It is at this point that a generalizer process takes 

control and compress the acquired knowledge into a chunk 

of rules that are memorized for later use in the long term 

memory. 

    In  our system, as the robot begins the motion, it had no 

previous experience at all and the memory is empty. But as 

it begins learning by GA , it begins filling the memory with 

chunks of rules. Each rule chunk is consisting of the rules 

that were learnt and the actions (consequences)  that were 

learnt by the GA.  

    Each time the robot is presented a situation to learn, it 

begins checking if the rules to be modified are present in 

the memory chunks or no. If for example we have rules 

1,2,3,4 to be replaced and in the first chunk has the 

consequences of rules 1,3,6,7. Then the consequences of 

rules 1,3 will be changed and 2,4 will remain the same. 

Then the robot begins moving with this modified rule base. 

If it survives and gets out of this situation with no collision 

then these rules are kept in the rule base of the controller 

and in this way we have saved the process of learning a 

solution to this problem from the beginning by using our 

memorized experience. If the robot collides again, it 

measures the distance it had moved to determine the fitness 

of the solution proposed by this memory chunks using 

equation (7). After all memory chunks have been examined 

and the robot still collides. The best solution proposed by 

LTM is kept in the rule base of the controller, in order to 

serve as a starting position of the GA search instead of 

starting from a random point. This LTM will serve to speed 

up the search. 

   By doing this our system does not need the matcher 

calculations in [27] as our system does not use the binary 

message coding and the don’t care conditions and always 

we use perfect match. We also don’t need the generalizer. 

The chunks are laid in a queue starting from our recent 

experience.  

    The problem occurs as the system begins accumulating 

experience that is exceeding the physical memory limits. 

This implies that we must get rid of some of the stored 

information as the acquired experience increases. However 

we don’t favor this, because this means that some of the 

experiences the robot have discovered as solutions will be 

lost ( which is similar to a situation of a sinking boat where 

we have to sacrifice some of the passengers and keep others 

according to their relative importance). So for every rule 

chunk  we attach a difficulty counter to count the number of 

iterations taken by the robot to find a solution to a given 

situation, we also attach a frequency counter to count how 

much this rule have been retrieved. The degree of 

importance of each rule chunk is calculated as the product 

of the frequency counter and the difficulty counter, which 

tries to keep the rules that the robot had done a lot of effort 

to learn them ( due to the difficulty of the situation) and 

also the rules that are  frequently used . When there is no 

more room in the long-term memory, the rule chunk that 

had has least degree of importance is chosen to be replaced. 

If two rule chunks share the same importance degree, tie-

breaking is resolved by a least-recently-used strategy. The 

rule that has not been used for the longest period of time is 

replaced. Thus an age parameter is also needed for each 

rule chunk. The value of the age parameter increases over 

time, but is initialized whenever the associated chunk is 
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accessed. The limit for the memory chunks is set to 2000 

rule chunks, so if we exceed this limit we begin using the 

degree of importance and age operator to optimize the 

LTM. Of course not all the 2000 chunks will be used in 

each trials, because we will use the chunks that contains the 

rules that match the current situation. 
 

D. Producing new solutions by Genetic Algorithms. 

    The GA is the rule discovery component for our system 

(as in the classifier system). The GA is applied to learn a 

new solution for a certain situation, after the solutions 

stored in the LTM fails. The GA produces new solutions 

that replaces the most two dominant rules at FB and the 

most two dominant rules at SB.  

    As mentioned earlier the GA starts by modifying the 

actions of the most two dominant rules at SB (to modify the 

earlier rules that, if their actions were true the robot can 

easily get out of this situation), we will call this First 

Replacement (FR). If the robot does not find a solution 

within a certain number of iterations, chosen empirically to 

be three iterations, the robot begins modifying all the rules 

actions of FB and SB, we will call this Second Replacement 

(SR).  

 

  

 

 

 

 

 

 

 

 

 

 
Figure (10): The robot is in a situation composed of two 

sub-situations, one is right turn followed by left turn. 

 

    The robot then starts moving with the modified rules.  If 

the robot moved a distance above the distance needed for 

the ending criteria of this situation (to be determined later), 

this will be considered a solution, until it collides again 

(requiring it to learn a new situation). If the number of 

generation exceeds a certain number of generations chosen 

empirically to be six with no solution found then we 

decrease the situation ending criteria to half the distance. 

This means that this situation cannot be learnt as one 

situation and must be split into two situations such as figure 

(10). Splitting this situation into two sub-situation is 

essential for producing a solution. 

    The population of the GA during the FR will be the 

actions of all the rules that have contributed to the SB 

(which is usually a small population of 6-12 rules 

depending on the situation). While in the SR the population 

will be consisting of all the rules that contributed to the FB 

and the SB. The crossover and mutation probabilities  play 

a great role in the GA fast convergence, in which we are 

interested very much. The selection procedure for these 

probabilities will be discussed in detail. 

    The crossover probability pc controls the rate at which 

the solutions are subjected to crossover. The higher the 

value of pc, the quicker are the new solutions introduced 

into the population. As pc increases, however, solutions can 

be disrupted faster than selection can exploit them. The 

choice of pm is critical to the GA performance, large values 

of pm transform the GA into a purely random search 

algorithm, while some mutation is required to prevent the 

premature convergence of the GA to sub optimal solutions. 

The traditional role of mutation has been that of restoring 

lost or unexplored genetic material into the population to 

prevent the premature convergence of the GA to sub 

optimal solutions. However recent investigations have 

demonstrated that high levels of mutation could form an 

effective search strategy when combined with conservative 

selection methods[25]. 

    Because we are using small population size , then we 

need high mutation rate to allow wider variation in the 

search and hence the ability to jump of the local minima. 

Also because we start our search of all the  rules have the 

same consequences which means that all the genetic 

materials are the same, hence we need high mutation rate to 

introduce new genetic material with out changing the 

algorithm to random search. It is also desirable as the 

system is showing improvement in fitness (distance), the 

mutation rate is decreased  for not loosing these genetic 

materials that caused this improvement and we depend on 

crossover to fine tune these genetic materials to obtain our 

solution.  

    So the mutation probability we propose will be variable 

from one generation to the other, and it will depend on the 

distance improvement. In the first generations we will use 

high mutation probability found empirically  to be 0.5 (to 

be shown later). If there is a distance improvement we will 

have the mutation linearly reduced until the improvement is 

zero, when the improvement is equal to the robot length 

(determined empirically as will shown later). If the distance 

improvement was the same or was degradation, then the 

mutation rate is increased again to 0.5 to find new genetic 

materials that might aid in finding a solution. 

So the mutation probability will be given by : 

 

pm =       if   dnew > dold 

 

pm = 0.5                                          otherwise          (9) 

 

    The reduced crossover lowers the productivity of the GA, 

since there is less recombination between individuals, and 

hence it takes a longer time to obtain good solutions [18], 

so as in [18] we will set the crossover probability to 1.0 to 

guarantee fast convergence. The above selections will be 

justified by the following experiments. 

    In the following experiments we wanted to find a 

solution for the problem encountered by the robot in figure 

 

 

The robot 
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(11) , in which the robot is required to learn only the right 

turn in a corridor. In figure (12) we have conducted 

different experiments for each mutation value we have tried 

6 values of crossover probability starting from 0 to 1 with a 

step of 0.2. And then we varied the mutation probability 

starting from 0 to 1  with values equal to 0, 0.1,0.3,0.5 , 

0.7,0.9, 1.0. It was found that at zero mutation no solution 

could be found because lack of genetic material, the same 

was for value of 0.1. At mutation value of 0.3  the fastest 

convergence was after 7 iterations with crossover value of 

1.0. At mutation value of 0.5 we have the fastest 

convergence after 4 iterations with a crossover rate of 1.0. 

The same for mutation values of 0.7. At mutation values of 

0.9 the system is more or less a random search and the best 

performance is at crossover rate 1.0 after 6 iterations. The 

mutation rate of 1.0 leads to no solutions at all, because this 

means that starting with all the genetic materials the same 

as our case, mutation will lead to inversion of the binary 

materials and we will end with all the genetic materials the 

same again with no new material (i.e. we will end flipping 

between the current genetic material and its inversion). 

    

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: The problem set to the robot to learn the right 

turn in a corridor. 

 

    From this figure it is obvious that always as the crossover 

rate increases the convergence rate is faster with optimum 

value at crossover probability of 1.0. Also the optimum 

mutation value was found to be 0.5 and 0.7 but we will 

choose 0.5 to be our bound to decrease the risk of ending as 

a randomized search. 

    In figure (13) we conducted a series of experiments to 

investigate the effect of the robot length variation in 

equation (9) and is the robot length the optimum parameter. 

That is to say if we tricked the robot by saying that its size 

is half its original size or double, by doing this we can 

investigate the optimum parameter for equation (9) also we 

are interested in making our work robot independent (i.e. 

when the system is  transferred to other robot it will still 

work ). From figure(13), it is obvious that the original robot 

size had given the fastest convergence (after 4 iterations) 

whilst any other lengths didn’t give the same fast 

convergence (while maintaining the crossover =1 and 

mutation using equation(9)). 

    In order to be sure that this parameter is optimum we 

tried varying the robot sizes and mazes size. By doing this 

we are investigating that the effect of the robot length 

parameter was not a parameter dependent on the maze and 

that by changing the maze size, the optimum parameter 

should the robot original length. Figures(14) shows the 

robot original length tried with different mazes sizes. Figure 

(15) shows half the robot length tried in equation(9) with 

different mazes sizes. Figure (16) shows third the robot size 

parameter in equation (8) with different robot sizes. Note 

that these curves stay the same as figure (13) but they 

converge faster  as the maze size increases. But we still 

have the best convergence results with the original robot 

length in equation (9). When we substitute half the length 

of the robot in equation (9), a small improvement in the 

robot performance will falsely cause the robot to decrease 

the mutation so much thus causing the robot to take long 

time to converge, the same applies for any smaller length. 

 

 

 
 

Figure 12:The convergence rate specified by the number of 

iterations plotted against the crossover probability for 

different mutation rates. 
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Figure 13: The effect of variation of the robot length in 

equation (8) over the rate of convergence (the number of 

iterations). 

 

   

 
Figure 14: The robot with its original length  parameter 

with varying maze sizes. 

 

 
 

Figure 15: The robot with its half length  parameter with 

varying maze sizes. 

 

    We use binary coding in the GA. For each rule there are 

two actions which are the left and right wheel velocities. As 

we have 4 output membership function, so we decode each 

action by two bits as follows, Very Low is 00, Low is 01, 

Medium is 10 , High is 11. So by doing this we have a 

chromosome length of 4 bits.      

   Figure (17) shows a description of the GA operation in 

which rule number 5 of the obstacle avoidance and rule 7 of 

the left wall following are chosen for reproduction by 

roulette wheel selection due their high fitness ( they have 

contributed more with their actions to final action which 

caused improvement, or contributed less with their actions 

to final action which caused degradation). The crossover of 

probability 1.0 was applied to both chromosomes and the 

adaptive mutation as well. The resultant off springs were 

used to replace the consequent of rules 1 of the obstacle 

avoidance and rule 2 of the right wall following which were 

mostly blamed at SB. The same technique is used to replace 

the consequents of the two dominant rules in the FB.  

 

 
 

Figure 16: The robot with third its length with varying maze 

sizes.                                       

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                            

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: An example of GA processes in our proposed 

classifier system in which rule 5 and rule 7 (which were 

selected due to their higher fitness values) are generating 

new consequent for rules 1,2 of the FB reversal . The same 

will happen with  two SB rules. 

 

    However to speed search we will use the ultra sound 

information in order to narrow the search space of the GA 

and make it avoid regions which will not provide any 

solutions, for example it is not a good idea to turn left when 

the sensors sense that the left end is blocked or there is 

1       0     1    1 

0       1      0     1 

Rule 5 

Rule 1 

Rule 7 

Rule 2 

0        0     0    1 

0       0     1    1 

Left 

Velocity 

Right 

Velocity 

Right 

Velocity 

Left 

Velocity 

Right 

Velocit

Right 

Velocity 

Crossover 

Point 

Crossover 

Point 

Left 

Velocity Left 

Velocity 

Mutation 

Point 

Mutation 

Point 



In he 8th International Conference on Fuzzy Systems (FUZZ-IEEE'99), Seoul, Korea, August 22-25, 1999 

© Essex University 1999 

15 

larger space to turn right. The Mechanism using the 

ultrasound sensors works as follows. 

   We will call the Left Front  Sensor k1, the Right Front 

Sensor k2, the Left Side Front sensor k3, the Right Side 

Front (RSF) k5. First the robot at the SB checks if  k1>k2 

and k3>k5 then the direction is left , if  k2>k1 and k5>k3 

then the direction is right, if k3=k5 check if k1>k2 then the 

direction is left if k2>k1 then the direction is right. If all 

these condition are violated check the same for the FB to 

determine the direction. If every thing fails then either there 

is no solution and no turns can be done here and the robot 

must go back (which will be done any way by the robot 

through the backing procedure, because the robot backs off 

till it finds good place to start its turn) or the readings are 

the same because going to the left or the right is the same 

like going around a wall you can rotate around it from left 

or right so have an arbitrary direction say left. 

 

E. The Ending Criteria of a situation: 

    We will try also to evaluate this criteria to be robot 

independent and maze independent. 

    We cannot use time as ending criteria because we are 

using variable speed, and also we cannot use the distance 

produced by infrared triangulation because this implies 

calculating the bearing while the robot is moving, and as we 

are using a rotating tarret to get the bearing of the beacons 

this implies that high imprecision in distance determination.  

     So we calculate the distance moved by calculating the 

average speed (average of the left and right speeds) over 

one second. Multiplying the average speed by one second 

should give the average distance by the robot.  

    As in the SB we are at minimum 2W from the front 

obstacle and X1 from the left and X2 from the right. If we 

assumed that the robot moved W without doing the right 

moved and at the position of FB it made the right turn , this 

should be rotating with a quarter a circumference of a  

circle of radius W making the robot moving   . In 

order to make sure it is out of this situation, the robot 

should escape with its sides L (maximum of L1, L2). Then 

the total distance moved by the robot to end a situation is 

given by : 

W +  + L                                                 (10) 

    So the robot calculates the average distance moved by it 

every second. If this distance exceeds the distance given by 

equation (10), then the robot had successfully found a 

solution to this situation. If the number of generations 

exceed 6 then the distance given by (10) is reduced by half, 

to split this situation into two situations as described earlier. 

 

 

V. EXPERIMENTS AND RESULTS 

    The robots learns rule bases of different behaviors by 

learning different situations while if navigates. The robot 

does not learn special situations, but it learn general rules 

like if the right sensor is low and the medium sensor is low 

and the left sensor is high then go left. By encountering 

different situations the robot can fill its rule base. The robot 

learns when it needs, for  example if the robot was launched 

in a corridor, it will learn the rules needed to navigate in 

this corridor and it can generalize as we will see later and 

navigate in different shapes of corridors, because it had 

learnt general and not specific rules. But when the robot is 

introduced to a complicated maze with left and right turn 

the robot must learn more rules in order to survive. This 

also means if the robot after learning a complete rule base, 

had changed its kinematics or the ground conditions is 

changed, the robot can still adapt itself to the environment 

by only adjusting small set of rules with no need to start 

learning from the beginning as in learning by simulation. In 

the first part of this section we will first introduce our 

system to solve difficult situations and develop a rule base 

that can solve other mazes easily. Next we will compare our 

work with some of the important work in the literature of 

using GA (On-line and off-line). 

 

 
 

Figure (18): a)The robot learning cycle. (b) The robot path 

after learning. 

    

     In the following  experiments we want the robot to learn 

the coordinated behaviors of obstacle avoidance, left, right 

wall following  from scratch to get out of a maze without 

collision with obstacles. The goal seeking behavior is 

specified using human experience to arrive to goal after 

getting out of a maze. We have introduced the robot to 

difficult situations so that if it learnt hard situations it can 

learn easy situations. 
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Figure (19) : a) The robot response when started from 

different starting position., (b) The robot response when 

rules are generated with different raw rules. 

    

    In these experiments we assume that the membership 

functions are constant and also the behavior co-ordination 

membership functions and rules are the constant and are set 

to the same values as shown above in section 2. 

    We have initialized the rule bases of the behaviors to be 

learnt randomly to move the robot forward (biased to right 

or left, or with no bias with different speeds not including 

zero), this action was done in order to be sure that the robot 

is moving and not sitting doing nothing. 

    The robot learning cycle discussed above is shown in 

figure (18-a) in which the robot moves then collides then it 

first backs (FB) and second backs (SB) and generate a 

modified set of rules to that situation and then it passes 

safely until the rules fail again and the learning cycle 

repeats. 

    The robot was first introduced to the complicated maze 

in figure (18-b) which contains many general situations to 

learn such as how to navigate in a corridor, how to do left 

turn and how to do right turn, and how to navigate in wide 

areas with dead ends. The  robot had all its initial rule base 

suggesting to go forward with normal speed irrespective of 

any obstacles facing the robot. 

    After only 44 generations the robots had succeeded in 

getting out safely from the maze after modifying the actions 

of 15  rules in the obstacle avoidance behavior and 6 rules 

in the left wall following behavior and 6 rules in the right 

wall following.  

    Although the experiment last for about 35 minutes , most 

of the time elapsed concerns moving backward and forward 

as this takes long time due to the low speed of the robot. 

The  computation time for each rule generation is 200 ms 

using 68020 20Mhz microprocessor.  

    After the robot gets  safely out of the maze, we replace it 

in the starting position to test the robot repeatability and 

stability for 8 experiments, the robot have shown that the 

robot path is repeatable with in a 92 % in average and stable 

as it didn’t crash again. 

 

 
 

Figure (20): The control surface produced by the algorithm 

for the right wall following behavior, the left graph 

represents the RSF sensors and RSB plotted against left 

wheel speed, the right graph represents the RSF sensors and 

RSB plotted against right wheel speed. 

 

    The robot’s path is shown in figure (18-b) showing it to 

have a smooth path through the whole maze, getting safely 

out towards its target. Note that the generated control 

surface in figure(20) is smooth and continuous  

    We have tried the robot at a different starting position as 

shown in figure (19-a) and the robot, got out safely which 

implies that the robot had not learnt a specific path starting 

from a certain point. In order to guarantee repeatability of 

the  robot, we have started the robot with a different raw 

rule bases. The robot got out of the maze and found a 

solution after 49 generations, modifying the actions of 14 

new rules in the obstacle avoidance behavior, and 6 rules in 

the left wall following behavior, and 6 rules in the right 

wall following behavior. The robot final response is shown 

in figure (19-b). 

    Although  the rule bases of figure(18-b),(19-b) are 

slightly different, they produced a very similar response. It 

is difficult to determine which solution is better than the 

other as both solutions produce smooth control surfaces and 

they have a very similar response. Also almost similar rules 

are modified by the algorithm, which are the  efficient rules 

in the robot motion. Thus we can assume that the solutions 

are almost the same. In order to be more confident in our 

method and  be sure that the robot had learnt general rules 

and not a certain geometry. We have tried the robot on 

completely different geometry maze. This had very tight 

corridors and difficult turns and sparsely  distributed 

objects. We have tried both solutions on this mazes as 
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shown in figure(21-a,21-b). The robot in both situations 

showed a good response in spite of navigating tight 

corridors and making difficult turns. Both solutions 

produced similar response. In both solutions we have tried 

the robot with no long time memory and we have found that 

the robot gives the same solution after 80 iterations. This 

justifies the idea of LTM as besides preserving the system 

experience, it also speeds up the GA search as starting the 

GA from the best found point in the space. 

    The distance improvement against the number of 

generations (in the situation shown in figure (18-a)) is 

shown in figure (22), this figure show how the GA explores 

the space first, identifying bad regions and trying to avoid 

them and at the sixth iteration it succeeds in finding the 

solution (represented by the high improvement of 60). 

  

 
 

Figure (21):a)The robot response with the first learnt rule 

base tried to different geometry. b)The robot response with 

the second learnt rule base tried to different geometry. 

 

   In the next section, we will compare our performance 

with three of the most important work in the literature , 

Leitch [17] and Bonarini[2] and Hoffmann[12]. Leitch have 

used simulation in his work and Bonarini had used 

simulation for his robot then implemented it real robot, as 

hoffmann. 

 

 

Figure (22) The  Distance Improvement caused by GA to 

the situation of figure (18-a). 

 

 

 
(a)                                    (b) 

 

Figure 23: The corridor experiments that were conducted by 

Leitch and Bonarini a) Tight corridor b)wide corridor. 

    

    In simulation the problem of distance determination and 

robot backing  and robot moving speed is completely 

ignored because it easy to be done while in training with 

real robot most of the time is consumed in moving along 

the maze and testing the new solutions, while generating 

new solutions does not occupy 5% of the whole learning 

time. So when comparing our work with the other research 

we will compare with the number iterations needed to find a 

solution.  

    We start the comparison with [17], [2] with the 

conventional corridor tracking problem. We will compare 
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the results first with [2] in which he places his 60 c.m wide 

robot in 3m wide corridor then he moved it to 4m and 2m 

wide corridors, then he placed the robot in a complicated 

corridor as shown in figure(24-b) . We have done our 

experiments with our 25 c.m wide robot preserving the 

same ratios with our corridors starting with 1.25 meters and 

then moving to 1.67m corridors and 83 cm corridors to test 

the portability of the rule bases[2]. But we started the 

learning by the hard corridor in figure (24-a) to learn most 

of the situations that the robot might face in a corridor. It 

took the robot 16 minutes (including backing time and the 

slow speed of the robot) to get out of the corridor and to 

learn the rule bases of the co ordinated behaviours. It had 

learnt 7 rules in the obstacle avoidance behavior, 4 rules in 

the left wall following behavior, 4 rules in the right wall 

following behavior (i.e. total of 15 rules). It have learnt 

these rules in an average of 20 iterations (episodes) over 4 

experiments, and it follows the path shown in figure (24-a). 

 

 

 
(a)                                               (b) 

 

Figure 24: comparison between our work and Bonarini’s 

work a) Our algorithm b)Bonarini’s method 

                                                                                                    

 

 

 

 

 

 

 

 

 

 
              (a)                                 (b)                       (c )         

 

Figure 25: comparison between our work and Hoffmann’s 

work a) Hoffmann’s method b) Our method with target to 

the right c ) other method with the target to the right. 

 

    The robot was started from different positions in the 

maze for 8 times and the robot had followed the path in 

figure (24-a) with a 95% degree of repeatability and with 

100% degree of stability as the robot did not crash at all 

(note the smooth response of the robot ). The robot was 

then tried in the tight corridor and the wide corridor in 

figure (23-a), figure (23-b) and we tested the degree of 

repeatability for 8 times, it was found that the degree of 

repeatability of the path was again 95% and the  stability 

was 100 %. Note that the system objective function is to 

maximize the distance moved by the robot before crashing, 

and in spite of this the robot tend follow approximately the 

center line of the corridor, this is because every wall 

following behavior tries to avoid collision with its wall and 

because of the final balanced action, the robot follows the 

center line of the corridor. Leitch have tried only simple 

corridor following using the context depending coding and 

he succeeded in generating a solution after 40 generations 

(and his rules base should be modified again to solve the 

problem of figure (24-b). Bonarini have used his algorithm 

on a simulated robot and then he transferred this controller 

to the real robot. To solve the problem in figure (24-a) he 

needed 471 leaning episodes (iterations). 

   In [12] Hoffmann introduces his method of incremental 

tuning of fuzzy controllers by means of an evolution 

strategy  and he gives the bench mark problem at figure 

(26-a), he had succeed in finding a solution after 50 

iterations with a rule base of 9 rules. In his previous work 

he had used messy GA to learn the fuzzy controller and he 

had given the example in figure (25-a) (he didn’t give 

information about the converging rate). In our algorithm we 

have started learning the rule bases for figure (25-a), ( We 
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didn’t learn the rule base of goal seeking as Hoffmann). 

After 18 minutes (including backing times and the low 

robot speed ) the robot have achieved its goal successfully 

in an average of 20 iterations,  learning 7  rules in the 

obstacle avoidance behavior and 4 rules in the left wall 

following behavior, and 4 rules in the right wall following 

behavior. The robot was tried for 8 experiments to test its 

repeatability and stability and it had given a path 

repeatability of 93% and stability of 100%. The robot is 

reactive as shown in figure (25-b), (25-c), as the target 

changes its position from the left to the right, the robot 

changes its path responsively following the shortest path. 

    The same controller was tried to the problem of figure 

(26-a) in which the robot moves from a tight corridor to a 

wide area then it finds a dead end and then it begins turning 

back until it is out of the whole maze. We have done the 

same experiment with the previous controller to test its 

generality. The robot successfully done the required job ( 

following the tight corridor, finding the dead end , returning 

back and getting out of the corridor). This proves the 

generality of the learnt rules. 

 

 

 
 

Figure 26: comparison between our work and Hoffmann’s 

work a) Hoffmann’s method b) Our method . 

 

VI. CONCLUSIONS AND FUTURE WORK 

    We have developed an on-line fast learning algorithm for 

learning and modifying robot behaviors from scratch. The 

technique uses online GA to generate the rule bases for 3 

fuzzy co-operating behaviors organized in a hierarchical 

form. All the behaviors are learnt online with real robots 

and through interaction with the real world, satisfying the 

definition of an agent. 

    We have also solved the real world problems associated 

with learning online such as distance determination , 

determination of how much the robot should back when it 

collides with an obstacle and determination of ending 

condition of each situation. All these parameters were 

designed to be robot independent so that if the robot 

changes the algorithm can still work by changing only the 

parameters that depend on the robot size. 

    We have also developed a long time memory technique 

in which the robot memorizes all its previous solutions so 

that it can use them when faced by similar situations in the 

future, this aids the robots to find solutions with out even 

needing GA learning and if the robot still crashes it selects 

the most appropriate solution to this solution to serve as a 

starting point to GA which was shown to reduce the 

learning time. 

    The proposed system can be viewed as a double 

hierarchy system in which the fuzzy behaviors are 

organized in a hierarchical form and the online learning 

algorithm is also a hierarchy in which in the higher level we 

have a population of solutions stored in the LTM and they 

are tested in a queue , if one of these stored experiences 

leads to a solution then the search ends, if none of these 

stored experiences leads to a solution then each of these 

experiences acquires a fitness by finding the distance it had 

moved before failing. The highest fitness experience is used 

as a starting position to the lower level GA which is used to 

produce new solution to the current situation. 

    This technique is adequate for outdoor robots where the 

dynamics of the robot as well as the environment is rapidly 

changing and requires the robot to quickly modify itself to 

these changes . 

    The algorithm is very fast in finding an appropriate 

solution; it finds a solution fast compared even with 

simulation techniques and the methods found in the 

literature for fuzzy robot controller design using GA.    

    In order to test the generality of our technique we have 

experimented with starting from different points and using 

different initial populations, we have also used completely 

different geometrical mazes. The robots have shown a 

constant response and smooth response to all these changes 

which suggest that it had learnt general and not specific 

rules. 

    The learnt rules will not be frozen as they can be 

modified when they fail a certain situation. In this event the 

whole behavior will not be learnt, as only the part of the 

rule base that has done badly. 

    For the future work we will try to learn how to 

coordinate these behaviors together. We will also try to 

learn the membership functions of the different behaviors 

and apply these technique to outdoor robots. 
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