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1. INTRODUCTION 

 

A “really useful” mobile robot should be autonomous 

and be able to adapt its behaviour to its current 

environment.  The world of our “really useful” robot 

should be unmodified i.e. no markers, beacons or any 

external position references, and the robot should not 

be given any a priori map or knowledge of the world 

structure.  Exploring the world the robot should build 

its map from scratch using only its sensory 

impressions or “perceptions” of its current 

environment.  These perceptions fall into two broad 

categories and using the terminology of (Duckett and 

Nehmzow, 1997) they are: 

 

A. Exteroception.  The robots perceptions of the 

outside world i.e. from a TV camera, laser range 

finders, ultrasound. 

 

B. Proprioception. The robots perception of its 

internal state within the world i.e. its perceived 

position derived for example from wheel 

encoders, or its current heading from say an 

internal compass, or the reported state of any 

limbs it may have. 

 

Many of the popular mapping methods make use of 

both perception categories.  However, they rely on 

accurate proprioceptive perceptions especially the 

robots internal position information.  For example, 

the “traditional” geometric approaches, or 

quantitative methods, such as (Elfes, 1989; Darwin et 

al., 1985; Hoppen, 1990; Pagac and Nebot, 1995) are 

based on the accumulation of accurate geometric 

information about the world.  However, this 

dependency on sensor accuracy makes these methods 

impractical for autonomous robots in the real world.   

 

A more flexible approach to robot mapping uses 

qualitative methods. Rather than trying to map the 

environment explicitly the robots exteroceptions are 

used more directly to form a map.  The notion of the 

robot having a global position or any kind of 

geometric reference does not seem necessary.  As 

long as the Exteroception perceptions are rich-

enough in context to be different at places the robot 

will visit in the environment.  If every place in the 

world is unique then the robot can use this 

information alone to build a navigable map.  

However this is not the case and we have an effect 

known as “Perceptual Aliasing” (Duckett and 

Nehmzow, 1997).  This is an effect where similar 

Exteroception perceptions occur in more than one 

place in the environment.  This problem is 

approached by adding context to the exteroceptions, 

commonly by adding positional information.  

Examples of qualitative mapping methods range 

from maps constructed using a set of explicit rules 

(Kuipers and Byun, 1988) to more recent examples 

using statistical methods (Zimmer, 1995; Kurtz, 

1996).  In the recent work of (Duckett and Nehmzow, 

1997) the “Lost Robot Problem” is tackled, i.e. the 

basic problem of the robot being able to find itself on 

the map it has already built.  After all a map can only 

be useful to the robot only if it knows where it is in 

relation to it.  An interesting question is how might 

the robot autonomously decide that it is lost?   

 

The above work has some disadvantages such as 

overfitting the environment with the mapping 

structure, updating in dynamic environments and 

representing the environment with low degrees of 

accuracy. 

 

The world modelling method proposed here 

integrates some of the qualities of the above work, 

while avoiding some of their disadvantages.  The 

modelling method aims for the robot to 

autonomously produce, in real time, a map that 

models the world with a higher degree of resolution, 

without overfitting with the mapping structure.  The 

model readily being used for localisation and for path 
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planning tasks, with the path planning algorithms 

exploiting the proposed models structure for 

computational efficiency.  Incidentally, the notions of 

the mapping method proposed here finds support in 

the biological literature (Cheng, 1986). 

 

In the remainder of this paper, we outline the details 

of the robot used in the experiments and the 

environments the robot will be situated in.  A 

description of the proposed mapping model is given 

along with some implementation details.  Some 

experiments are then described to evaluate the 

robustness of the model.  The paper concludes with a 

summary of the work. 

 

 

2. THE ROBOT 

 

All the experiments are performed using an indoor 

laboratory robot.  Figure 1 shows the robot.  The 

robot has a number of sensors.  The robots wheels are 

driven by two stepper motors.  Internal position 

information is derived from the number of steps 

taken by the stepper motors.  This crude method 

ensures the internal position information is never 

very accurate and accumulates error if unchecked.  A 

measure of the mapping models robustness is the 

amount of positional error tolerated before the map 

becomes unreliable.  A set of touch sensors surrounds 

the robot perimeter and provides positive feedback 

when the robot bumps into objects.  The robot has a 

set of eight simple ultrasound sensors distributed 

evenly around its perimeter.  These sensors provide 

range distances relative to the robots current position.  

This is achieved by recording the time-of-flight of an 

ultrasound pulse at a single frequency.  The readings 

are subject to the typical noise associated with 

ultrasound measurements i.e. reflections from 

surfaces, environmental temperatures, surface 

textures.  The robot has an onboard 68030 processor 

with 1MB of memory and runs the real time 

operating system VxWorks.  Due to these limited 

resources, all of the processing is performed on a 

host workstation.  Control and perception 

information flows along an Ethernet connection 

between the robot and host.  This arrangement allows 

off-line development. 

 

    

3. THE ENVIRONMENT 

 

The experiments initially performed with the model 

will be in engineered indoor environments.  

Environments are constructed from various low level 

wall sections and obstacles of simple shape, all 

surfaces are generally smooth as well.  The 

environments are unmodified with no markers, 

beacons or any external position references.  

However, there should be enough variation in the 

world for the robot to distinguish various places with 

its sensors, so giving the robot enough information to 

localise itself.   

The initial experiments are concerned with proving 

the model in static environments, but later 

progressing to dynamic environments.  In the 

dynamic environment, two classes of dynamic 

objects are defined.  The first class are those objects 

which are picked up and moved to another location, 

or just removed altogether, or are added to the 

environment.  The second class are those which 

appear mobile relative to the robot.  This may be the 

case if other robots, or indeed people, are working in 

the same environment.  Indeed it would be interesting 

to have other robots using the same model within the 

environment, this idea could lead onto experiments 

developing co-operative mapping techniques.   

 

The long-term goal of this work is to experiment with 

the model on an outdoor robot based around a farm 

vehicle situated in a farm environment.   

 

 
 

Fig. 1 Photograph of the indoor robot used in the 

experiments. 

  

 

4. THE PROPOSED MODEL 

 

The aim of this model is to allow a robot with 

inaccurate sensors to construct a map of an 

unmodified environment autonomously and without 

any a priori knowledge.  To achieve this topological 

and geometric methods are brought together to 

produce a method that is robust, efficient, modular, 

and adequate for path planning and localisation tasks.  

Moreover, we think this method achieves this more 

elegantly than the other methods reviewed.  To 

explain the model we introduce two concepts firstly 

the notion of a “Perception Space” and secondly the 

notion of a “Geometric Space”. 

 

4.1 Overall View 

 

In the introduction we defined the term perception 

and further defined two categories of perception, 

Exteroceptions and Proprioceptions.  The notion of a 

“Perception Space” here is only concerned with the 

exterceptions and may be illustrated graphically with 

the use of some set theory.  Letting the universal set 

be the set of all perceptions perceivable by any 

sensory means, then individual sensors form subsets 

of this universal set.  Each sensor can be seen as 

acting as a filter, only allowing through perceptions 

that are specific to it (Wilson, 1991).  So each sensor 

has its own associated set of perceptions as depicted 

in figure 2. 
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Fig. 2 Each sensors set of perceptions 

 

The sensors space of perceptions is further 

constrained by the type of environment the sensor is 

situated in, forming an “environmental subset”.  This 

environmental subset of perceptions is constrained 

further, forming another subset, which depends on 

how much of the environment the sensor gets to see.  

It is this subset which forms the “Perception Space”.  

Within this space, perceptions are categorised for 

their similarity relating to similar “Perception Areas” 

in the environment.  For example, if the robot finds 

itself in a farm environment equipped with a camera 

then its environmental subset of perceptions are all 

things perceivable with the camera on the farm.  

However the robot spends its days trudging around 

the fields and its perception space only consists of 

things like fences, hedges, wooden poles, bales of 

hay etc. Therefore, as the robot explores the 

environment perceptions are categorised and 

perception spaces formed for each type of sensor it 

has.  The perception space starts as an empty set, 

growing as more of the environment is seen and 

should stabilise once the entire set of perceptions in 

environment have been seen.  However, if new parts 

of the environment are discovered then the 

perception space should accommodate the potentially 

new set of perceptions. 

 

The “Geometric Space” is a geometric framework 

and its purpose is to simply relate geometric areas to 

perception areas in the environment where they 

occur.  This is needed since it is unlikely that a 

perception area will be unique to one area of the 

environment i.e. “Perceptual Aliasing”.  The 

geometric space addresses the perception space to 

relate geometric areas to perceptual areas.  A 

perception area may be referenced more than once by 

the geometric space.   In our farm environment for 

example, there may be more than one bale of hay 

lying around in the field.  As explained later in this 

article inexpensive path planning algorithms can be 

implemented with careful consideration to the 

representation of the geometric space.  In addition, 

the robot should expect to see a certain sequence of 

perceptions along any planned path.  This allows the 

robot to check its progress along the path and not be 

entirely dependent on its kinematics.     

While the perception space should stabilise once the 

entire set of perceptions in the environment have 

been seen the geometric space may continue to 

expand as the robot explores more of the world.  For 

example in our farm environment after exploring an 

entire field, the perception space will be stable.  Now 

there may be a number of similar fields requiring the 

robots attentions.  Therefore, the geometric space 

expands to accommodate the new fields as the robot 

explores them, but the perception space remains 

unchanged since all the fields contain similar objects 

and appear similar.  However, should the robot then 

go to explore the barn where the hay is stored the 

perception space should accommodate the potentially 

new set of perceptions.  The combination of the 

perception space and the geometric space is 

illustrated in Figure 3. 

 

 
 

Fig. 3 The Geometric Space referencing the 

Perception Space.  This combination provides 

navigation information and a context for the robots 

perceptions forming the overall mapping model.  The 

Perception Space has been partitioned into 

Perception Areas. 

 

The key to this model is the partitioning of the 

perception space into perception areas.  It is not 

important what the perception areas relate to in the 

physical world, all that matters is that there are a set 

of areas in the environment which are distinguishable 

by the robots sensors.  Since it is the ability to 

distinguish different perception areas that allow the 

geometric space to be constructed and allow path 

planning and localisation tasks to be performed.  

Using our farm environment for example, Pa1 could 

relate to open field, Pa4 could relate to bales of hay 

and Pa3 could relate to a fenced area, etc.  On the 

other hand, they could relate to something far more 

abstract.  Again, the importance lies with the robot 

being able to distinguish various perception areas in 

the environment.  Whether or not the perception 

areas relate to objects “humans” can identify with 

does not matter, although of course this would be 

convenient.  Perception areas are simply labelled by 

number, anything more meaningful requires the robot 

to have an “understanding” of what it perceives.  

Alternatively a human operator could observe the 

robot and try to match perception areas with some 

appropriate label. 

 

If the robot becomes lost, for whatever reason, the 

robot can derive its location using the map it has 

built.  Moreover, it can do this without referencing 

any positional information by making use of the 

perceptual space.  When the robot is lost, it may be in 

any one of a set of possible locations.  In this 

situation, the robot should wander around gathering 

evidence to find out where it is.  The localisation 

procedure is formalised by the algorithm below.  It 
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relies on neighbourhood information in the geometric 

space to reduce the robots set of possible locations. 

    

Location Algorithm: 

 

1. Note the current perception area. 

2. Create a set of locations from the geometric  

    space that share the above perception area. 

3. Initialise the localisation hypothesis set with the  

    set produced in step 2. 

4. Repeat 

5. Wander around until the perception area 

changes. 

6. Create a set of locations from the geometric 

space that share the above perception area and 

neighbour a location in the current location 

hypothesis set. 

7. Set the location hypothesis set with the locations 

created in step 6. 

8. Until location hypothesis set contains only one  

    element. 

 

Here the robot will wander around the environment 

until it finds a particular sequence of perceptions that 

can be identified uniquely in the map.  For example, 

in our farm environment if there is only once place 

where the robot would pass a gate followed by a 

hedge then by a fence, the robot can locate itself on 

the map after this sequence of perceptions.  

Successful localisation depends on the environment 

being varied enough to allow the robot to reduce the 

set of possible locations to one location.  Figure 4 

gives a simple example to illustrate the localisation 

process with a sequence of abstract perceptions. 

 

It should be noted the location algorithm does not 

account for all eventualities.  For example, if the 

robot encounters a new perception that does not have 

a neighbour in the current hypothesis set?  This may 

be the result of three events.   

 

1. Firstly and the most critical, the map was 

incorrectly built.  This should not be allowed to 

happen. 

 

2. The robot has moved out of the mapped area. In 

this case, the robot really is lost. 

 

3. The environment has changed.  In this case, either 

one or both of the above facts could be true as 

well. 

 

We are aware of these problems and do not have any 

solutions to them now. Currently with the model, the 

only solution if this situation occurs is to restart the 

location process.  However, are these location 

problems any different to those “humans” would 

have in similar situations? Would solving these 

problems result in a system out performing human 

capabilities?  

 

 
 

Fig. 4 Illustrating the self-location abilities of the 

model.  Each time a new perception area is 

encountered the hypothesis set is updated based on 

which locations of the new perception neighbour 

those of the previous hypothesis set.  Note that no 

positional information is used in the process. 

 

 

5. IMPLEMENTATION 

 

The function of the perception space module is to 

partition a perception space into suitable perception 

areas.  This partitioning function is a data 

classification problem.  A “Growing Cell Structure” 

neural network (Fritzke, 1993) is used for this 

classification process.  The growing cell network is a 

self-organising neural network and works on the 

same principles as the well-known Kohonen neural 

network (Kohonen, 1988).  The structure of the 

Kohonen network is fixed.  The structure of the 

Growing Cell network is not fixed and is able to 

evolve with the data, growing and shrinking to best 

categorise the data.  These are desirable features 

since the robot will be exploring an environment that 

is of unknown size, shape and complexity.  The other 

desirable feature is the statistical element to these 

types of network, this will allow for some 

inconsistency in the robots sensors.  Figure 5 gives 

the general idea how the growing cell structures will 

model perception spaces.  The cells of the network 

represent the perception areas and the connections 

between them express their topological similarity. 

 

 
 

Fig. 5 Each type of sensor has its own perception 

space and is modelled by a growing cell structure. 

 

The geometric space module relates perception areas 

to geometric areas in the environment where they 

occur.  An “Area Quadtree” (Samet, 1984) is used to 

implement the geometric space.  The quadtree is 

based around the principle of recursive 

decomposition.  Areas are viewed as quadrants, and 

quadrants are recursively decomposed until quadrants 

are either homogeneous or the minimum quadrant 
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size has been reached.  In our case, homogeneous 

areas represent areas with the same perception area.  

Hence uniform areas are mapped with the minimum 

of quadrants and the resolution of the represented 

area is defined by the minimum quadrant size.  

 

Quadtrees offer a dynamic and efficient method for 

representing areas, the resolution to which an area is 

represented can vary as well.  In addition, the tree 

structure of the quadtree allows the represented area 

to be efficiently searched.  This property has been 

exploited to produce efficient path planning 

algorithms for the structure (Kambhampati and 

Davis, 1986; Zelinsky, 1992). 

 

 

6. EXPERIMENTS 

 

The experiments proposed are designed to evaluate 

the robustness of the world modelling method.  The 

first set of experiments involves using place markers, 

in particular a “home” marker, to measure the 

performance of the model in general.  The robot will 

be instructed to explore the environment and given 

enough time to build a reasonable map.  Then the 

robot will be instructed to go “home”.  The accuracy 

and the types of paths chosen will be measured.  The 

second set of experiments will measure the 

effectiveness of the localisation algorithm under 

varying conditions. Again the robot will be allowed 

to explore the environment long enough for it to 

build a reasonable map.  The robot will then be 

picked up, placed in a random location within the 

mapped environment, and with its positional sensors 

switched off, instructed to “go home”.  This will be 

an essential test for the performance of the 

Perception Space and Geometric Space for 

localisation and navigation.     

 

7. CONCLUSION 

 

This paper has presented preliminary work on a 

multi-representational approach to the modelling of 

the real world.  The approach is designed for a 

“really useful” robot that is autonomous and able to 

adapt to the surrounding environment.  It is assumed 

the robots environment is unknown, unstructured and 

unmodified.  The robot explores its new environment 

gathering perception information to construct the 

Perception Space and the Geometric Space.  The 

Geometric Space will continue expanding as more of 

the environment is explored, while the Perception 

Space will converge to a stable stage when all the 

perceptions in the environment become identifiable.  

The Perception Space and the Geometric Space 

together can be used for self-localisation and path 

planning tasks.  The presented localisation algorithm 

does not rely on the robots positional information.  

The model is currently being experimented with on 

an indoor mobile robot.  Conclusive results are 

expected soon and will be presented at the 

conference and in future publications.  In the longer 

term, experiments will include a mobile outdoor farm 

robot.        
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1. INTRODUCTION 

 

A “really useful” mobile robot should be autonomous 

and be able to adapt its behaviour to its current 

environment.  The world of our “really useful” robot 

should be unmodified i.e. no markers, beacons or any 

external position references, and the robot should not 

be given any a priori map or knowledge of the world 

structure.  Exploring the world the robot should build 

its map from scratch using only its sensory 

impressions or “perceptions” of its current 

environment.  These perceptions fall into two broad 

categories and using the terminology of (Duckett and 

Nehmzow, 1997) they are: 

 

A. Exteroception.  The robots perceptions of the 

outside world i.e. from a TV camera, laser range 

finders, ultrasound. 

 

B. Proprioception. The robots perception of its 

internal state within the world i.e. its perceived 

position derived for example from wheel 

encoders, or its current heading from say an 

internal compass, or the reported state of any 

limbs it may have. 

 

Many of the popular mapping methods make use of 

both perception categories.  However, they rely on 

accurate proprioceptive perceptions especially the 

robots internal position information.  For example, 

the “traditional” geometric approaches, or 

quantitative methods, such as (Elfes, 1989; Darwin et 

al., 1985; Hoppen, 1990; Pagac and Nebot, 1995) are 

based on the accumulation of accurate geometric 

information about the world.  However, this 

dependency on sensor accuracy makes these methods 

impractical for autonomous robots in the real world.   

 

A more flexible approach to robot mapping uses 

qualitative methods. Rather than trying to map the 

environment explicitly the robots exteroceptions are 

used more directly to form a map.  The notion of the 

robot having a global position or any kind of 

geometric reference does not seem necessary.  As 

long as the Exteroception perceptions are rich-

enough in context to be different at places the robot 

will visit in the environment.  If every place in the 

world is unique then the robot can use this 

information alone to build a navigable map.  

However this is not the case and we have an effect 

known as “Perceptual Aliasing” (Duckett and 

Nehmzow, 1997).  This is an effect where similar 

Exteroception perceptions occur in more than one 

place in the environment.  This problem is 

approached by adding context to the exteroceptions, 

commonly by adding positional information.  

Examples of qualitative mapping methods range 

from maps constructed using a set of explicit rules 

(Kuipers and Byun, 1988) to more recent examples 

using statistical methods (Zimmer, 1995; Kurtz, 

1996).  In the recent work of (Duckett and Nehmzow, 

1997) the “Lost Robot Problem” is tackled, i.e. the 

basic problem of the robot being able to find itself on 

the map it has already built.  After all a map can only 

be useful to the robot only if it knows where it is in 

relation to it.  An interesting question is how might 

the robot autonomously decide that it is lost?   

 

The above work has some disadvantages such as 

overfitting the environment with the mapping 

structure, updating in dynamic environments and 

representing the environment with low degrees of 

accuracy. 

 

The world modelling method proposed here 

integrates some of the qualities of the above work, 

while avoiding some of their disadvantages.  The 

modelling method aims for the robot to 

autonomously produce, in real time, a map that 

models the world with a higher degree of resolution, 

without overfitting with the mapping structure.  The 

model readily being used for localisation and for path 
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planning tasks, with the path planning algorithms 

exploiting the proposed models structure for 

computational efficiency.  Incidentally, the notions of 

the mapping method proposed here finds support in 

the biological literature (Cheng, 1986). 

 

In the remainder of this paper, we outline the details 

of the robot used in the experiments and the 

environments the robot will be situated in.  A 

description of the proposed mapping model is given 

along with some implementation details.  Some 

experiments are then described to evaluate the 

robustness of the model.  The paper concludes with a 

summary of the work. 

 

 

2. THE ROBOT 

 

All the experiments are performed using an indoor 

laboratory robot.  Figure 1 shows the robot.  The 

robot has a number of sensors.  The robots wheels are 

driven by two stepper motors.  Internal position 

information is derived from the number of steps 

taken by the stepper motors.  This crude method 

ensures the internal position information is never 

very accurate and accumulates error if unchecked.  A 

measure of the mapping models robustness is the 

amount of positional error tolerated before the map 

becomes unreliable.  A set of touch sensors surrounds 

the robot perimeter and provides positive feedback 

when the robot bumps into objects.  The robot has a 

set of eight simple ultrasound sensors distributed 

evenly around its perimeter.  These sensors provide 

range distances relative to the robots current position.  

This is achieved by recording the time-of-flight of an 

ultrasound pulse at a single frequency.  The readings 

are subject to the typical noise associated with 

ultrasound measurements i.e. reflections from 

surfaces, environmental temperatures, surface 

textures.  The robot has an onboard 68030 processor 

with 1MB of memory and runs the real time 

operating system VxWorks.  Due to these limited 

resources, all of the processing is performed on a 

host workstation.  Control and perception 

information flows along an Ethernet connection 

between the robot and host.  This arrangement allows 

off-line development. 

 

    

3. THE ENVIRONMENT 

 

The experiments initially performed with the model 

will be in engineered indoor environments.  

Environments are constructed from various low level 

wall sections and obstacles of simple shape, all 

surfaces are generally smooth as well.  The 

environments are unmodified with no markers, 

beacons or any external position references.  

However, there should be enough variation in the 

world for the robot to distinguish various places with 

its sensors, so giving the robot enough information to 

localise itself.   

The initial experiments are concerned with proving 

the model in static environments, but later 

progressing to dynamic environments.  In the 

dynamic environment, two classes of dynamic 

objects are defined.  The first class are those objects 

which are picked up and moved to another location, 

or just removed altogether, or are added to the 

environment.  The second class are those which 

appear mobile relative to the robot.  This may be the 

case if other robots, or indeed people, are working in 

the same environment.  Indeed it would be interesting 

to have other robots using the same model within the 

environment, this idea could lead onto experiments 

developing co-operative mapping techniques.   

 

The long-term goal of this work is to experiment with 

the model on an outdoor robot based around a farm 

vehicle situated in a farm environment.   

 

 
 

Fig. 1 Photograph of the indoor robot used in the 

experiments. 

  

 

4. THE PROPOSED MODEL 

 

The aim of this model is to allow a robot with 

inaccurate sensors to construct a map of an 

unmodified environment autonomously and without 

any a priori knowledge.  To achieve this topological 

and geometric methods are brought together to 

produce a method that is robust, efficient, modular, 

and adequate for path planning and localisation tasks.  

Moreover, we think this method achieves this more 

elegantly than the other methods reviewed.  To 

explain the model we introduce two concepts firstly 

the notion of a “Perception Space” and secondly the 

notion of a “Geometric Space”. 

 

4.1 Overall View 

 

In the introduction we defined the term perception 

and further defined two categories of perception, 

Exteroceptions and Proprioceptions.  The notion of a 

“Perception Space” here is only concerned with the 

exterceptions and may be illustrated graphically with 

the use of some set theory.  Letting the universal set 

be the set of all perceptions perceivable by any 

sensory means, then individual sensors form subsets 

of this universal set.  Each sensor can be seen as 

acting as a filter, only allowing through perceptions 

that are specific to it (Wilson, 1991).  So each sensor 

has its own associated set of perceptions as depicted 

in figure 2. 
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Fig. 2 Each sensors set of perceptions 

 

The sensors space of perceptions is further 

constrained by the type of environment the sensor is 

situated in, forming an “environmental subset”.  This 

environmental subset of perceptions is constrained 

further, forming another subset, which depends on 

how much of the environment the sensor gets to see.  

It is this subset which forms the “Perception Space”.  

Within this space, perceptions are categorised for 

their similarity relating to similar “Perception Areas” 

in the environment.  For example, if the robot finds 

itself in a farm environment equipped with a camera 

then its environmental subset of perceptions are all 

things perceivable with the camera on the farm.  

However the robot spends its days trudging around 

the fields and its perception space only consists of 

things like fences, hedges, wooden poles, bales of 

hay etc. Therefore, as the robot explores the 

environment perceptions are categorised and 

perception spaces formed for each type of sensor it 

has.  The perception space starts as an empty set, 

growing as more of the environment is seen and 

should stabilise once the entire set of perceptions in 

environment have been seen.  However, if new parts 

of the environment are discovered then the 

perception space should accommodate the potentially 

new set of perceptions. 

 

The “Geometric Space” is a geometric framework 

and its purpose is to simply relate geometric areas to 

perception areas in the environment where they 

occur.  This is needed since it is unlikely that a 

perception area will be unique to one area of the 

environment i.e. “Perceptual Aliasing”.  The 

geometric space addresses the perception space to 

relate geometric areas to perceptual areas.  A 

perception area may be referenced more than once by 

the geometric space.   In our farm environment for 

example, there may be more than one bale of hay 

lying around in the field.  As explained later in this 

article inexpensive path planning algorithms can be 

implemented with careful consideration to the 

representation of the geometric space.  In addition, 

the robot should expect to see a certain sequence of 

perceptions along any planned path.  This allows the 

robot to check its progress along the path and not be 

entirely dependent on its kinematics.     

While the perception space should stabilise once the 

entire set of perceptions in the environment have 

been seen the geometric space may continue to 

expand as the robot explores more of the world.  For 

example in our farm environment after exploring an 

entire field, the perception space will be stable.  Now 

there may be a number of similar fields requiring the 

robots attentions.  Therefore, the geometric space 

expands to accommodate the new fields as the robot 

explores them, but the perception space remains 

unchanged since all the fields contain similar objects 

and appear similar.  However, should the robot then 

go to explore the barn where the hay is stored the 

perception space should accommodate the potentially 

new set of perceptions.  The combination of the 

perception space and the geometric space is 

illustrated in Figure 3. 

 

 
 

Fig. 3 The Geometric Space referencing the 

Perception Space.  This combination provides 

navigation information and a context for the robots 

perceptions forming the overall mapping model.  The 

Perception Space has been partitioned into 

Perception Areas. 

 

The key to this model is the partitioning of the 

perception space into perception areas.  It is not 

important what the perception areas relate to in the 

physical world, all that matters is that there are a set 

of areas in the environment which are distinguishable 

by the robots sensors.  Since it is the ability to 

distinguish different perception areas that allow the 

geometric space to be constructed and allow path 

planning and localisation tasks to be performed.  

Using our farm environment for example, Pa1 could 

relate to open field, Pa4 could relate to bales of hay 

and Pa3 could relate to a fenced area, etc.  On the 

other hand, they could relate to something far more 

abstract.  Again, the importance lies with the robot 

being able to distinguish various perception areas in 

the environment.  Whether or not the perception 

areas relate to objects “humans” can identify with 

does not matter, although of course this would be 

convenient.  Perception areas are simply labelled by 

number, anything more meaningful requires the robot 

to have an “understanding” of what it perceives.  

Alternatively a human operator could observe the 

robot and try to match perception areas with some 

appropriate label. 

 

If the robot becomes lost, for whatever reason, the 

robot can derive its location using the map it has 

built.  Moreover, it can do this without referencing 

any positional information by making use of the 

perceptual space.  When the robot is lost, it may be in 

any one of a set of possible locations.  In this 

situation, the robot should wander around gathering 

evidence to find out where it is.  The localisation 

procedure is formalised by the algorithm below.  It 
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relies on neighbourhood information in the geometric 

space to reduce the robots set of possible locations. 

    

Location Algorithm: 

 

1. Note the current perception area. 

2. Create a set of locations from the geometric  

    space that share the above perception area. 

3. Initialise the localisation hypothesis set with the  

    set produced in step 2. 

4. Repeat 

5. Wander around until the perception area 

changes. 

6. Create a set of locations from the geometric 

space that share the above perception area and 

neighbour a location in the current location 

hypothesis set. 

7. Set the location hypothesis set with the locations 

created in step 6. 

8. Until location hypothesis set contains only one  

    element. 

 

Here the robot will wander around the environment 

until it finds a particular sequence of perceptions that 

can be identified uniquely in the map.  For example, 

in our farm environment if there is only once place 

where the robot would pass a gate followed by a 

hedge then by a fence, the robot can locate itself on 

the map after this sequence of perceptions.  

Successful localisation depends on the environment 

being varied enough to allow the robot to reduce the 

set of possible locations to one location.  Figure 4 

gives a simple example to illustrate the localisation 

process with a sequence of abstract perceptions. 

 

It should be noted the location algorithm does not 

account for all eventualities.  For example, if the 

robot encounters a new perception that does not have 

a neighbour in the current hypothesis set?  This may 

be the result of three events.   

 

1. Firstly and the most critical, the map was 

incorrectly built.  This should not be allowed to 

happen. 

 

2. The robot has moved out of the mapped area. In 

this case, the robot really is lost. 

 

3. The environment has changed.  In this case, either 

one or both of the above facts could be true as 

well. 

 

We are aware of these problems and do not have any 

solutions to them now. Currently with the model, the 

only solution if this situation occurs is to restart the 

location process.  However, are these location 

problems any different to those “humans” would 

have in similar situations? Would solving these 

problems result in a system out performing human 

capabilities?  

 

 
 

Fig. 4 Illustrating the self-location abilities of the 

model.  Each time a new perception area is 

encountered the hypothesis set is updated based on 

which locations of the new perception neighbour 

those of the previous hypothesis set.  Note that no 

positional information is used in the process. 

 

 

5. IMPLEMENTATION 

 

The function of the perception space module is to 

partition a perception space into suitable perception 

areas.  This partitioning function is a data 

classification problem.  A “Growing Cell Structure” 

neural network (Fritzke, 1993) is used for this 

classification process.  The growing cell network is a 

self-organising neural network and works on the 

same principles as the well-known Kohonen neural 

network (Kohonen, 1988).  The structure of the 

Kohonen network is fixed.  The structure of the 

Growing Cell network is not fixed and is able to 

evolve with the data, growing and shrinking to best 

categorise the data.  These are desirable features 

since the robot will be exploring an environment that 

is of unknown size, shape and complexity.  The other 

desirable feature is the statistical element to these 

types of network, this will allow for some 

inconsistency in the robots sensors.  Figure 5 gives 

the general idea how the growing cell structures will 

model perception spaces.  The cells of the network 

represent the perception areas and the connections 

between them express their topological similarity. 

 

 
 

Fig. 5 Each type of sensor has its own perception 

space and is modelled by a growing cell structure. 

 

The geometric space module relates perception areas 

to geometric areas in the environment where they 

occur.  An “Area Quadtree” (Samet, 1984) is used to 

implement the geometric space.  The quadtree is 

based around the principle of recursive 

decomposition.  Areas are viewed as quadrants, and 

quadrants are recursively decomposed until quadrants 

are either homogeneous or the minimum quadrant 
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size has been reached.  In our case, homogeneous 

areas represent areas with the same perception area.  

Hence uniform areas are mapped with the minimum 

of quadrants and the resolution of the represented 

area is defined by the minimum quadrant size.  

 

Quadtrees offer a dynamic and efficient method for 

representing areas, the resolution to which an area is 

represented can vary as well.  In addition, the tree 

structure of the quadtree allows the represented area 

to be efficiently searched.  This property has been 

exploited to produce efficient path planning 

algorithms for the structure (Kambhampati and 

Davis, 1986; Zelinsky, 1992). 

 

 

6. EXPERIMENTS 

 

The experiments proposed are designed to evaluate 

the robustness of the world modelling method.  The 

first set of experiments involves using place markers, 

in particular a “home” marker, to measure the 

performance of the model in general.  The robot will 

be instructed to explore the environment and given 

enough time to build a reasonable map.  Then the 

robot will be instructed to go “home”.  The accuracy 

and the types of paths chosen will be measured.  The 

second set of experiments will measure the 

effectiveness of the localisation algorithm under 

varying conditions. Again the robot will be allowed 

to explore the environment long enough for it to 

build a reasonable map.  The robot will then be 

picked up, placed in a random location within the 

mapped environment, and with its positional sensors 

switched off, instructed to “go home”.  This will be 

an essential test for the performance of the 

Perception Space and Geometric Space for 

localisation and navigation.     

 

7. CONCLUSION 

 

This paper has presented preliminary work on a 

multi-representational approach to the modelling of 

the real world.  The approach is designed for a 

“really useful” robot that is autonomous and able to 

adapt to the surrounding environment.  It is assumed 

the robots environment is unknown, unstructured and 

unmodified.  The robot explores its new environment 

gathering perception information to construct the 

Perception Space and the Geometric Space.  The 

Geometric Space will continue expanding as more of 

the environment is explored, while the Perception 

Space will converge to a stable stage when all the 

perceptions in the environment become identifiable.  

The Perception Space and the Geometric Space 

together can be used for self-localisation and path 

planning tasks.  The presented localisation algorithm 

does not rely on the robots positional information.  

The model is currently being experimented with on 

an indoor mobile robot.  Conclusive results are 

expected soon and will be presented at the 

conference and in future publications.  In the longer 

term, experiments will include a mobile outdoor farm 

robot.        
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1. INTRODUCTION 

 

A “really useful” mobile robot should be autonomous 

and be able to adapt its behaviour to its current 

environment.  The world of our “really useful” robot 

should be unmodified i.e. no markers, beacons or any 

external position references, and the robot should not 

be given any a priori map or knowledge of the world 

structure.  Exploring the world the robot should build 

its map from scratch using only its sensory 

impressions or “perceptions” of its current 

environment.  These perceptions fall into two broad 

categories and using the terminology of (Duckett and 

Nehmzow, 1997) they are: 

 

A. Exteroception.  The robots perceptions of the 

outside world i.e. from a TV camera, laser range 

finders, ultrasound. 

 

B. Proprioception. The robots perception of its 

internal state within the world i.e. its perceived 

position derived for example from wheel 

encoders, or its current heading from say an 

internal compass, or the reported state of any 

limbs it may have. 

 

Many of the popular mapping methods make use of 

both perception categories.  However, they rely on 

accurate proprioceptive perceptions especially the 

robots internal position information.  For example, 

the “traditional” geometric approaches, or 

quantitative methods, such as (Elfes, 1989; Darwin et 

al., 1985; Hoppen, 1990; Pagac and Nebot, 1995) are 

based on the accumulation of accurate geometric 

information about the world.  However, this 

dependency on sensor accuracy makes these methods 

impractical for autonomous robots in the real world.   

 

A more flexible approach to robot mapping uses 

qualitative methods. Rather than trying to map the 

environment explicitly the robots exteroceptions are 

used more directly to form a map.  The notion of the 

robot having a global position or any kind of 

geometric reference does not seem necessary.  As 

long as the Exteroception perceptions are rich-

enough in context to be different at places the robot 

will visit in the environment.  If every place in the 

world is unique then the robot can use this 

information alone to build a navigable map.  

However this is not the case and we have an effect 

known as “Perceptual Aliasing” (Duckett and 

Nehmzow, 1997).  This is an effect where similar 

Exteroception perceptions occur in more than one 

place in the environment.  This problem is 

approached by adding context to the exteroceptions, 

commonly by adding positional information.  

Examples of qualitative mapping methods range 

from maps constructed using a set of explicit rules 

(Kuipers and Byun, 1988) to more recent examples 

using statistical methods (Zimmer, 1995; Kurtz, 

1996).  In the recent work of (Duckett and Nehmzow, 

1997) the “Lost Robot Problem” is tackled, i.e. the 

basic problem of the robot being able to find itself on 

the map it has already built.  After all a map can only 

be useful to the robot only if it knows where it is in 

relation to it.  An interesting question is how might 

the robot autonomously decide that it is lost?   

 

The above work has some disadvantages such as 

overfitting the environment with the mapping 

structure, updating in dynamic environments and 

representing the environment with low degrees of 

accuracy. 

 

The world modelling method proposed here 

integrates some of the qualities of the above work, 

while avoiding some of their disadvantages.  The 

modelling method aims for the robot to 

autonomously produce, in real time, a map that 

models the world with a higher degree of resolution, 

without overfitting with the mapping structure.  The 

model readily being used for localisation and for path 
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planning tasks, with the path planning algorithms 

exploiting the proposed models structure for 

computational efficiency.  Incidentally, the notions of 

the mapping method proposed here finds support in 

the biological literature (Cheng, 1986). 

 

In the remainder of this paper, we outline the details 

of the robot used in the experiments and the 

environments the robot will be situated in.  A 

description of the proposed mapping model is given 

along with some implementation details.  Some 

experiments are then described to evaluate the 

robustness of the model.  The paper concludes with a 

summary of the work. 

 

 

2. THE ROBOT 

 

All the experiments are performed using an indoor 

laboratory robot.  Figure 1 shows the robot.  The 

robot has a number of sensors.  The robots wheels are 

driven by two stepper motors.  Internal position 

information is derived from the number of steps 

taken by the stepper motors.  This crude method 

ensures the internal position information is never 

very accurate and accumulates error if unchecked.  A 

measure of the mapping models robustness is the 

amount of positional error tolerated before the map 

becomes unreliable.  A set of touch sensors surrounds 

the robot perimeter and provides positive feedback 

when the robot bumps into objects.  The robot has a 

set of eight simple ultrasound sensors distributed 

evenly around its perimeter.  These sensors provide 

range distances relative to the robots current position.  

This is achieved by recording the time-of-flight of an 

ultrasound pulse at a single frequency.  The readings 

are subject to the typical noise associated with 

ultrasound measurements i.e. reflections from 

surfaces, environmental temperatures, surface 

textures.  The robot has an onboard 68030 processor 

with 1MB of memory and runs the real time 

operating system VxWorks.  Due to these limited 

resources, all of the processing is performed on a 

host workstation.  Control and perception 

information flows along an Ethernet connection 

between the robot and host.  This arrangement allows 

off-line development. 

 

    

3. THE ENVIRONMENT 

 

The experiments initially performed with the model 

will be in engineered indoor environments.  

Environments are constructed from various low level 

wall sections and obstacles of simple shape, all 

surfaces are generally smooth as well.  The 

environments are unmodified with no markers, 

beacons or any external position references.  

However, there should be enough variation in the 

world for the robot to distinguish various places with 

its sensors, so giving the robot enough information to 

localise itself.   

The initial experiments are concerned with proving 

the model in static environments, but later 

progressing to dynamic environments.  In the 

dynamic environment, two classes of dynamic 

objects are defined.  The first class are those objects 

which are picked up and moved to another location, 

or just removed altogether, or are added to the 

environment.  The second class are those which 

appear mobile relative to the robot.  This may be the 

case if other robots, or indeed people, are working in 

the same environment.  Indeed it would be interesting 

to have other robots using the same model within the 

environment, this idea could lead onto experiments 

developing co-operative mapping techniques.   

 

The long-term goal of this work is to experiment with 

the model on an outdoor robot based around a farm 

vehicle situated in a farm environment.   

 

 
 

Fig. 1 Photograph of the indoor robot used in the 

experiments. 

  

 

4. THE PROPOSED MODEL 

 

The aim of this model is to allow a robot with 

inaccurate sensors to construct a map of an 

unmodified environment autonomously and without 

any a priori knowledge.  To achieve this topological 

and geometric methods are brought together to 

produce a method that is robust, efficient, modular, 

and adequate for path planning and localisation tasks.  

Moreover, we think this method achieves this more 

elegantly than the other methods reviewed.  To 

explain the model we introduce two concepts firstly 

the notion of a “Perception Space” and secondly the 

notion of a “Geometric Space”. 

 

4.1 Overall View 

 

In the introduction we defined the term perception 

and further defined two categories of perception, 

Exteroceptions and Proprioceptions.  The notion of a 

“Perception Space” here is only concerned with the 

exterceptions and may be illustrated graphically with 

the use of some set theory.  Letting the universal set 

be the set of all perceptions perceivable by any 

sensory means, then individual sensors form subsets 

of this universal set.  Each sensor can be seen as 

acting as a filter, only allowing through perceptions 

that are specific to it (Wilson, 1991).  So each sensor 

has its own associated set of perceptions as depicted 

in figure 2. 
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Fig. 2 Each sensors set of perceptions 

 

The sensors space of perceptions is further 

constrained by the type of environment the sensor is 

situated in, forming an “environmental subset”.  This 

environmental subset of perceptions is constrained 

further, forming another subset, which depends on 

how much of the environment the sensor gets to see.  

It is this subset which forms the “Perception Space”.  

Within this space, perceptions are categorised for 

their similarity relating to similar “Perception Areas” 

in the environment.  For example, if the robot finds 

itself in a farm environment equipped with a camera 

then its environmental subset of perceptions are all 

things perceivable with the camera on the farm.  

However the robot spends its days trudging around 

the fields and its perception space only consists of 

things like fences, hedges, wooden poles, bales of 

hay etc. Therefore, as the robot explores the 

environment perceptions are categorised and 

perception spaces formed for each type of sensor it 

has.  The perception space starts as an empty set, 

growing as more of the environment is seen and 

should stabilise once the entire set of perceptions in 

environment have been seen.  However, if new parts 

of the environment are discovered then the 

perception space should accommodate the potentially 

new set of perceptions. 

 

The “Geometric Space” is a geometric framework 

and its purpose is to simply relate geometric areas to 

perception areas in the environment where they 

occur.  This is needed since it is unlikely that a 

perception area will be unique to one area of the 

environment i.e. “Perceptual Aliasing”.  The 

geometric space addresses the perception space to 

relate geometric areas to perceptual areas.  A 

perception area may be referenced more than once by 

the geometric space.   In our farm environment for 

example, there may be more than one bale of hay 

lying around in the field.  As explained later in this 

article inexpensive path planning algorithms can be 

implemented with careful consideration to the 

representation of the geometric space.  In addition, 

the robot should expect to see a certain sequence of 

perceptions along any planned path.  This allows the 

robot to check its progress along the path and not be 

entirely dependent on its kinematics.     

While the perception space should stabilise once the 

entire set of perceptions in the environment have 

been seen the geometric space may continue to 

expand as the robot explores more of the world.  For 

example in our farm environment after exploring an 

entire field, the perception space will be stable.  Now 

there may be a number of similar fields requiring the 

robots attentions.  Therefore, the geometric space 

expands to accommodate the new fields as the robot 

explores them, but the perception space remains 

unchanged since all the fields contain similar objects 

and appear similar.  However, should the robot then 

go to explore the barn where the hay is stored the 

perception space should accommodate the potentially 

new set of perceptions.  The combination of the 

perception space and the geometric space is 

illustrated in Figure 3. 

 

 
 

Fig. 3 The Geometric Space referencing the 

Perception Space.  This combination provides 

navigation information and a context for the robots 

perceptions forming the overall mapping model.  The 

Perception Space has been partitioned into 

Perception Areas. 

 

The key to this model is the partitioning of the 

perception space into perception areas.  It is not 

important what the perception areas relate to in the 

physical world, all that matters is that there are a set 

of areas in the environment which are distinguishable 

by the robots sensors.  Since it is the ability to 

distinguish different perception areas that allow the 

geometric space to be constructed and allow path 

planning and localisation tasks to be performed.  

Using our farm environment for example, Pa1 could 

relate to open field, Pa4 could relate to bales of hay 

and Pa3 could relate to a fenced area, etc.  On the 

other hand, they could relate to something far more 

abstract.  Again, the importance lies with the robot 

being able to distinguish various perception areas in 

the environment.  Whether or not the perception 

areas relate to objects “humans” can identify with 

does not matter, although of course this would be 

convenient.  Perception areas are simply labelled by 

number, anything more meaningful requires the robot 

to have an “understanding” of what it perceives.  

Alternatively a human operator could observe the 

robot and try to match perception areas with some 

appropriate label. 

 

If the robot becomes lost, for whatever reason, the 

robot can derive its location using the map it has 

built.  Moreover, it can do this without referencing 

any positional information by making use of the 

perceptual space.  When the robot is lost, it may be in 

any one of a set of possible locations.  In this 

situation, the robot should wander around gathering 

evidence to find out where it is.  The localisation 

procedure is formalised by the algorithm below.  It 
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relies on neighbourhood information in the geometric 

space to reduce the robots set of possible locations. 

    

Location Algorithm: 

 

1. Note the current perception area. 

2. Create a set of locations from the geometric  

    space that share the above perception area. 

3. Initialise the localisation hypothesis set with the  

    set produced in step 2. 

4. Repeat 

5. Wander around until the perception area 

changes. 

6. Create a set of locations from the geometric 

space that share the above perception area and 

neighbour a location in the current location 

hypothesis set. 

7. Set the location hypothesis set with the locations 

created in step 6. 

8. Until location hypothesis set contains only one  

    element. 

 

Here the robot will wander around the environment 

until it finds a particular sequence of perceptions that 

can be identified uniquely in the map.  For example, 

in our farm environment if there is only once place 

where the robot would pass a gate followed by a 

hedge then by a fence, the robot can locate itself on 

the map after this sequence of perceptions.  

Successful localisation depends on the environment 

being varied enough to allow the robot to reduce the 

set of possible locations to one location.  Figure 4 

gives a simple example to illustrate the localisation 

process with a sequence of abstract perceptions. 

 

It should be noted the location algorithm does not 

account for all eventualities.  For example, if the 

robot encounters a new perception that does not have 

a neighbour in the current hypothesis set?  This may 

be the result of three events.   

 

1. Firstly and the most critical, the map was 

incorrectly built.  This should not be allowed to 

happen. 

 

2. The robot has moved out of the mapped area. In 

this case, the robot really is lost. 

 

3. The environment has changed.  In this case, either 

one or both of the above facts could be true as 

well. 

 

We are aware of these problems and do not have any 

solutions to them now. Currently with the model, the 

only solution if this situation occurs is to restart the 

location process.  However, are these location 

problems any different to those “humans” would 

have in similar situations? Would solving these 

problems result in a system out performing human 

capabilities?  

 

 
 

Fig. 4 Illustrating the self-location abilities of the 

model.  Each time a new perception area is 

encountered the hypothesis set is updated based on 

which locations of the new perception neighbour 

those of the previous hypothesis set.  Note that no 

positional information is used in the process. 

 

 

5. IMPLEMENTATION 

 

The function of the perception space module is to 

partition a perception space into suitable perception 

areas.  This partitioning function is a data 

classification problem.  A “Growing Cell Structure” 

neural network (Fritzke, 1993) is used for this 

classification process.  The growing cell network is a 

self-organising neural network and works on the 

same principles as the well-known Kohonen neural 

network (Kohonen, 1988).  The structure of the 

Kohonen network is fixed.  The structure of the 

Growing Cell network is not fixed and is able to 

evolve with the data, growing and shrinking to best 

categorise the data.  These are desirable features 

since the robot will be exploring an environment that 

is of unknown size, shape and complexity.  The other 

desirable feature is the statistical element to these 

types of network, this will allow for some 

inconsistency in the robots sensors.  Figure 5 gives 

the general idea how the growing cell structures will 

model perception spaces.  The cells of the network 

represent the perception areas and the connections 

between them express their topological similarity. 

 

 
 

Fig. 5 Each type of sensor has its own perception 

space and is modelled by a growing cell structure. 

 

The geometric space module relates perception areas 

to geometric areas in the environment where they 

occur.  An “Area Quadtree” (Samet, 1984) is used to 

implement the geometric space.  The quadtree is 

based around the principle of recursive 

decomposition.  Areas are viewed as quadrants, and 

quadrants are recursively decomposed until quadrants 

are either homogeneous or the minimum quadrant 
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size has been reached.  In our case, homogeneous 

areas represent areas with the same perception area.  

Hence uniform areas are mapped with the minimum 

of quadrants and the resolution of the represented 

area is defined by the minimum quadrant size.  

 

Quadtrees offer a dynamic and efficient method for 

representing areas, the resolution to which an area is 

represented can vary as well.  In addition, the tree 

structure of the quadtree allows the represented area 

to be efficiently searched.  This property has been 

exploited to produce efficient path planning 

algorithms for the structure (Kambhampati and 

Davis, 1986; Zelinsky, 1992). 

 

 

6. EXPERIMENTS 

 

The experiments proposed are designed to evaluate 

the robustness of the world modelling method.  The 

first set of experiments involves using place markers, 

in particular a “home” marker, to measure the 

performance of the model in general.  The robot will 

be instructed to explore the environment and given 

enough time to build a reasonable map.  Then the 

robot will be instructed to go “home”.  The accuracy 

and the types of paths chosen will be measured.  The 

second set of experiments will measure the 

effectiveness of the localisation algorithm under 

varying conditions. Again the robot will be allowed 

to explore the environment long enough for it to 

build a reasonable map.  The robot will then be 

picked up, placed in a random location within the 

mapped environment, and with its positional sensors 

switched off, instructed to “go home”.  This will be 

an essential test for the performance of the 

Perception Space and Geometric Space for 

localisation and navigation.     

 

7. CONCLUSION 

 

This paper has presented preliminary work on a 

multi-representational approach to the modelling of 

the real world.  The approach is designed for a 

“really useful” robot that is autonomous and able to 

adapt to the surrounding environment.  It is assumed 

the robots environment is unknown, unstructured and 

unmodified.  The robot explores its new environment 

gathering perception information to construct the 

Perception Space and the Geometric Space.  The 

Geometric Space will continue expanding as more of 

the environment is explored, while the Perception 

Space will converge to a stable stage when all the 

perceptions in the environment become identifiable.  

The Perception Space and the Geometric Space 

together can be used for self-localisation and path 

planning tasks.  The presented localisation algorithm 

does not rely on the robots positional information.  

The model is currently being experimented with on 

an indoor mobile robot.  Conclusive results are 

expected soon and will be presented at the 

conference and in future publications.  In the longer 

term, experiments will include a mobile outdoor farm 

robot.        
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1. INTRODUCTION 

 

A “really useful” mobile robot should be autonomous 

and be able to adapt its behaviour to its current 

environment.  The world of our “really useful” robot 

should be unmodified i.e. no markers, beacons or any 

external position references, and the robot should not 

be given any a priori map or knowledge of the world 

structure.  Exploring the world the robot should build 

its map from scratch using only its sensory 

impressions or “perceptions” of its current 

environment.  These perceptions fall into two broad 

categories and using the terminology of (Duckett and 

Nehmzow, 1997) they are: 

 

A. Exteroception.  The robots perceptions of the 

outside world i.e. from a TV camera, laser range 

finders, ultrasound. 

 

B. Proprioception. The robots perception of its 

internal state within the world i.e. its perceived 

position derived for example from wheel 

encoders, or its current heading from say an 

internal compass, or the reported state of any 

limbs it may have. 

 

Many of the popular mapping methods make use of 

both perception categories.  However, they rely on 

accurate proprioceptive perceptions especially the 

robots internal position information.  For example, 

the “traditional” geometric approaches, or 

quantitative methods, such as (Elfes, 1989; Darwin et 

al., 1985; Hoppen, 1990; Pagac and Nebot, 1995) are 

based on the accumulation of accurate geometric 

information about the world.  However, this 

dependency on sensor accuracy makes these methods 

impractical for autonomous robots in the real world.   

 

A more flexible approach to robot mapping uses 

qualitative methods. Rather than trying to map the 

environment explicitly the robots exteroceptions are 

used more directly to form a map.  The notion of the 

robot having a global position or any kind of 

geometric reference does not seem necessary.  As 

long as the Exteroception perceptions are rich-

enough in context to be different at places the robot 

will visit in the environment.  If every place in the 

world is unique then the robot can use this 

information alone to build a navigable map.  

However this is not the case and we have an effect 

known as “Perceptual Aliasing” (Duckett and 

Nehmzow, 1997).  This is an effect where similar 

Exteroception perceptions occur in more than one 

place in the environment.  This problem is 

approached by adding context to the exteroceptions, 

commonly by adding positional information.  

Examples of qualitative mapping methods range 

from maps constructed using a set of explicit rules 

(Kuipers and Byun, 1988) to more recent examples 

using statistical methods (Zimmer, 1995; Kurtz, 

1996).  In the recent work of (Duckett and Nehmzow, 

1997) the “Lost Robot Problem” is tackled, i.e. the 

basic problem of the robot being able to find itself on 

the map it has already built.  After all a map can only 

be useful to the robot only if it knows where it is in 

relation to it.  An interesting question is how might 

the robot autonomously decide that it is lost?   

 

The above work has some disadvantages such as 

overfitting the environment with the mapping 

structure, updating in dynamic environments and 

representing the environment with low degrees of 

accuracy. 

 

The world modelling method proposed here 

integrates some of the qualities of the above work, 

while avoiding some of their disadvantages.  The 

modelling method aims for the robot to 

autonomously produce, in real time, a map that 

models the world with a higher degree of resolution, 

without overfitting with the mapping structure.  The 

model readily being used for localisation and for path 
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planning tasks, with the path planning algorithms 

exploiting the proposed models structure for 

computational efficiency.  Incidentally, the notions of 

the mapping method proposed here finds support in 

the biological literature (Cheng, 1986). 

 

In the remainder of this paper, we outline the details 

of the robot used in the experiments and the 

environments the robot will be situated in.  A 

description of the proposed mapping model is given 

along with some implementation details.  Some 

experiments are then described to evaluate the 

robustness of the model.  The paper concludes with a 

summary of the work. 

 

 

2. THE ROBOT 

 

All the experiments are performed using an indoor 

laboratory robot.  Figure 1 shows the robot.  The 

robot has a number of sensors.  The robots wheels are 

driven by two stepper motors.  Internal position 

information is derived from the number of steps 

taken by the stepper motors.  This crude method 

ensures the internal position information is never 

very accurate and accumulates error if unchecked.  A 

measure of the mapping models robustness is the 

amount of positional error tolerated before the map 

becomes unreliable.  A set of touch sensors surrounds 

the robot perimeter and provides positive feedback 

when the robot bumps into objects.  The robot has a 

set of eight simple ultrasound sensors distributed 

evenly around its perimeter.  These sensors provide 

range distances relative to the robots current position.  

This is achieved by recording the time-of-flight of an 

ultrasound pulse at a single frequency.  The readings 

are subject to the typical noise associated with 

ultrasound measurements i.e. reflections from 

surfaces, environmental temperatures, surface 

textures.  The robot has an onboard 68030 processor 

with 1MB of memory and runs the real time 

operating system VxWorks.  Due to these limited 

resources, all of the processing is performed on a 

host workstation.  Control and perception 

information flows along an Ethernet connection 

between the robot and host.  This arrangement allows 

off-line development. 

 

    

3. THE ENVIRONMENT 

 

The experiments initially performed with the model 

will be in engineered indoor environments.  

Environments are constructed from various low level 

wall sections and obstacles of simple shape, all 

surfaces are generally smooth as well.  The 

environments are unmodified with no markers, 

beacons or any external position references.  

However, there should be enough variation in the 

world for the robot to distinguish various places with 

its sensors, so giving the robot enough information to 

localise itself.   

The initial experiments are concerned with proving 

the model in static environments, but later 

progressing to dynamic environments.  In the 

dynamic environment, two classes of dynamic 

objects are defined.  The first class are those objects 

which are picked up and moved to another location, 

or just removed altogether, or are added to the 

environment.  The second class are those which 

appear mobile relative to the robot.  This may be the 

case if other robots, or indeed people, are working in 

the same environment.  Indeed it would be interesting 

to have other robots using the same model within the 

environment, this idea could lead onto experiments 

developing co-operative mapping techniques.   

 

The long-term goal of this work is to experiment with 

the model on an outdoor robot based around a farm 

vehicle situated in a farm environment.   

 

 
 

Fig. 1 Photograph of the indoor robot used in the 

experiments. 

  

 

4. THE PROPOSED MODEL 

 

The aim of this model is to allow a robot with 

inaccurate sensors to construct a map of an 

unmodified environment autonomously and without 

any a priori knowledge.  To achieve this topological 

and geometric methods are brought together to 

produce a method that is robust, efficient, modular, 

and adequate for path planning and localisation tasks.  

Moreover, we think this method achieves this more 

elegantly than the other methods reviewed.  To 

explain the model we introduce two concepts firstly 

the notion of a “Perception Space” and secondly the 

notion of a “Geometric Space”. 

 

4.1 Overall View 

 

In the introduction we defined the term perception 

and further defined two categories of perception, 

Exteroceptions and Proprioceptions.  The notion of a 

“Perception Space” here is only concerned with the 

exterceptions and may be illustrated graphically with 

the use of some set theory.  Letting the universal set 

be the set of all perceptions perceivable by any 

sensory means, then individual sensors form subsets 

of this universal set.  Each sensor can be seen as 

acting as a filter, only allowing through perceptions 

that are specific to it (Wilson, 1991).  So each sensor 

has its own associated set of perceptions as depicted 

in figure 2. 
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Fig. 2 Each sensors set of perceptions 

 

The sensors space of perceptions is further 

constrained by the type of environment the sensor is 

situated in, forming an “environmental subset”.  This 

environmental subset of perceptions is constrained 

further, forming another subset, which depends on 

how much of the environment the sensor gets to see.  

It is this subset which forms the “Perception Space”.  

Within this space, perceptions are categorised for 

their similarity relating to similar “Perception Areas” 

in the environment.  For example, if the robot finds 

itself in a farm environment equipped with a camera 

then its environmental subset of perceptions are all 

things perceivable with the camera on the farm.  

However the robot spends its days trudging around 

the fields and its perception space only consists of 

things like fences, hedges, wooden poles, bales of 

hay etc. Therefore, as the robot explores the 

environment perceptions are categorised and 

perception spaces formed for each type of sensor it 

has.  The perception space starts as an empty set, 

growing as more of the environment is seen and 

should stabilise once the entire set of perceptions in 

environment have been seen.  However, if new parts 

of the environment are discovered then the 

perception space should accommodate the potentially 

new set of perceptions. 

 

The “Geometric Space” is a geometric framework 

and its purpose is to simply relate geometric areas to 

perception areas in the environment where they 

occur.  This is needed since it is unlikely that a 

perception area will be unique to one area of the 

environment i.e. “Perceptual Aliasing”.  The 

geometric space addresses the perception space to 

relate geometric areas to perceptual areas.  A 

perception area may be referenced more than once by 

the geometric space.   In our farm environment for 

example, there may be more than one bale of hay 

lying around in the field.  As explained later in this 

article inexpensive path planning algorithms can be 

implemented with careful consideration to the 

representation of the geometric space.  In addition, 

the robot should expect to see a certain sequence of 

perceptions along any planned path.  This allows the 

robot to check its progress along the path and not be 

entirely dependent on its kinematics.     

While the perception space should stabilise once the 

entire set of perceptions in the environment have 

been seen the geometric space may continue to 

expand as the robot explores more of the world.  For 

example in our farm environment after exploring an 

entire field, the perception space will be stable.  Now 

there may be a number of similar fields requiring the 

robots attentions.  Therefore, the geometric space 

expands to accommodate the new fields as the robot 

explores them, but the perception space remains 

unchanged since all the fields contain similar objects 

and appear similar.  However, should the robot then 

go to explore the barn where the hay is stored the 

perception space should accommodate the potentially 

new set of perceptions.  The combination of the 

perception space and the geometric space is 

illustrated in Figure 3. 

 

 
 

Fig. 3 The Geometric Space referencing the 

Perception Space.  This combination provides 

navigation information and a context for the robots 

perceptions forming the overall mapping model.  The 

Perception Space has been partitioned into 

Perception Areas. 

 

The key to this model is the partitioning of the 

perception space into perception areas.  It is not 

important what the perception areas relate to in the 

physical world, all that matters is that there are a set 

of areas in the environment which are distinguishable 

by the robots sensors.  Since it is the ability to 

distinguish different perception areas that allow the 

geometric space to be constructed and allow path 

planning and localisation tasks to be performed.  

Using our farm environment for example, Pa1 could 

relate to open field, Pa4 could relate to bales of hay 

and Pa3 could relate to a fenced area, etc.  On the 

other hand, they could relate to something far more 

abstract.  Again, the importance lies with the robot 

being able to distinguish various perception areas in 

the environment.  Whether or not the perception 

areas relate to objects “humans” can identify with 

does not matter, although of course this would be 

convenient.  Perception areas are simply labelled by 

number, anything more meaningful requires the robot 

to have an “understanding” of what it perceives.  

Alternatively a human operator could observe the 

robot and try to match perception areas with some 

appropriate label. 

 

If the robot becomes lost, for whatever reason, the 

robot can derive its location using the map it has 

built.  Moreover, it can do this without referencing 

any positional information by making use of the 

perceptual space.  When the robot is lost, it may be in 

any one of a set of possible locations.  In this 

situation, the robot should wander around gathering 

evidence to find out where it is.  The localisation 

procedure is formalised by the algorithm below.  It 
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relies on neighbourhood information in the geometric 

space to reduce the robots set of possible locations. 

    

Location Algorithm: 

 

1. Note the current perception area. 

2. Create a set of locations from the geometric  

    space that share the above perception area. 

3. Initialise the localisation hypothesis set with the  

    set produced in step 2. 

4. Repeat 

5. Wander around until the perception area 

changes. 

6. Create a set of locations from the geometric 

space that share the above perception area and 

neighbour a location in the current location 

hypothesis set. 

7. Set the location hypothesis set with the locations 

created in step 6. 

8. Until location hypothesis set contains only one  

    element. 

 

Here the robot will wander around the environment 

until it finds a particular sequence of perceptions that 

can be identified uniquely in the map.  For example, 

in our farm environment if there is only once place 

where the robot would pass a gate followed by a 

hedge then by a fence, the robot can locate itself on 

the map after this sequence of perceptions.  

Successful localisation depends on the environment 

being varied enough to allow the robot to reduce the 

set of possible locations to one location.  Figure 4 

gives a simple example to illustrate the localisation 

process with a sequence of abstract perceptions. 

 

It should be noted the location algorithm does not 

account for all eventualities.  For example, if the 

robot encounters a new perception that does not have 

a neighbour in the current hypothesis set?  This may 

be the result of three events.   

 

1. Firstly and the most critical, the map was 

incorrectly built.  This should not be allowed to 

happen. 

 

2. The robot has moved out of the mapped area. In 

this case, the robot really is lost. 

 

3. The environment has changed.  In this case, either 

one or both of the above facts could be true as 

well. 

 

We are aware of these problems and do not have any 

solutions to them now. Currently with the model, the 

only solution if this situation occurs is to restart the 

location process.  However, are these location 

problems any different to those “humans” would 

have in similar situations? Would solving these 

problems result in a system out performing human 

capabilities?  

 

 
 

Fig. 4 Illustrating the self-location abilities of the 

model.  Each time a new perception area is 

encountered the hypothesis set is updated based on 

which locations of the new perception neighbour 

those of the previous hypothesis set.  Note that no 

positional information is used in the process. 

 

 

5. IMPLEMENTATION 

 

The function of the perception space module is to 

partition a perception space into suitable perception 

areas.  This partitioning function is a data 

classification problem.  A “Growing Cell Structure” 

neural network (Fritzke, 1993) is used for this 

classification process.  The growing cell network is a 

self-organising neural network and works on the 

same principles as the well-known Kohonen neural 

network (Kohonen, 1988).  The structure of the 

Kohonen network is fixed.  The structure of the 

Growing Cell network is not fixed and is able to 

evolve with the data, growing and shrinking to best 

categorise the data.  These are desirable features 

since the robot will be exploring an environment that 

is of unknown size, shape and complexity.  The other 

desirable feature is the statistical element to these 

types of network, this will allow for some 

inconsistency in the robots sensors.  Figure 5 gives 

the general idea how the growing cell structures will 

model perception spaces.  The cells of the network 

represent the perception areas and the connections 

between them express their topological similarity. 

 

 
 

Fig. 5 Each type of sensor has its own perception 

space and is modelled by a growing cell structure. 

 

The geometric space module relates perception areas 

to geometric areas in the environment where they 

occur.  An “Area Quadtree” (Samet, 1984) is used to 

implement the geometric space.  The quadtree is 

based around the principle of recursive 

decomposition.  Areas are viewed as quadrants, and 

quadrants are recursively decomposed until quadrants 

are either homogeneous or the minimum quadrant 
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size has been reached.  In our case, homogeneous 

areas represent areas with the same perception area.  

Hence uniform areas are mapped with the minimum 

of quadrants and the resolution of the represented 

area is defined by the minimum quadrant size.  

 

Quadtrees offer a dynamic and efficient method for 

representing areas, the resolution to which an area is 

represented can vary as well.  In addition, the tree 

structure of the quadtree allows the represented area 

to be efficiently searched.  This property has been 

exploited to produce efficient path planning 

algorithms for the structure (Kambhampati and 

Davis, 1986; Zelinsky, 1992). 

 

 

6. EXPERIMENTS 

 

The experiments proposed are designed to evaluate 

the robustness of the world modelling method.  The 

first set of experiments involves using place markers, 

in particular a “home” marker, to measure the 

performance of the model in general.  The robot will 

be instructed to explore the environment and given 

enough time to build a reasonable map.  Then the 

robot will be instructed to go “home”.  The accuracy 

and the types of paths chosen will be measured.  The 

second set of experiments will measure the 

effectiveness of the localisation algorithm under 

varying conditions. Again the robot will be allowed 

to explore the environment long enough for it to 

build a reasonable map.  The robot will then be 

picked up, placed in a random location within the 

mapped environment, and with its positional sensors 

switched off, instructed to “go home”.  This will be 

an essential test for the performance of the 

Perception Space and Geometric Space for 

localisation and navigation.     

 

7. CONCLUSION 

 

This paper has presented preliminary work on a 

multi-representational approach to the modelling of 

the real world.  The approach is designed for a 

“really useful” robot that is autonomous and able to 

adapt to the surrounding environment.  It is assumed 

the robots environment is unknown, unstructured and 

unmodified.  The robot explores its new environment 

gathering perception information to construct the 

Perception Space and the Geometric Space.  The 

Geometric Space will continue expanding as more of 

the environment is explored, while the Perception 

Space will converge to a stable stage when all the 

perceptions in the environment become identifiable.  

The Perception Space and the Geometric Space 

together can be used for self-localisation and path 

planning tasks.  The presented localisation algorithm 

does not rely on the robots positional information.  

The model is currently being experimented with on 

an indoor mobile robot.  Conclusive results are 

expected soon and will be presented at the 

conference and in future publications.  In the longer 

term, experiments will include a mobile outdoor farm 

robot.        
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